Меню

Коэффициент передачи по току полевого транзистора

Полевые транзисторы. For dummies

Введение

Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов — управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов, как мы помним, выходным током управляет входной ток базы.

Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название — униполярные. Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).

Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами. Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором.

Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль.

Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два.

Полевой транзистор с управляющим p-n-переходом

Итак, как же устроен первый тип полевых транзисторов? В основе устройства лежит пластинка из полупроводника с проводимостью (например) p-типа. На противополжных концах она имеет электроды, подав напряжение на которые мы получим ток от истока к стоку. Сверху на этой пластинке есть область с противоположным типом проводимости, к которой подключен третий электрод — затвор. Естественно, что между затвором и p-областью под ним (каналом) возникает p-n переход. А поскольку n-слой значительно уже канала, то большая часть обедненной подвижными носителями заряда области перехода будет приходиться на p-слой. Соответственно, если мы подадим на переход напряжение обратного смещения, то, закрываясь, он значительно увеличит сопротивление канала и уменьшит ток между истоком и стоком. Таким образом, происходит регулирование выходного тока транзистора с помощью напряжения (электрического поля) затвора.

Можно провести следующую аналогию: p-n переход — это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток).

Итак, в рабочем режиме полевого транзистора с управляющим p-n переходом напряжение на затворе должно быть либо нулевым (канал открыт полностью), либо обратным.
Если величина обратного напряжения станет настолько большой, что запирающий слой закроет канал, то транзистор перейдет в режим отсечки.

Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока.

Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.

Условные графические изображения полевых транзисторов приведены на рисунке (а — с каналом p-типа, б — с каналом n-типа). Стрелка здесь указывает направление от p-слоя к n-слою.

Статические характеристики полевого транзистора с управляющим p-n-переходом

Выходной (стоковой) называется зависимость тока стока от напряжения исток-сток при константном напряжении затвор-исток. На рисунке — график слева.

На графике можно четко выделить три зоны. Первая из них — зона резкого возрастания тока стока. Это так называемая «омическая» область. Канал «исток-сток» ведет себя как резистор, чье сопротивление управляется напряжением на затворе транзистора.

Вторая зона — область насыщения. Она имеет почти линейный вид. Здесь происходит перекрытие канала в области стока, которое увеличивается при дальнейшем росте напряжения исток-сток. Соответственно, растет и сопротивление канала, а стоковый ток меняется очень слабо (закон Ома, однако). Именно этот участок характеристики используют в усилительной технике, поскольку здесь наименьшие нелинейные искажения сигналов и оптимальные значения малосигнальных параметров, существенных для усиления. К таким параметрам относятся крутизна характеристики, внутреннее сопротивление и коэффициент усиления. Значения всех этих непонятных словосочетаний будут раскрыты ниже.

Третья зона графика — область пробоя, чье название говорит само за себя.

С правой стороны рисунка показан график еще одной важной зависимости — стоко-затворной характеристики. Она показывает то, как зависит ток стока от напряжения затвор-исток при постоянном напряжении между истоком и стоком. И именно ее крутизна является одним из основных параметров полевого транзистора.

Полевой транзистор с изолированным затвором

Такие транзисторы также часто называют МДП (металл-диэлектрик-полупроводник)- или МОП (металл-оксид-полупроводник)-транзисторами (англ. metall-oxide-semiconductor field effect transistor, MOSFET). У таких устройств затвор отделен от канала тонким слоем диэлектрика. Физической основой их работы является эффект изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля.
Устройство транзисторов такого вида следующее. Есть подложка из полупроводника с p-проводимостью, в которой сделаны две сильно легированные области с n-проводимостью (исток и сток). Между ними пролегает узкая приповерхностнаяя перемычка, проводимость которой также n-типа. Над ней на поверхности пластины имеется тонкий слой диэлектрика (чаще всего из диоксида кремния — отсюда, кстати, аббревиатура МОП). А уже на этом слое и расположен затвор — тонкая металлическая пленка. Сам кристалл обычно соединен с истоком, хотя бывает, что его подключают и отдельно.

Если при нулевом напряжении на затворе подать напряжение исток-сток, то по каналу между ними потечет ток. Почему не через кристалл? Потому что один из p-n переходов будет закрыт.

А теперь подадим на затвор отрицательное относительно истока напряжение. Возникшее поперечное электрическое поле «вытолкнет» электроны из канала в подложку. Соответственно, возрастет сопротивление канала и уменьшится текущий через него ток. Такой режим, при котором с возрастанием напряжения на затворе выходной ток падает, называют режимом обеднения.
Если же мы подадим на затвор напряжение, которое будет способствовать возникновению «помогающего» электронам поля «приходить» в канал из подложки, то транзистор будет работать в режиме обогащения. При этом сопротивление канала будет падать, а ток через него расти.

