Меню

Колебательный контур в цепи переменного тока состоит из

Колебательный контур: принцип работы, виды контуров, параметры и характеристики

kontur

Колебательным контуром называют цепь, состоящая из конденсатора и катушки индуктивности.
(Для лучшего понимания работы колебательного контура рекомендую ознакомиться с страницами «Конденсаторы и способы их соединения» и «Катушка индуктивности»)
На рис.1 приведена схема контура, а на рис.2 — график, иллюстрирующий работу этого контура.
Когда переключатель SA1 установлен в положение 1 , то конденсатор С заряжается от батареи GB1 до напряжения этой батареи Uc .
При переводе переключателя в положение 2 конденсатор начинает разряжаться через катушку индуктивности L до момента t1 ( рис.2b ).
Если бы конденсатор разряжался через активное сопротивление, то этот процесс продлился какое то время до полного разряда конденсатора и на этом все и закончилось. Но катушка имеет интересное свойство — при протекании электрического тока он превращается в магнитную энергию поля вокруг катушки.
Заряд конденсатора уменьшается, а ток в катушке увеличивается и магнитное поле поле тоже. Катушка как бы аккумулирует электрический заряд конденсатора в магнитное поле.

kontur1

При полном разряде конденсатора ток в катушке уменьшается, и магнитные силовые линии начинают «сужаться» к катушке пересекая ее витки, чем вызывает появлению ЭДС самоиндукции обратной полярности, которая «помогает» удержаться уменьшающемуся току и заряжает конденсатор с новой полярностью. Этот момент показан на рис.2с , когда конденсатор заряжен, а ток в катушке прекратился.
В следующий момент конденсатор начинает снова разряжаться через катушку. На рис.2d он уже полностью разрядился и ток Iк максимален.
Далее магнитное поле опять «сужается», а ЭДС опять заряжает конденсатор ( рис.2е ).

Эти электрические колебания представляют собой, по существу, синусоидальный контурный ток Iк .
Если рассматривать контур как идеальным (без потерь), то колебания будут незатухающими, т.е. будут продолжаться вечно. Но идеальных контуров нет и поэтому в реальном колебательном контуре колебания будут затухать тем быстрее, чем больше потери этого контура.

Частота собственных колебаний контура (ее еще называют резонансной частотой fp ) зависит от индуктивности катушки и емкости конденсатора и вычисляется по формуле Томсона из которой видно, что чем меньше значения емкости и индуктивности, тем выше собственная частота контура:

Можно определить индуктивность или емкость контура по известной частоте fp:

L=253•10 2 /f 2 p•C; C=253•10 2 /f 2 p•L.

Последовательный колебательный контур

В колебательном контуре можно получить незатухающие колебания, если подключить его к источнику переменного тока.
Если источник подключен последовательно с катушкой L и конденсатором С , то такая цепь называется последовательным колебательным контуром ( рис.3 ).

При подключении внешнего источника к контуру в нем возникают не собственные (свободные) колебания контура, которые определяются значениями L и C , а с частотой напряжения источника U=Um∙sinω∙t .
Такие колебания контура называются вынужденными .
При вынужденных колебаниях элементы контура L, C будут иметь, в зависимости от частоты источника, определенные индуктивное XL и емкостное Xc сопротивления и соответствующие падения напряжения UL, Uc на них.
Но контур имеет не только реактивные сопротивления, а еще и активное cопротивление потерь R , которое в основном равно сопротивлению провода катушки.

Так как в катушке и конденсаторе напряжения сдвинуты относительно тока на разные фазовые углы, то более наглядно их можно показать на векторных диаграммах ( рис.4 )

Напряжение на индуктивном сопротивлении UL опережает ток на 90° , а напряжение на емкостном сопротивлении Uc отстает от тока на такой же угол 90° И получается, что векторы UL и Uc сдвинуты между собой на 180° , т.е. находятся в противофазе.
Вектор напряжения на источнике U будет равен геометрической сумме напряжения вектора UR и вектора разницы напряжений реактивных сопротивлений UL-Uc .

