Меню

Калькулятор расчета тока по сопротивлению

Калькулятор расчета тока по сопротивлению

Send Us Your Feedback / Suggestion

For further assistance, please Contact Us

ДОБАВИТЬ ЭТОТ КАЛЬКУЛЯТОР НА ВАШ ВЕБ-САЙТ:

Добавьте на свой веб-сайт расчет мощности, с помощью которого пользователь веб-сайта сможет напрямую использовать калькулятор. И этот гаджет на 100% бесплатный и простой в использовании; Кроме того, вы можете добавить его на несколько онлайн-платформ.

app

На этой платформе онлайн-калькулятора вы можете найти эффективный инструмент, известный как расчет мощности. Да, этот калькулятор омов для уравнения закона Ома, который был выведен Георгом Симоном Омом в 1827 году.

Что ж, прежде чем узнать больше о нашем калькуляторе закона Ома, давайте расскажем вам, что такое (закон Ома).

Что такое закон Ома?

В 1827 году баварский физик Георг Симон Ом вывел математический закон электрического расчет тока по мощности. Это самый фундаментальный закон, который определяет соотношение между током (I), сопротивлением (R), напряжением (V) и мощностью (P). Более конкретно, (закон Ома) определил, что ток (I) через проводник между двумя точками прямо пропорционален напряжению (V) и обратно пропорционален сопротивлению (R).

Формула закона Ома:

Баварский физик Георг Симон Ом вывел формулу, в которой ток резистора (I) в амперах (A) = (равен) напряжению резистора (V) в вольтах, деленному на сопротивление R в омах (Ω):

Формула закона Ома сформулирована так:

Ток (I) = (Напряжение, (В)) / (Сопротивление, (R)) в амперах, (А)

Найти ток становится легко с помощью нашего простого расчет мощности по формуле для тока.

Калькулятор закона Ома:

Команда онлайн-калькулятора предоставила простой и эффективный инструмент, известный как «калькулятор закона Ома», с помощью которого вы можете легко узнать значение напряжения (V), тока (I), мощности (P) и сопротивления (R). относительно формулы простого закона Ома.

Однако необходимо знать два из этих значений, чтобы вычислить оставшиеся два значения.

Следовательно, помните, что вы получите результаты, касающиеся стандартных единиц, которые вы выбрали!

Как работает наш расчет мощности?

Нет необходимости прибегать к определенным математическим расчетам для определения значений напряжения (V), тока (I), мощности (P) и сопротивления (R). Наш калькулятор сопротивления сделает все за вас за пару секунд. Наш (калькулятор закона Ома) не только удобен в использовании, но и работает эффективно! Давайте взглянем!

  • В приведенном выше калькуляторе закона Ома вы можете найти четыре поля: напряжение (В), ток (I), сопротивление (R) и мощность (P), соответственно.
  • Вам просто нужно ввести любые два из этих значений относительно их единиц СИ.
  • После того, как вы выбрали два значения и их единицы СИ, вам просто нужно нажать кнопку вычисления, чтобы получить оставшиеся два значения.

Как упоминалось выше, вы получите свои результаты относительно единиц СИ, которые вы выбрали перед расчетом!

Уравнение закона Ома:

Согласно закону Ома, величина тока (I), проходящего через металлический проводник в цепи, прямо пропорциональна напряжению (V), приложенному к нему, для соответствующей температуры. Георг Саймон Ом выразил свое открытие в форме простого уравнения закона Ома, которое описывает взаимосвязь напряжения, расчет тока по мощности и сопротивления:

В этом уравнении закона Ома напряжение (В) равно току (I), умноженному на сопротивление (R). Итак, используя это уравнение закона Ома, можно разделить на два варианта, решая для тока (I) и сопротивления (R) соответственно:

I = E / R и R = E / I

Как рассчитать ток?

Наш расчет мощности также работает как калькулятор тока, поскольку он касается простой формулы тока. Когда указаны напряжение (В) и расчет сопротивления, вам следует использовать формулу для расчет тока по мощности. Вы можете рассчитать ток по данной формуле!

Текущая формула:

[Ток (I) = Напряжение (В) ÷ Сопротивление (R)] I (А) = В (В) ÷ R (Ом)

Например:

Найдите ток, протекающий через резистор 3 Ом, когда к нему приложена разность потенциалов 30 В.