Рассмотренная выше конструкция транзистора с изолированным затвором похожа на конструкцию с управляющим p-n переходом тем, что даже при нулевом токе на затворе при ненулевом напряжении исток-сток между ними существует так называемый начальный ток стока. В обоих случаях это происходит из-за того, что канал для этого тока встроен в конструкцию транзистора. Т.е., строго говоря, только что мы рассматривали такой подтип МДП-транзисторов, как транзисторы с встроенным каналом.

Однако, есть еще одна разновидность полевых транзисторов с изолированным затвором — транзистор с индуцированным (инверсным) каналом. Из названия уже понятно его отличие от предыдущего — у него канал между сильнолегированными областями стока и истока появляется только при подаче на затвор напряжения определенной полярности.

Итак, мы подаем напряжение только на исток и сток. Ток между ними течь не будет, поскольку один из p-n переходов между ними и подложкой закрыт.
Подадим на затвор (прямое относительно истока) напряжение. Возникшее электрическое поле «потянет» электроны из сильнолегированных областей в подложку в направлении затвора. И по достижении напряжением на затворе определенного значения в приповерхностной зоне произойдет так называемая инверсия типа проводимости. Т.е. концентрация электронов превысит концентрацию дырок, и между стоком и истоком возникнет тонкий канал n-типа. Транзистор начнет проводить ток, тем сильнее, чем выше напряжение на затворе.
Из такой его конструкции понятно, что работать транзистор с индуцированным каналом может только находясь в режиме обогащения. Поэтому они часто встречаются в устройствах переключения.

Условные обозначения транзисторов с изолированным затвором следующие:

Здесь
а − со встроенным каналом n- типа;
б − со встроенным каналом р- типа;
в − с выводом от подложки;
г − с индуцированным каналом n- типа;
д − с индуцированным каналом р- типа;
е − с выводом от подложки.

Статические характеристики МДП-транзисторов

Те же характеристики для транзистора с идуцированным каналом:

Экзотические МДП-структуры

Чтобы не запутывать изложение, хочу просто посоветовать ссылки, по которым о них можно почитать. В первую очередь, это всеми любимая википедия, раздел «МДП-структуры специального назначения». А здесь теория и формулы: учебное пособие по твердотельной электронике, глава 6, подглавы 6.12-6.15. Почитайте, это интересно!

Общие параметры полевых транзисторов

  1. Максимальный ток стока при фиксированном напряжении затвор-исток.
  2. Максимальное напряжение сток-исток, после которого уже наступает пробой.
  3. Внутреннее (выходное) сопротивление. Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток — константа).
  4. Крутизна стоко-затворной характеристики. Чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе.
  5. Входное сопротивление. Оно определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»). А среди самих полевых транзисторов пальма первенства принадлежит устройствам с изолированным затвором.
  6. Коэффициент усиления — отношение изменения напряжения исток-сток к изменению напряжения затвор-исток при постоянном токе стока.
Читайте также:  Физическая формула мощности постоянного тока

Схемы включения

Как и биполярный, полевой транзистор можно рассматривать как четырехполюсник, у которого два из четырех контактов совпадают. Таким образом, можно выделить три вида схем включения: с общим истоком, с общим затвором и с общим стоком. По характеристикам они очень похожи на схемы с общим эмиттером, общей базой и общим коллектором для биполярных транзисторов.
Чаще всего применяется схема с общим истоком (а), как дающая большее усиление по току и мощности.
Схема с общим затвором (б) усиления тока почти не дает и имеет маленькое входное сопротивление. Из-за этого такая схема включения имеет ограниченное практическое применение.
Схему с общим стоком (в) также называют истоковым повторителем. Ее коэффициент усиления по напряжению близок к единице, входное сопротивление велико, а выходное мало.

Отличия полевых транзисторов от биполярных. Области применения

Как уже было сказано выше, первое и главное отличие этих двух видов транзисторов в том, что вторые управляются с помощью изменения тока, а первые — напряжения. И из этого следуют прочие преимущества полевых транзисторов по сравнению с биполярными:

  • высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление;
  • высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей);
  • поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных;
  • высокая температурная стабильность;
  • малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»;
  • малое потребление мощности.