Как видно из диаграммы рис.4а при UL > Uc напряжение внешнего источника опережает ток в колебательном контуре на угол φ и находится выше оси абcцисс в зоне напряжений индуктивности. Значит в данном случае контур имеет сопротивление индуктивного характера.
При UL ( рис.4b ) вектор источника уже будет отставать от вектора тока на угол φ и контур будет иметь емкостное сопротивление.

Полное сопротивление контура Z будет равно:

Амплитудное значение тока Im определяется по формуле:

где Um — амплитудное напряжение источника, а ω -его угловая частота.

При выполнении равенства:

получается наибольшее значение тока и имеет место явление, которое называется резонансом .
Резонанс возникает при условии совпадения частоты источника напряжения с собственной частотой колебания контура.

На рис.5 показан график характеристик зависимости тока Iк и полного сопротивления Z последовательного контура от частоты.

mayatniki

Чтобы понять природу электрического резонанса рассмотрим механический резонанс.
Явление резонанса можно наблюдать на опыте как показано на рис.6 .
Здесь на натянутой общей нитке привязаны три пары шаров 1-1′, 2-2′, 3-3′ каждый из которых представляет собой маятник.
Если раскачать рукой шар 1 , то начинает раскачиваться и шар 1 ‘, тогда как все другие шары остаются неподвижными. Точно так же, если раскачать шар 3 , начнет раскачиваться только шар 3 .
Этот механический резонанс объясняется следующим образом.
В нашем опыте собственные частоты каждой пары маятников одинаковы, т.к. шары одинаковые и длина их нитей тоже одинакова.
Раскачиваясь, маятник 1 передает по общей нитке свои колебания остальным маятникам. Но эти колебания раскачивают только маятник 1′ потому, что его частота собственных колебаний совпадает с частотой «толчков» общей нити от маятника 1 . Так как эти «толчки» совпадают с тактом собственной частоты маятника 1′ , то его амплитуда раскачивания все больше и больше возрастает и может стать больше амплитуды раскачивающего маятника 1 .

Так же, примерно, происходит и при электрическом резонансе.
Представим себе маятник 1 источником колебаний, а маятник 1′ — колебательным контуром.
Маятник 1 , допустим, будет качаться с постоянной амплитудой и частотой.
Маятник 1′ не сможет сразу достичь амплитуды и частоты маятника 1 потому, что раскачать мгновенно общую нить до резонансной частоты и амплитуды будут мешать различные тормозящие процессы — сопротивление воздуха, инерционность, провис нити и т.д. Это будет выглядеть как торможение тока контура индуктивным и емкостным сопротивлениеми при несовпадении частоты источника и контура.
С течением времени маятник 1 раскачает маятник 1′ до своей частоты и амплитуды. Начнется процесс резонанса.
Амплитуда маятника 1′ будет расти до какого то значения, пока сила «подталкивания» не уравновесится противоположной силой торможения.
Так же и в контуре резонансный ток не может возрастать бесконечно.

При резонансе амплитуда тока в контуре равна:

Напряжение на индуктивном сопротивлении —

на емкостном сопротивлении —

Tак как XL=Xc , то вектора UL и Uc будут равны (UL=Uc) , но противоположно направлены ( рис.7 ).
Вектор напряжения U источника совпадает с вектором тока I и равен по величине напряжению на активном сопротивлении UR .
Отсюда следует, что при резонансе контур оказывает источнику сопротивление активного характера R который не дает амплитуде напряжения Um увеличиваться до бесконечности:

При резонансе отношение между напряжением на индуктивном сопротивлении и напряжением источника будет равно добротности Q катушки:
А добротность контуров, применяемых в радиотехнике, большая. Поэтому напряжение на катушке может превышать в сотни раз напряжение источника.
Но так как при резонансе напряжение на катушке равно напряжению на конденсаторе, значит отношение напряжения на конденсаторе к напряжению источника тоже будет равно добротности:

Для примера на рис.8 показана схема последовательного контура с реальными значениями элементов схемы и параметров, а так же полученные величины напряжений на этих элементах. Отсюда видно, что напряжение на катушке и конденсатотре при резонансе будет больше напряжения источника в Q раз.