Решение: Ток (I) = V ÷ R; I = 30 В ÷ 3 Ом; I = 10 А

как найти сопротивление?

расчет мощности также называют калькулятором сопротивления, поскольку он помогает рассчитать расчет сопротивления. Когда даны напряжение (В) и ток (I), вы можете определить сопротивление, используя простую формулу для сопротивления.

Формула сопротивления:

[Сопротивление (R) = Напряжение (В) ÷ Ток (I)] R (Ом) = В (вольты) ÷ I (амперы)

Например:

Найдите значение неизвестного резистора, которое падает на 5 В при протекании через него тока 20 мА.

Решение: Сопротивление (R) = Напряжение (В) ÷ Ток (I) в амперах; R = 5 В ÷ 20 мА; R = 250 Ом

как найти силу тока?

Вышеупомянутый калькулятор закона Ома надежен для этого! Когда ток и расчет сопротивления известны, вы можете легко узнать напряжение, используя простую формулу напряжения:

Формула напряжения:

[Напряжение (В) = ток (I) x сопротивление (R)] В (вольты) = I (амперы) x R (Ом)

Читайте также:  Пропускной ток кабеля для телефона

Например:

Найдите напряжение, приложенное к резистору 15 кОм, когда через него протекает ток 10 мА.

Решение: напряжение (вольты) = ток (амперы) x сопротивление (Ом); V = 10 мА x 15 кОм; V = 150 В

как найти мощность?

Приведенный выше калькулятор поможет как найти мощность по простой формуле мощности. Если указаны напряжение и расчет тока по мощности, то можно легко рассчитать значение мощности.

Формула силы:

Мощность (P) = Напряжение (В) * Ток (I)

Например:

Если приложение падения напряжения 15 на резисторе приводит к протеканию через него тока 10 мА, то как оценить рассеиваемую на нем мощность.

Решение: P = V * I; P = 15 В * 10 мА; P = 0,15 Вт

Что ж, пора узнать об ограничениях закона Ома.

Ограничения закона Ома:

  • Имейте в виду, что закон Ома не может применяться к односторонним сетям – эти сети содержат односторонние элементы, включая диоды, транзисторы и т. Д., Что означает, что эти элементы не имеют одинакового отношения напряжения к току для обоих направлений тока.
  • Оптимистические исследования показывают, что закон Ома не применяется к нелинейным элементам – это элементы, у которых ток не прямо пропорционален приложенному напряжению, что означает, что значение сопротивления этих элементов изменяется для разных значений напряжения и расчет тока по мощности. Примеры нелинейных элементов: тиристор, электрическая дуга и т. Д.

Заключительные слова калькулятора-онлайн:

Наш расчет мощности – это простой инструмент, который использует простую формулу закона Ома для определения напряжения (В), сопротивления (R). Ток (I) и мощность (P).

Источник



Онлайн калькулятор закона Ома: простой расчет участка цепи

Рад приветствовать тебя, дорогой читатель, в этой первой статье моего блога! Ее я посвятил самому основному закону, который должен хорошо понимать современный человек, работающий с электричеством.

Мой онлайн калькулятор закона Ома создан для участка цепи. Он значительно облегчает электротехнические расчеты в домашней проводке, подходит для цепей переменного и постоянного тока.

Им просто пользоваться: прочти правила ввода данных и работай!

  • Правила работы на калькуляторе
  • Онлайн калькулятор закона Ома
  • Простые примеры расчета
    • Бытовая сеть переменного тока
    • Цепи постоянного тока
  • Полезная информация для начинающего электрика
    • Как использовать закон Ома на практике
    • Что такое участок цепи
    • Как использовать треугольник закона Ома
    • Шпаргалка электрика для новичков

Правила работы на калькуляторе

В быту нас интересуют, как правило, четыре взаимосвязанных характеристики электричества:

  1. напряжение;
  2. ток;
  3. сопротивление;
  4. или мощность.

Если тебе известны две величины, входящие в закон Ома (U, R, I), то вводи их в соответствующие строки, а оставшийся параметр и мощность будут вычислены автоматически.

Будь внимательным, чтобы не допустить ошибки.

Осуществить переход к ним тебе поможет наглядная таблица.

Приставки дольности и кратности

Онлайн калькулятор закона Ома

Простые примеры расчета

Бытовая сеть переменного тока

Пример №1. Проверка ТЭНа.