Однако, привсем при этом у полевых транзисторов есть и недостаток — они «боятся» статического электричества, поэтому при работе с ними предъявляют особо жесткие требования по защите от этой напасти.

Где применяются полевые транзисторы? Да практически везде. Цифровые и аналоговые интегральные схемы, следящие и логические устройства, энергосберегающие схемы, флеш-память… Да что там, даже кварцевые часы и пульт управления телевизором работают на полевых транзисторах. Они повсюду, %хабраюзер%. Но теперь ты знаешь, как они работают!

Источник



ПОЛЕВЫХ ТРАНЗИСТОРОВ

РАСЧЕТ ПАРАМЕТРОВ И ХАРАКТЕРИСТИК

Полевые транзисторы получают все более широкое распространение как в качестве дискретных элементов, так и в качестве элементов и компонентов интегральных микросхем. Главным достоинством полевых транзисторов является высокое входное сопротивление, обусловленное очень малым током затвора.

Существуют следующие разновидности полевых транзисторов:

— полевые транзисторы с р-n переходом (рис.5.1,а,б);

— полевые транзисторы с изолированным затвором, которые также называются МДП (металл-диэлектрик-полупроводник) или МОП (металл-оксид-полупроводник), в свою очередь, подразделяются на:

а) МДП — транзисторы с индуцированным каналом (рис. 5.1, в, г,)

б) МДП — транзисторы со встроенным каналом (рис.5.1, д, е,)

Полевые транзисторы бывают с каналом р- типа (см.рис. 5,1 а,в,д,) и с каналом n-типа (см.рис.5.1,б,г,е). Различие состоит в знаке используемых подвижных носителей заряда. При включении транзисторов с различными каналами в схемы, полярность подключения источников питания у них противоположная.

Ток утечки затвора, как уже отмечалось, очень мал. Например у транзистора КП103 Iз.ут≤20нА (при Uси=0 В, Uзи=10 В), у транзистора КП301Iз.ут≤0,3нА (при Uзи=-30 В).

Поэтому входные характеристики полевых транзисторов не рассматриваются.

Управляющее действие затвора наглядно иллюстрируют управляющие (стоко-затворные или переходные, проходные) характеристики выражающие зависимость.

IВЫХ = f (UВХ ) при Uвых = const (5.2)

IС = f (UЗИ ) при Ucи = const

Однако эти характеристики неудобны для расчетов, и поэтому чаще пользуются выходными характеристиками.

Выходные характеристики (стоковые) выражают зависимость (рис. 5.2)

IВЫХ = f (UВЫХ ) при Uвх = const (5.3)

IС = f (UСИ ) при Uзи = const

Они показывают, что с увеличением Uси ток стока Ic сначала довольно быстро, а затем это нарастание замедляется и почти совсем прекращается, т.е. наступает явление, напоминающее насыщение. Работа транзистора обычно происходит на пологих участках характеристик, в области, которую не совсем удачно называют областью насыщения (на рис.5.2 отмечено пунктиром).

Напряжение, при котором начинается эта область, иногда называют напряжением насыщения. Запирающее напряжение затвора (при котором ток стока равен нулю Iс= 0) называют напряжением отсечки.

Типовые вольт-амперные характеристики представлены на рис. 5.3-5.5.

На рис. 5.3 — планарный полевой транзистор КП601 с управляющим р-n-переходом и каналом n-типа. На рис. 5.4 — кремниевый эпитаксиально планарный полевой транзистор КП717 с изолированным затвором индуцированным каналом (с обогащением канала) n-типа. На рис. 5.5 — диффузионно-планарный МДП- транзистор КП305 со встроенным канатом n-типа.

Полевой транзистор характеризуется следующими параметрами. Основным параметром является.

S — крутизна, отношение изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора в схеме с общим истоком

S = ΔIС / ΔUЗИ при Uси = const (5.4)

Вторым параметром является: Ri — внутреннее (выходное) дифференциальное сопротивление представляющее собой сопротивление транзистора между стоком и истоком (сопротивление канала) для переменного тока,

Ri = ΔUСИ / ΔIС при Uзи = сonst (5.5)

На пологих участках выходных характеристик Ri достигает сотен килоом и оказывается во много раз больше сопротивления транзистора постоянному току Ro.