Читайте также:  Как измениться мощность постоянного тока если при неизменном сопротивлении

Резонанс в последовательном колебательном контуром называют резонансом напряжения, т.к. напряжение на реактивных элементах при резонансе становится больше напряжения внешнего источника.

Способность колебательного контура создавать интенсивные колебания на одной частоте (точнее в узкой полосе частот) и почти не реагировать на сигналы других частот называется избирательностью.
Избирательность S численно показывает во сколько раз ослабляются посторонние сигналы по сравнению с колебаниями резонансной частоты ( рис.9 ):
где I(▲f) — ток в контуре при расстройки контура на ▲f .

Полосой пропускания контура называют полосу частот, в пределах которой ток в контуре уменьшается не более, чем в заданное число раз по сравнению с током при резонансе ( рис.10 ):

где — k коэффициент пропорциональности, указывающий на каком уровне резонансного тока Ip измеряется полоса пропускания.

Для k=1 — уровень Ik = 0,707·Ip и

k=√3 — уровень Ik = 0,5·Ip и

В электрических схемах колебательный контур связан с источником сигнала разными способами — непосредственно, индуктивною или емкостной связью.
Если контур связан с источником И индуктивно ( рис.11 ), то контур будет являтся последовательным, т.к. в катушке колебательного контура индуктируется ЭДС, что равносильно последовательному включению источника с L и С .

Такая связь применяется в радиоприемниках для связи антенны с контуром( рис.12 ).
С помощью конденсатора переменной емкости можно настраивать контур в резонанс с нужной радиостанцией.
В этом случае контурный ток, вызванный сигналом этой радиостанции, становится относительно большим, в то время как контурные токи, вызванные другими станциями, ничтожно малы.
Напряжение между точками a — b , вызванное большим резонансным током, подается к следующим каскадам приемника.

Параллельный колебательный контур

В параллельном колебательном контуре источник сигнала соединен с катушкой индуктивности и конденсатором параллельно (рис.11).
При подаче переменного напряжения на контур происходит обмен энергиями между конденсатором и катушкой, но только в цепи внутри контура.

Для возникновения резонанса в нем, как и в последовательном контуре, необходимыми условиями являются равенство емкостного Хс и индуктивного ХL сопротивлений, а так же равенство частоты собственных колебаний контура и частоты колебаний источника тока.
Только резонанс в параллельном колебательном контуром, в отличии от резонанса в последовательном контуре, называют резонансом тока.

В идеальном параллельном контуре (без потерь) вектора индуктивного Ic и емкостного тока IL (при ХL=Xc ) при резонансе будут направлены в противоположные стороны и суммарный ток будет обращаться в нуль ( рис.14a ). А это значит, что сопротивление контура будет стремится к бесконечности.
Но в реальном параллельном контуре существует сопротивление потерь R которое сосредоточено в основном в индуктивности ( рис 14b ) и поэтому, даже при резонансе ток в контуре уже не равен нулю, а равен активной составляющей тока в цепи катушки — Iк=IL+IR.
Значит полное сопротивление контура Z будет уже не бесконечно, а равно:

На рис.15 показан график характеристик зависимости тока Iк и полного сопротивления Z параллельного контура от частоты.

Можно сделать вывод: в цепи параллельного контура существуют два тока — ток от источника I протекающий через активное сопротивление потерь катушки и реактивный ток контура Iк .
Внутри контура протекают реактивный ток довольно таки большой величины:

но он потребляет малый ток от источника, который необходим лишь для компенсации потерь в контуре:

Добротность Q параллельного контура, в отличии от последовательного контура, показывает во сколько раз ток в элементах контура больше потребления тока источника:

На рис.16 дан конкретный пример параллельного колебательного контура, где видно, что ток контура больше тока источника в Q раз.

В радиоприемниках так же применяется непосредственная связь колебательного контура с антенной, т.е. контур включен параллельно источнику сигнала ( рис.17 ).
Переменным конденсатором настраиваем контур на частоту сигнала нужной радиостанции. При резонансе контурный ток, вызванный нужной радиостанцией, становится относительно большим, а сопротивление контура тоже большим.Поэтому между точками а и b получается значительное напряжение.
Для других станций контур представляет малое сопротивление и сигнал радиостанции уходит в «землю».