В стиральную машину встроен трубчатый электронагреватель 1,25 кВт на 220 вольт. Требуется проверить его исправность замером сопротивления.
По мощности рассчитываем ток и сопротивление.

I = 1250 / 220 = 5,68 А; R = 220 / 5,68 = 38,7 Ом.

Проверяем расчет сопротивления калькулятором по току и напряжению. Данные совпали. Можно приступать к электрическим замерам.

Пример №2. Проверка сопротивления двигателя

Допустим, что мы купили моющий пылесос на 1,6 киловатта для уборки помещений. Нас интересует ток его потребления и сопротивление электрического двигателя в рабочем состоянии. Считаем ток:

Вводим в графы калькулятора напряжение 220 вольт и ток 7,3 ампера. Запускаем расчет. Автоматически получим данные:

  • сопротивление двигателя — 30,1 Ома;
  • мощность 1600 ватт.

Цепи постоянного тока

Рассчитаем сопротивление нити накала галогенной лампочки на 55 ватт, установленной в фаре автомобиля на 12 вольт.

Вводим в калькулятор 12 вольт и 4,6 ампера. Он вычисляет:

  • сопротивление 2,6 ома.
  • мощность 5 ватт.

Здесь обращаю внимание на то, что если замерить сопротивление в холодном состоянии мультиметром, то оно будет значительно ниже.

Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложной пускорегулирующей аппаратуры, необходимой для светодиодных и люминесцентных светильников.

Другими словами: изменение сопротивления вольфрама при нагреве до раскаленного состояния ограничивает возрастание тока через него. Но в холодном состоянии металла происходит бросок тока. От него нить может перегореть.

Бросок тока

Для продления ресурса работы подобных лампочек используют схему постепенной, плавной подачи напряжения от нуля до номинальной величины.

В качестве простых, но надежных устройств для автомобиля часто используется релейная схема ограничения тока, работающая ступенчато.

Схема ограничения тока

При включении выключателя SA сопротивление резистора R ограничивает бросок тока через холодную нить накала. Когда же она разогреется, то за счет изменения падения напряжения на лампе HL1 электромагнит с обмоткой реле KL1 поставит свой контакт на удержание.

Читайте также:  Начальное значение силы тока в проводнике

Он зашунтирует резистор, чем выведет его из работы. Через нить накала станет протекать номинальный ток схемы.

Полезная информация для начинающего электрика

Как использовать закон Ома на практике

Почти два столетия назад в далеком 1827 году своими экспериментами Георг Ом выявил закономерность между основными характеристиками электричества.

Он изучил и опубликовал влияние сопротивления участка цепи на величину тока, возникающего под действием напряжения. Ее удобно представлять наглядной картинкой.

Закон Ома

Любую работу всегда создает трудяга электрический ток. Он вращает ротор электрического двигателя, вызывает свечение электрической лампочки, сваривает или режет металлы, выполняет другие действия.

Поэтому ему необходимо создать оптимальные условия: величина электрического тока должна поддерживаться на номинальном уровне. Она зависит от:

  1. значения приложенного к цепи напряжения;
  2. сопротивления среды, по которой движется ток.

Здесь напряжение, как разность потенциалов приложенной энергии, является той силой, которая создает электрический ток.

Напряжение

Если напряжения не будет, то никакой полезной работы от подключённой электрической схемы не произойдёт из-за отсутствия тока. Эта ситуация часто встречается при обрыве, обломе или отгорании питающего провода.

Обрыв провода

Сопротивление же решает обратную для напряжения задачу. При очень большой величине оно так ограничивает ток, что он не способен совершить никакой работы. Этот режим применяется у хороших диэлектриков.

Примеры из жизни

Между контактами образуется воздушный зазор. Он отличный изолятор, исключающий движение тока по осветительному прибору.

Короткое замыкание в розетке

Ток КЗ способен сжечь электропроводку, вызвать пожар в квартире. Поэтому от таких ситуаций существует только одно спасение: использование защит, способных максимально быстро отключить питающее напряжение.

Для бытовой сети это функция автоматических выключателей или предохранителей, о работе которых я буду рассказывать в других статьях.

Используя сопротивление, следует понимать, что оно, само по себе, не вечно: обладая резервом противостояния приложенной энергии, оно может его израсходовать, не справиться со своей задачей и сгореть.