Следующий важный параметр — коэффициент усиления, который показывает, во сколько раз сильнее действует на ток стока изменение напряжения затвора, нежели изменение напряжения стока

μ = — ΔUСИ /ΔUЗИ при Iс = const. (5.7)

Коэффициент усиления m выражается отношением таких изменений ∆Uси и ∆Uзи, которые компенсируют друг друга по действию на ток стока , в результате чего этот ток остаётся постоянным. Так как для подобной компенсации ∆Uси и ∆Uзи должны иметь разные знаки (например, увеличение Uси должно компенсироваться уменьшением Uзи, то в правой части формулы (5.7) стоит знак «минус». Иначе, вместо этого можно взять абсолютное значение правой части, т.e. m >0. Коэффициент усиления m связан с параметрами Ri и S простой зависимостью

m=S Ri (5.8)

К параметрам полевого транзистора, которые, как правило, указываются в справочной литературе, относятся:

Iс.нач — начальный ток стока, ток стока при напряжении между затвором и истоком, равном нулю, и при напряжении на стоке, равном или превышающем напряжение насыщения;

Iс.оcт — остаточный ток стока при напряжении между затвором и истоком, превышающем напряжение отсечки;

Iз.ут— ток утечки затвора, ток затвора при заданном напряжении между затвором и остальными выводами, замкнутыми между собой;

Iзио — обратный ток перехода затвор-исток. при разомкнутом выводе, ток, протекающий по цепи затвор-исток, при заданном обратном напряжении между затвором и истоком и разомкнутыми выводами.

Uзиотс — напряжение отсечки полевого транзистора, напряжение между затвором и истоком транзистора с р-n-переходом или МДП транзистора со встроенным каналом, при котором ток стока достигает заданного низкого значения;

Uзипор- пороговое напряжение полевого транзистора, напряжение между затвором и истоком МДП — транзистора с индуцированным каналом, при котором ток стока достигает заданного низкого значения;

Rсuoтк — сопротивление сток-исток в открытом состоянии транзистора, сопротивление между стоком и истоком в открытом состоянии транзистора при заданном напряжении сток-исток, меньшем напряжения насыщения.

Указанные параметры можно определить экспериментально либо по статистическим вольт-амперным характеристикам. В справочниках нередко приводят только один из видов характеристик. Чаще всего стоковые характеристики Ic=f(Ucи) при Uзи=const .

Рассмотрим пример построения семейства стоко-затворных характеристик Ic=f(Uзи) при Ucи=const для полевого транзистора КП312Б (рис.5.6,а,б). Графическими построениями находим значения токов и напряжений и заносим в табл.5.1

Uзи, В -0,25 -0,5
Из рис.5,6,а Uси = 0,4 В Iс , мА 1,1 0,75 0,55
Uси =1,2 В Iс , мА 2,2 1,4
Uси =1,6 В Iс , мА 2.4 1,6 1,1
Из рис. 5,6,б Uси =5 В Iс , мА 2,8 1,9 1,3
Uси =10 В Iс , мА 1,3
Uси =15 В Iс , мА 1,3

По полученным данным строим семейство кривых, обозначающих зависимость Ic=f(Uзи) при Uси =const (рис.5.б,в). Если в справочнике приведены только стоко-затворные характеристикиIc=f(Uзи) при Uси =const , то, используя их, можно построить семейство выходных характеристик.

Читайте также:  Задачи про работу тока

Рассмотрим пример построения семейства стоковых характеристик Ic= f(Ucи) при Uзи =const. по известному семейству стоко-затворных характеристик транзистора КП601 (рис.5.7,а). По графикам определяем значения токов и напряжений и заносим в табл.5.2.

Uси, В 0,5
Uзи=-8В Iс, мА
Uзи=-4В Iс, мА
Uзи=-2В Iс, мА
Uзи=0В Iс, мА

По полученным данным строим семейство кривых, обозначающих стоко-затворные характеристики Ic=f(Uзи) при Uси = const (5,7,б).

Рассмотрим пример определения параметров S, Ri, μ и Rо транзистора КП10З по выходным стоковым характеристикам.

Задаем режим работы транзистора по постоянному току (задаем положение исходной рабочей точки).

Ucио=-8В, Uзио = 1В (5.9)

Наносим положение ИРТ на характеристику Uзи=1В=const при Uси =-8В и определяем (рис.5.8) ток стока: Iсо = 0,4 мА (5.10)

Определение параметра S

В соответствии с формулой (5.4) для выполнения условия Ucи = const выше и ниже ИРТ на характеристике Uзи = 0,5В и Uзи=1,5 В выберем две точки, для которых Uси=-8В (см, рис.5.8)

Для т.А: Uзиа = 0,5В ; Iса=0,8мА; Ucиа=-8В.

Для т.В:Uзив = 1,5В ; Iсв = 0,15 мА; Ucив = -8В. (5.11)

Для ИРТ:Uзио = 1,0В ; Iсо = 0,4 мА; Ucио = -8В.