Источник



Колебательный контур — формулы, схема и функции

Общие сведения

Колебательным контуром называется электрическая цепь, состоящая из конденсатора и катушки индуктивности, применяемой для генерации свободных электромагнитных колебаний в радиоприемниках и радиопередатчиках. Это устройство используется в качестве различных фильтров (полосовых и режекторных). Для подстройки сигналов в сторону увеличения или уменьшения амплитуды используется этот радиоэлемент. Основная функция контура — фильтрация частот.

Широкое распространение устройство получило в военной сфере. В радиолокационных станциях применяются фильтры шумоподавления. Противник использует различные постановщики помех, блокирующие обнаружение цели. В состав техники входит специальное устройство, состоящее из обыкновенных контуров, но с сердечником из специального сплава. Помехи «фильтруются», и оператор радиолокационной станции получает полную картину воздушной обстановки.

Устройство можно применять и для автоматизации. Например, в состав самолетов включен блок для регулировки частоты. Основными его элементами являются два контура, которые настроены только на две частоты — 760 и 840 Гц. На них приходит напряжение с частотой 790 Гц от специального генератора. Последний издает всего 395 Гц. Если частота отклоняется от номинального значения в меньшую сторону, то реактивное сопротивление одного из контуров уменьшается.

После этого активируется электроника блока, и выдается сигнал на увеличение оборотов генератора. Когда величина частоты превышает номинальное значение, реактивное сопротивление другого контура увеличивается. В результате этого срабатывает автоматика, и поступает другой тип сигнала на уменьшение оборотов генератора.

Виды и особенности

Схемы колебательных контуров бывают двух видов: последовательными и параллельными. Они отличаются типом соединения элементов емкости и индуктивности. В первом случае они соединены последовательно, а во втором — параллельно. Для работы необходима постоянная электрическая энергия, в противном случае происходит ее затухание, поскольку часть уходит на генерацию электромагнитного поля и нагрев провода обмотки катушки индуктивности. Контур также может быть открытым и закрытым. Открытый выпускается без специальной защитной крышки.

При решении задач по физике можно встретить интересное понятие — идеальный колебательный контур. Если в задании встречается такой термин, то это говорит о том, что энергия остается в системе, а не уходит на описанные выше процессы.

Устройство постоянно генерирует электромагнитные колебания, то есть является подобием вечного двигателя, однако такого не может быть вообще. На практике при расчете параметров учитываются затухания — постепенные уменьшения амплитуды электромагнитной волны.

Последовательное соединение

Последовательный контур — простейшая резонансно-колебательная система. Он состоит из двух элементов, подсоединенных последовательно. Через них при подключении переменного напряжения будет протекать ток переменной составляющей. Его величина определяется по закону Ома: i = U / Zlc. В этой формуле Zlc является суммой реактивных сопротивлений катушки индуктивности (Xl) и конденсатора (Xc).

Величины определяются по формулам Xl = wL и Xc = 1 / (wC). Параметр w — угловая частота, которую можно найти по такому соотношению через частоту переменного тока и число Pi: w = 2 * Pi * f. Из соотношений можно сделать вывод, что реактивное сопротивление на индуктивности растет с увеличением f, а для емкости — уменьшается. В первом случае тип зависимости называется прямо пропорциональным, а во втором — обратно пропорциональным.

При определенном значении частоты сопротивления двух элементов равны по модулю друг другу. Следовательно, это явление называется резонансом колебательной системы. Частоту w при таком условии называют собственной резонансной частотой контура. Рассчитать ее довольно просто, поскольку следует приравнять две формулы для получения уравнения: wL = 1 / (wC). Далее нужно выразить значение f: f = [(1 / (L * C))^(½)] / 2Pi. Последнее соотношение называется формулой Томсона.

Читайте также:  Восстановление сердечного ритма током опасно ли для жизни

Когда контур подключается к цепи генератора (источника) переменного напряжения с активным сопротивлением R, полный импеданс цепи (Z) определяется с помощью соотношения Z = [R 2 + Zlc 2 ]^(½). Если происходит резонанс, то Z = R, а реактивная составляющая исчезает.