Поэтому для сопротивления вводится понятие мощности рассеивания, которая надежно отводится во внешнюю среду. Если тепловая энергия, развиваемая прохождением тока, превышает эту величину, то сопротивление сгорает.

Что такое участок цепи

Рассмотрим самую простую электрическую схему, состоящую из батарейки, лампочки и проводов. В ней циркулирует электрический ток.

Участок электрической цепи

Представленная схема или полная цепь состоит из двух контуров:

  1. Внутреннего источника напряжения.
  2. Внешнего участка: лампочки с подключенными проводами.

Те процессы, которые происходят внутри батарейки, нас интересуют в основном как познавательные. Их мы можем только ухудшить при неправильной эксплуатации.

Например, приходящая в квартиру электрическая энергия от трансформаторной подстанции нам не подвластна. Мы ей просто пользуемся. От неисправностей и аварийных режимов нас защищают автоматические выключатели, УЗО, реле РКН, ограничители перенапряжения или УЗИП, другие современные модули защит.

Внешний же, подключенный к источнику напряжения контур, является участком цепи, в котором мы, используя закон Ома, совершаем полезную для себя работу.

Как использовать треугольник закона Ома

Простое мнемоническое правило представлено тремя составляющими в виде частей треугольника. Оно позволяет легко запомнить взаимосвязи между током, сопротивлением и напряжением.

Треугольник закона Ома

Вверху всегда стоит напряжение. Ток и сопротивление снизу. Когда вычисляем какую-то одну величину по двум другим, то ее изымаем из треугольника и выполняем арифметическое действие: деление или умножение.

Шпаргалка электрика для новичков

Треугольник закона Ома легко запоминается, но он не позволяет учитывать мощность потребления электроприбора. Этот четвертый параметр, важный для любого домашнего электрика, всегда надо учитывать. .

На всех бытовых электрических приборах указывают мощность потребления электрической энергии в ваттах или киловаттах. Ее формулы, совместно с предыдущими величинами, можно брать со следующей картинки.

Шпаргалка электрика

Такая шпаргалка электрика позволяет делать простые вычисления в уме или на бумаге. Формулы из нее заложены в алгоритм, по которому работает мой онлайн калькулятор закона Ома.

Предлагаю провести одинаковые вычисления обоими методами и сравнить полученные результаты. Если вдруг найдете расхождения, то укажите в комментариях. Это будет ваша помощь моему проекту.

Я постарался кратко и просто рассказать о принципах работы закона Ома применительно к задачам, решаемым домашним мастером. Считаю, что это достаточно и не рассматриваю закон Ома для полной цепи в обычной форме, комплексных числах, или ином виде.

Если же вы хотите просмотреть видеоурок по этой теме, то воспользуйтесь материалами владельца Физика-Закон Ома.

Возможно, у вас остались вопросы о работе калькулятора? Задавайте. Я на них отвечу. Воспользуйтесь разделом комментариев.

Напоследок напоминаю, что у вас сейчас самое благоприятное время поделиться этим материалом с друзьями в соц сетях и подписаться на рассылку сайта. Тогда вы сможете своевременно получать информацию о новых публикуемых статьях.

Читайте также:  Если нет выделений после прижигания током

Источник

Расчет силы тока по мощности, напряжению, сопротивлению

Бесплатный калькулятор расчета силы тока по мощности и напряжению/сопротивлению – рассчитайте силу тока в однофазной или трехфазной сети в ОДИН КЛИК!

Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома. Рекомендуем без необходимости не изменять значение коэффициента мощности (cos φ) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок. Нажмите на кнопку, чтобы получить результат.

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц.
Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U
— Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ)
— Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3)
— Сила тока через мощность и сопротивление: I = √(P / R)
— Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.

Источник

Калькулятор расчета тока по сопротивлению

Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.

В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.

Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению

Так записывается основная формула:

ohms_law-01.jpg

Путем преобразования основной формулы можно найти и другие две величины:

ohms_law-02.jpg ohms_law-03.jpg

Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

Формула мгновенной электрической мощности:

ohms_law-04.jpg

Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.

Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.

Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.

ohms_law-05.jpg

Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.

ohms_law-06.png

Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.

ohms_law-07.png

Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.

ohms_law-08.png

Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.

ohms_law-09.png

Этот круг также, как и треугольник можно назвать магическим.

Источник