Как видно, для всех трех точек выполняется условие Ucи =-8 В = const. По графикам (см.рис.5.8) определяем приращение ∆Uзи и ∆Ic между точками т.А и т.В и находим крутизну S :

Согласно справочным данным для транзистора КП103 крутизна составляет S=0,4. 3,0мА/В.

Определение параметра Ri

В соответствии с формулой (5.5) для выполнения условия) Uзи =const выберем на характеристике Uзи = 1,0 В две точки левее и правее ИPT (рис.5.9)

Для т.С: Uси с = -12В ; Iсс = 0,42 мА; Uзис=1,0 В.

Для т.Д:Uси д = -4В ; Iсд = 0,38 мА; Uзид = 1,0В. (5.13)

Для ИРТ:Uсио = -8В ; Iсо = 0,4 мА; Uзио = 1,0 В.

Как видно для всех трех точек выполняется условие Uзи = 1,0 В =const.

По графикам (см.рис.5.9) определяем приращения ∆Ic и ∆Ucи и находим параметр Ri

Определение параметра μ

В результате того, что коэффициент усиленияμ имеет довольно большую величину, то его нередко невозможно измерить в указанной рабочей точке. Тогда коэффициент μ находят по формуле (5.8) после определения параметров S и Ri

μ = S Ri = 0.65мА/в 200 кОм =130 (5.15)

Действительно, легко проверить, что для такого значения μ изменению напряжения сток-исток на 4 вольта (∆Uси = 4 В) соответствует изменение напряжения затвор-исток ∆Uзи = 30 мВ. По вольт — амперным характеристикам такие вычисления можно выполнять только при малом значении μ.

Определение параметра

Сопротивление транзистора постоянному току определяем для заданной рабочей точки как отношение постоянного выходного напряжения Ucио к соответствующему постоянному выходному току Iсо по формуле (5.6) (см.рис.5.8)

R = UСИ0 / IС0 = 8В / 0,4 мА = 20 кОм (5.16)

Следует подчеркнуть, что значения рассчитанных параметров зависят от выбранного положения ИРT. Для подтверждения на рис.5.10 приведен график зависимости крутизны S от тока стока Iсо для транзистора КП313. Читатель может убедиться в этом и непосредственно, рассчитав значение крутизны S по изложенной выше методике для различных положений ИРТ.

Данные параметры можно определить и по семейству сток-затворных характеристик. Рассмотрим на примере транзистора КП313 для рабочей точки:

Uзио = 1В, Uсио=10 В (5.17)

Наносим положение ИРТ на характеристику Uси=10В=const при Uзи=1В и определяем ток стока (рис.5.11): Iсо = 10 мА (5.I8)

В соответствии с формулой (5.4) для выполнения условия Ucи =const выберем две точки т.А и т.В на характеристике Ucи = 10В (см.рис.5.11).

Для т.А: Uзиа = 1,3 В;Icа = 12,5мА; Uсиа = 10 В

Для т.А: Uзив = 0,7 В;Icв = 7,5мА; Uсив = 10 В (5.19)

Для ИРТ: Uзио = 1 В; Icо = 10мА; Uсио = 10 В

Видно, что для всех трех точек выполняется условие Uси =10В=const. По графикам (см.рис.5.11) определяем приращение ∆Uзи и ∆Ic между точками т.А и т.В и определяем крутизну S.

Для сравнения: по справочнику у транзистора КП313 крутизна S составляет

S = 4,5 . 10,5 мА/В . (5.21)

Определение параметра Ri

Для определения параметра Ri в соответствии с формулой (5.5) для выполнения условия Uзи = const выберем т.С на характеристике Uси = 15 В, соответствующую Uзи =1В (рис.5.12)

Для т.С: Uсис = 15В; Icc = 11мА;Uзис = 1В (5.22)

Для ИРТ: Uсио = 10В; Icо = 10мА;Uзио = 1В

Рис.5.12

Для этих двух точек выполняется условие Uзи = 1В = const. По графикам (см. рис.5.12) находим приращения ∆Ic и ∆Uси и определяем параметр Ri

Определение коэффициента усиления μ

Для определения коэффициента усиления μ в соответствии с формулой (5,7) для выполнения условия Ic = const выберем на характеристике Ucи = 15 В точку т.Д, для которой Ic = 10 мА (рис. 5,13)

Рис. 5.13

Для т.Д: Uсид = 15В; Uзид = 0,85В; Iсд = 10мА (5.24)

Для ИРТ: Uсио = 10В; Uзид = 1В; Iсо = 10мА

Для этих двух точек выполняется условие Iс = 10мА=const.