У контура существуют еще две важные характеристики: добротность (Q) и характеристическое сопротивление (р). Последней называется величина сопротивления реактивного типа при резонансе. Вычисляется она по формуле р = (L * C)^(½) и показывает количество энергии катушки и конденсатора, которое было запасено. Для емкости значение определяется по соотношению Wс = (C * U 2 ) / 2, а для индуктивности — Wl = (L * I 2 ) / 2.

Отношение величины энергии, которая была запасена конденсатором и катушкой, к показателю потерь называется добротностью колебательного контура (Q). Параметр определяет амплитуду и ширину АЧХ резонанса и показывает превышение энергии запаса над потерями за одно колебание. При этом учитывается реактивная нагрузка R. Характеристика определяется по формуле Q = (1 / R) * [(L / C)^(½)].

В некоторых случаях описывать добротность можно другим тождеством: Q = p / R. Современные устройства выполняются на дискретных катушках, а их Q колеблется от нескольких единиц до сотен. Системы, построенные на принципе пьезоэлектронных устройств (кварцевые резонаторы), имеют высокий показатель Q. Его значение может достигать 1 тыс. и больше. Затухание контура (d) — характеристика, которая является обратной добротности. Она определяется по такому соотношению: d = 1 / Q.

Параллельный контур

Контур параллельного типа состоит также из конденсатора и катушки. Отличие заключается в том, что эти два элемента соединены параллельно между собой. Этот тип устройства применяется чаще, чем последовательный контур. Чтобы найти общее сопротивление индуктивного характера, нельзя просто сложить значения Xl и Xc. Складываются только проводимости двух элементов.

Из курса физики известно, что проводимость — величина, обратная сопротивлению, то есть Xc = 1 / Gc и Xl = 1 / Gl. Следовательно, формулы для параллельного соединения имеют такой вид:

  1. Gl = 1 / wL.
  2. Gc = wC.
  3. Q = R * [(С / L)^(½)].

Для примера необходимо рассмотреть электрическую цепь, состоящую из генератора переменного тока и параллельного контура. В какой-то момент времени их частоты будут совпадать. Кроме того, проводимости двух элементов равны по модулю между собой. В результате этого происходит явление резонанса токов.

В цепи будет только активное сопротивление Rэкв, которое называют в радиотехнике эквивалентным. Оно вычисляется по формуле Rэкв = Q * p. Если частота не соответствует резонансной, то в устройстве происходят другие процессы: на низких наблюдается уменьшение индуктивного сопротивления, а на высоких — емкостного.

Во время работы контура за период колебаний два раза происходит обмен энергией между катушкой и конденсатором. В радиоэлементе протекает ток, по силе превосходящий внешний в Q раз.

Принцип работы

Принцип работы контура состоит в поочередном обмене электрической энергией между элементами емкости и индуктивности. Происходит превращение емкостной в индуктивную и обратно. Процессы следует рассмотреть подробнее. Для этого нужно зарядить конденсатор до величины напряжения Uc. Энергия будет определяться по формуле Wс = (C * U 2 ) / 2. Если к конденсатору подсоединить катушку индуктивности, то это вызовет в ней ЭДС самоиндукции.

При этом энергия электромагнитного поля станет рассчитываться по такому соотношению: Wl = (L * I 2 ) / 2. Из-за нее будет постепенно уменьшаться ток в электрической цепи контура. Векторы токов конденсатора и катушки направлены в разные стороны. Следовательно, они компенсируют друг друга по I закону Кирхгофа и не выходят за пределы системы.

При постоянной работе генератора (источника питания) результирующий ток в системе начнет возрастать. Энергия Wc будет полностью переходить в катушку, пока не разрядится полностью конденсатор (Wc = 0). Далее в ней появляется электромагнитное поле за счет ЭДС самоиндукции, и обкладки конденсатора будут снова заряжаться до тех пор, пока Wl не будет равна 0. Такая особенность обмена энергиями порождает колебания. Их длительность зависит от коэффициента затухания контура.