По графикам (см.рис.5.13) находим приращения ∆Uзи и ∆Ucи и определяем коэффициент усиления μ..

Расчет по формуле (5.8)

μ = S Ri = 8,3 мА 5кОм = 41,5 (5.26)

дает удовлетворительное согласование с (5.25). Небольшие расхождения обусловлены неизбежными погрешностями графических построений и не играют существенной роли. Как уже отмечалось выше, существует разброс параметров у транзисторов.

| следующая лекция ==>
КОНВЕНЦИОНАЛИЗМ А. ПУАНКАРЕ (1854-1912) |

Дата добавления: 2015-11-20 ; просмотров: 4306 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Характеристики и параметры полевого транзистора: схемы включения, свойства, ВАХ

рис. 1.89Кратко охарактеризуем различные схемы включения полевого транзистора и рассмотрим его характеристики и параметры.

  1. Схемы включения транзистора.
  2. Выходные (стоковые) характеристики транзистора
  3. Графический анализ схем с полевыми транзисторами.
  4. Свойства транзистора по усилению напряжения

Схемы включения транзистора.

Для полевого транзистора, как и для биполярного, выделяют три схемы включения. Для полевого транзистора это схемы с общим затвором (ОЗ), общим истоком (ОИ) и общим стоком (ОС). Наиболее часто используются схемы с общим истоком.

Для понимания особенностей работы некоторого электронного устройства очень полезно уметь относить конкретное решение к той или иной схеме включения (если схема такова, что это в принципе возможно).

Абрамян Евгений Павлович

При объяснении влияния напряжения uис на ширину p-n-перехода фактически использовалась схема с общим истоком (см. рис. 1.87) (Статья 1 Устройство и основные физические процессы). Рассмотрим характеристики, соответствующие этой схеме (что общепринято).

рис. 1.90

iс, входными характеристиками обычно не пользуются. Например, для транзистора КП10ЗЛ, подробно рассматриваемого ниже, для тока утечки затвора iз ут при t

Обратимся к характеристике, соответствующей условию uзи = 0. В так называемой линейной области (uис Задать вопрос

Ток стока в области насыщения при uзи= 0 и при заданном напряжении uис называют начальным током стока и обозначают через iс нач. Для рассматриваемых характеристик iс нач = 5 мА при uис= 10 В. Для транзистора типа КП10ЗЛ минимальное значение тока iс начравно 1,8 мА, а максимальное — 6,6 мА. При uис > 22 В возникает пробой p-n-перехода и начинается быстрый рост тока.

Теперь кратко опишем работу транзистора при различных напряжениях uзи. Чем больше заданное напряжение uзи , тем тоньше канал до подачи напряжения uис и тем ниже располагается характеристика.

Как легко заметить, в области стока напряжение на p-n-переходе равно сумме uзи+uис. Поэтому чем больше напряжение uзи , тем меньше напряжение uис, соответствующее началу пробоя.

Когда uзи= 3 В, канал оказывается перекрыт областью p-n-перехода уже до подачи напряжения uис . При этом до пробоя выполняется условие ic = 0. Таким образом,uзи отс = 3 В.Для рассматриваемого типа транзистора минимальное напряжение отсечки +2 В, а максимальное +5 В. Эти величины соответствуют условию ic = 10 мкА. Это так называемый остаточный ток стока, который обозначают через ic отс. Полевой транзистор характеризуется следующими предельными параметрами (смысл которых понятен из обозначений):uис макс,uзсмакс, Pмакc.

Для транзистора КП10ЗЛ uисмакс = 10 В,uзсмакс = 15 В, Pмакc = 120 мВт (все при t = 85°С).

Графический анализ схем с полевыми транзисторами.

рис. 1.91

Для лучшего уяснения принципа работы схем с полевыми транзисторами полезно провести графический анализ одной из них (рис. 1.91).

Пусть Ес = 4 В; определим, в каких пределах будет изменяться напряжение uиспри изменении напряжения uзи от 0 до 2 В.

рис. 1.92

При графическом анализе используется тот же подход, который был использован при анализе схем с диодами и биполярными транзисторами. Для рассматриваемой схемы, в которой напряжение между затвором и истоком равно напряжению источника напряжения uзи, нет необходимости строить линию нагрузки для входной цепи. Линия нагрузки для выходной цепи задается выражением Ес =iс·Rс+uис Построим линию нагрузки на выходных характеристиках транзистора, представленных на рис. 1.92.

Читайте также:  Симулинк двигатель постоянного тока

Из рисунка следует, что при указанном выше изменении напряжения uзинапряжение uис будет изменяться в пределах от 1 до 2,6 В, что соответствует перемещению начальной рабочей точки от точки А до точки В. При этом ток стока будет изменяться от 1,5 до 0,7 мА.

Источник

Для чего нужны транзисторы и как они работают

Концепция транзисторов

Что такое концепция? Это общее представление об объекте или процессе. Например, концепция автомобиля – это четыре колеса, руль, корпус, двигатель и коробка передач. Концепция одна, а выпускаются автомобили с разной конструкцией, устройством и предназначением.

У транзисторов, как и у вакуумных триодов, очень простая концепция и принцип работы.

Триод – это та деталь, у которой три контакта.

Давайте представим бак с водой, в центре которого установлена задвижка.

Что мы можем сделать с потоком воды? Мы можем управлять им за счет задвижки.

Например, если в баке течет вода, и задвижки нет в нем, то вода проходит без препятствия.

В тоже время, если мы полностью перекроем путь задвижкой, то и вода не будет поступать во вторую условную часть бака и поток прекратится.

А еще мы можем полностью управлять потоком воды при помощи регулировки задвижки.

Получается, что при помощи небольшой задвижки можно контролировать огромный поток воды.
Небольшие колебания (перемещения) задвижки позволяют с такой же частотой пропускать большой поток воды.

Но в тоже время транзисторы могут быть по разному устроены.

Полевые транзисторы

Описанный выше пример – это полевой транзистор. У самого простого полевого транзистора есть сток, исток и затвор.

Транзисторы изготавливаются из полупроводниковых материалов. Поэтому, у них есть второе название — полупроводниковые триоды.

При помощи полупроводников можно изготовить p-n переход.

Любой транзистор состоит из p-n переходов, которые пропускают электрический ток в одном направлении. И этот переход позволят управлять электрическим током как задвижкой.

Полевые транзисторы управляются при помощи напряжения, которое подается на затвор.

Так выглядит состав полевого транзистора с каналом p – типа.

А вот так с n – типом.

Канал транзистора – это область между истоком и стоком.

Почему транзисторы бывают разными по проводимости? Транзистор с n типом управляется при помощи положительного потенциала, а с p типом наоборот, отрицательным потенциалом. Это позволяет усиливать сигналы с разными потенциалами.

Затворов у полевых транзисторов на самом деле два, но их выводы объединены в один, так как функция у них одинакова. Зачем нужно два затвора? Так транзистором проще управлять.

Подавая напряжение на затвор, мы можем регулировать электрический ток проходящий от истока к стоку.

А самое главное не это. Самое главное, что мы можем таким образом не просто включить или выключить электрический ток по цепи, но и управлять его движением.

Например, можно подать на затвор полевого транзистора переменный сигнал 5 мкВ. И он будет модулировать электрический ток, который проходит через исток и сток транзистора. Так можно получить усиленный сигнал.

Также полевые транзисторы имеют разные схемы включения, которые позволяют согласовывать сопротивления и регулировать усилительные функции.

Обозначение (УГО) полевого транзистора с каналом n типа на принципиальных схемах:

Биполярные транзисторы

Это другой тип транзисторов. Такие транзисторы управляются при помощи электрического тока. И они состоят из чередующихся p-n переходов.

Как и у полевого транзистора, у биполярного тоже три контакта. Это эмиттер, база и коллектор. База всегда по типу противоположна эмиттеру и коллектору.

Эмиттер — это большой источник основных носителей заряда. А коллектор — это самый большой контакт из этой троицы. С коллектора снимается усиленный сигнал в классической схеме, чтобы получить максимальную мощность. В транзисторах большой мощности коллектор припаян напрямую к корпусу, чтобы рассеивать тепло.

Бывают биполярные транзисторы n-p-n типа.

Обозначение (УГО) биполярного n-p-n транзистора на принципиальных схемах:

Отличие биполярных транзисторов от полевых

Полевые транзисторы управляются при помощи электрического поля и благодаря этому они очень энергоэффективны. Именно по этой причине они используются при производстве процессоров.

С другой стороны, у полевых транзисторов есть слабое место. Это их тонкий p-n переход. Он очень чувствителен к статическому электричеству. Кстати, именно из-за статического электричества перестают работать флешки и карты памяти, если вы их вытащили из устройства во время работы.