Величина сопротивления для параллельного колебательного контура на частоте резонанса стремится к бесконечности, а последовательного — к 0. Последний и применяется в качестве фильтра благодаря такой особенности.

Расстройка устройства

Расстройка — это настройка контура на частоту, отличную от резонансной. Последняя наступает в том случае, когда характеристики частот радиодетали и генератора совпадают. В некоторых устройствах этого необходимо избегать. Чтобы получить резонанс, нужно воспользоваться одним из трех методов изменения характеристик:

  • частоты генератора;
  • индуктивности;
  • емкости.

Два последних метода можно делать одновременно для достижения лучшего эффекта. Расстройки классифицируются на три вида: абсолютную, обобщенную и относительную. Первой называется разность между частотами контура и резонанса. Обобщенная вычисляется при помощи отношения реактивного сопротивления к активному. Относительная выражается в виде отношения абсолютной расстройки к резонансной частоте.

Кроме того, расстройка бывает положительной и отрицательной. В первом случае необходимо, чтобы частота генератора была больше частоты контура. Для отрицательной должно соблюдаться другое условие: частота генератора меньше, чем у контура.

В некоторых случаях необходимо убрать резонансную частоту. Выполняется такая операция при помощи изменения необходимых характеристик электроцепи «контур — генератор». Очень часто в контуре применяются конденсаторы с переменной емкостью, позволяющие настраивать его. Настройка конденсатора происходит благодаря изменению расстояния между его обкладками. Этот принцип очень удобен, поскольку для изменения индуктивности катушки необходим сердечник, который будет выкручиваться.

Однако существуют радиоэлементы и такого типа. В них емкость является постоянной величиной, а индуктивность изменяется с помощью сердечника. Конструктивная особенность последнего представляет обыкновенный ферритовый болт, который вкручивается в пластиковый корпус. На последний наматывается провод.

Пример решения

Для устройства нужно произвести расчет контура с частотой резонанса 1 МГц. Можно воспользоваться описанными формулами, однако радиолюбители произвели некоторые вычисления и предложили более упрощенный вариант: L = (159,1 / f)^2 / C. Для контура можно взять приближенное значение емкости плоского конденсатора, равное 1000 пкФ. На корпусе указывается этот параметр.

Кроме того, маркировка может содержать напряжение, на которое он рассчитан. Подставив все значения в формулу, можно узнать индуктивность: L = (159,1 / 1)^2 / 1000 = 25 (мкГн). После этого следует вычислить количество витков N катушки с диаметром каркаса D по такому соотношению: N = 32 * [L / D]^(½). Если предположить, что D = 5 мм (можно взять со старых контуров), то N = 32 * [25 / 5]^(½) = 72 (витка). Однако за основу можно взять катушку с подстроечным ферритовым сердечником со следующими параметрами:

  • длина — 13—15 мм;
  • диаметр — 2,3—3,2 мм.

Можно воспользоваться таким соотношением: N = 8,5 * L^(½) = 8,5 * 25^(½) = 43 (витка). Провод следует брать 0,1 мм в диаметре. Это показатель измеряется при помощи штангенциркуля.

Таким образом, колебательный контур является простейшей системой для генерации электромагнитных колебаний, затухание которых зависит от частоты резонанса и добротности радиоэлемента.

Источник

Колебательный LC контур: принцип действия, расчет, определение

Сегодня нас интересует простейший колебательный контур, его принцип работы и применение.

За полезной информацией по другим темам переходите на наш телеграм-канал.

Колебания – процесс, повторяющийся во времени, характеризуется изменением параметров системы около точки равновесия.

Первое, что приходит на ум — это механические колебания математического или пружинного маятников. Но ведь колебания бывают и электромагнитными.

По определению колебательный контур (или LC-контур) – это электрическая цепь, в которой происходят свободные электромагнитные колебания.

Такой контур представляет собой электрическую цепь, состоящую из катушки индуктивностью L и конденсатора емкостью C. Соединены эти два элемента могут быть лишь двумя способами — последовательно и параллельно. Покажем на рисунке ниже изображение и схему простейшего колебательного контура.

Читайте также:  Что мне делать если меня постоянно бьет токам

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.

LC-контур

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.

Принцип действия колебательного контура

Давайте рассмотрим пример, когда сначала мы заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции, направленная в сторону, противоположную току конденсатора.

Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности.

Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.

Это обусловлено тем, что контур состоит из реальных материалов (конденсатор, катушка, провода), обладающих таким свойством, как электрическое сопротивление, и потери энергии в реальном колебательном контуре неизбежны. В противном случае это нехитрое устройство могло бы стать вечным двигателем, существование которого, как известно, невозможно.

Затухающие колебания

Еще одна важная характеристика LC-контура – добротность Q. Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.

Резонанс LC-контура

Электромагнитные колебания в LC-контуре происходят с определенной частотой, которая называется резонансной Подробнее про резонанс – в нашей отдельной статье. Частоту колебаний можно менять, варьируя такие параметры контура, как емкость конденсатора C, индуктивность катушки L, сопротивление резистора R (для LCR-контура).

Как рассчитать резонансную частоту колебательного контура? Очень просто! Приведем окончательную формулу:

частота lc контура

Применение колебательного контура

Колебательный контур широко применяется на практике. На его основе строятся частотные фильтры, без него не обходится ни один радиоприемник или генератор сигналов определенной частоты.

Если вы не знаете, как подступиться к расчету LC-контура или на это совершенно нет времени, обратитесь в профессиональный студенческий сервис. Качественная и быстрая помощь в решении любых задач не заставит себя ждать!

Источник

Колебательный контур

Колебательный контур электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью\displaystyle C, катушки с индуктивностью \displaystyle Lи электрического сопротивления \displaystyle R.

Идеальный колебательный контур — цепь, состоящая только из катушки индуктивности (не имеющей собственного сопротивления) и конденсатора (\displaystyle LC-контур). Тогда в такой системе поддерживаются незатухающие электромагнитные колебания силы тока в цепи, напряжения на конденсаторе и заряда конденсатора. Давайте разберём контур и подумаем, откуда возникают колебания. Пусть изначально заряженный конденсатор помещён в описываемую нами цепь.

Колебательный контур

Рис. 1. Колебательный контур

В начальный момент времени весь заряд сосредоточен на конденсаторе, на катушке тока нет (рис. 1.1). Т.к. на обкладках конденсатора внешнего поля тоже нет, то электроны с обкладок начинают «уходить» в цепь (заряд на конденсаторе начинает уменьшаться). При этом (за счёт освобождённых электронов) возрастает ток в цепи. Направление тока, в данном случае, от плюса к минусу (впрочем, как и всегда), и конденсатор представляет собой источник переменного тока для данной системы. Однако при росте тока на катушке, вследствие явления электромагнитной индукции, возникает обратный индукционный ток (\displaystyle <<I data-lazy-src=

  • \displaystyle \pi \approx 3,1416— константа,
  • \displaystyle L— индуктивность контура,
  • \displaystyle C— электроёмкость конденсатора.
  • Неидеальным контуром является всё тот же идеальный контур, который мы рассмотрели, с одним небольшим включением: с наличием сопротивления \displaystyle R(\displaystyle LCR-контур). Данное сопротивление может быть как сопротивлением катушки (она не идеальна), так и сопротивлением проводящих проводов. Общая логика возникновения колебаний в неидеальном контуре аналогична той, что и в идеальном. Отличие только в самих колебаниях. В случае наличия сопротивления, часть энергии будет рассеиваться в окружающую среду — сопротивление будет нагреваться, тогда энергия колебательного контура будет уменьшаться и сами колебания станут затухающими.

    Для работы с контурами в школе используется только общая энергетическая логика. В данном случае, считаем, что полная энергия системы в начале сосредоточена на конденсаторе и/или катушке, и описывается:

    \displaystyle <<E data-lazy-src=

  • \displaystyle U— текущее напряжение на конденсаторе,
  • \displaystyle C— электроёмкость конденсатора.
  • \displaystyle <<E data-lazy-src=

  • \displaystyle I— текущее значение силы тока.
  • Для идеального контура полная энергия системы остаётся постоянной:

    \displaystyle <<E data-lazy-src=