Схемы защиты от статического электричества не успевают сработать, и статика разрушает полевые транзисторы.

А вот биполярные транзисторы наоборот, лучше переносят статику. Но в тоже время, они потребляют больше мощности, так как для их открытия нужен электрический ток.

Схемы включения

Так как у транзисторов три контакта, то можно чередовать вход и выход. Что это даст? У каждого контакта свои особенности. Например, если мы подадим сигнал на базу и эмиттер биполярного транзистора, а снимать итоговый сигнал будем с эмиттера и коллектора, то такая схема будет называются с общим эмиттером.

Этот тип включения позволяет передать максимум мощности в нагрузку.

Прочитать подробнее про работу схемы с общим эмиттером можно в этой статье.

Аналогичным образом можно подключить схему с общим коллектором и с общей базой. По сути, общий контакт — это такой контакт, который работает и на входе и на выходе одновременно с разными контактами.

Все тоже самое справедливо и для полевых транзисторов. Есть схемы с общим стоком, истоком и затвором.

Другие типы транзисторов

А еще бывают однопереходные, комплементарные и КМОП, МДП (MOSFET) и множество других транзисторов. Они разные по своим характеристикам, выполняют разные задачи и предназначены для конкретных целей. Но в целом, принцип работы у всех одинаков. Это управление электрическим током.

Характеристики

Так как полупроводниковые триоды (транзисторы) выполнены из полупроводника, то и на их работу влияет окружающая среда. Например, при изменении температуры окружающей среды, транзистор может вносить нелинейные искажения в выходной сигнал. С этим борются при помощи термпостабидизционных схем, которые позволяют стабилизировать работу транзистора на высоких температурах.

Также у транзисторов есть ВАХ (вольт-амперные характеристики), которые в отличие от вакуумной техники, быстро переходят в насыщение.

У всех транзисторов есть следующие параметры:

  • Коэффициент усиления по току;
  • Коэффициент усиления по напряжению;
  • Коэффициент усиления по току;
  • Коэффициент обратной связи;
  • Коэффициент передачи по току;
  • Входное сопротивление;
  • Выходное сопротивление;
  • Время включения;
  • Максимально допустимый ток и др.
  • Обратный ток коллектор-эмиттер;
  • Частота коэффициента передачи тока базы;
  • Обратный ток коллектора;
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером и др.

Режимы работы

В целом, можно выделить несколько режимов работы:

  • Номинальный режим;
  • Инверсный;
  • Насыщения;
  • Отсечка;
  • Барьерный.

Функции транзисторов

Транзисторы выполняют следующие функции:

  1. Позволяют усиливать электрические сигналы. Транзисторы усиливают любые электрические сигналы, как высокие так и низкие частоты.
  2. Могут работать как ключ, включать и выключать поступление электрического тока. Благодаря этому простому включению и выключению работают все современные процессоры. Транзисторы – это основа всей современной цифровой техники.
  3. Генерируют электрические сигналы за счет положительной обратной связи. На их основе можно сделать генераторы звука и сигналов.
  4. Могут согласовывать сопротивления электрических цепях за счет различных схем включения и работают как ограничители тока. В блоках питания транзисторы могут ограничивать ток короткого замыкания, а также работать как предохранитель.

Чем транзисторы уступают лампам

Несмотря на неоспоримые преимущества транзисторов перед лампами, ламповые триоды по прежнему имеют ряд преимуществ., среди которых:

  • Устойчивость к высоким электромагнитным наводкам и помехам. Это не значит, что полупроводниковая техника может выйти из строя от любых помех. Но если случится сильнейшая магнитная буря от Солнца (или мощный ЭМИ удар от ядерных бомб), то все p-n переходы в полупроводниковой технике могут выйти из строя из-за высоких токов наводки. Вакуумная техниках намного устойчивее к таким помехам.
  • Ламповая техника намного лучше и стабильнее работает на высоких частотах. И это уже особенности конструкции. Так как в транзисторах есть p-n переходы, то у них тоже есть своя емкость. А паразитная емкость на высоких частотах негативно влияет на усиление сигнала. Появляются нелинейные искажения. А в вакуумной технике есть такие лампы, у которых по несколько экранирующих сеток, которые позволяют снизить эффект паразитных емкостей. Пример радиолампы — это клистрон.

Нельзя прямо сказать, что транзисторы полностью искоренили лампы. У каждой детали есть свои преимущества и недостатки в разных областях. Конечно, в цифровой технике транзисторам нет ровни среди ламп. Однако на сверхвысоких частотах транзисторы по-прежнему уступают лампам.

Источник