Меню

Какое физическое явления называют постоянным током

Электрический ток в вакууме — причины появления, свойства и применение

Электрический ток в вакууме Электрический ток в вакууме - причины появления, свойства и применение

Виды вакуума

Как же ведет себя электрический ток в вакууме? Как и любой ток, ток в вакууме появляется при наличии источника со свободными заряженными частицами.

Какими частицами создается электрический ток в вакууме? Чтобы создать вакуум в каком-либо закрытом сосуде, необходимо из него откачать газ. Делают это чаще всего с помощью вакуумного насоса. Это такое устройство, которое необходимо, чтобы откачать газ или пар до нужного для опыта давления.

Существует четыре вида вакуума: низкий вакуум, средний вакуум, высокий вакуум и сверхвысокий вакуум.

Рис. 1. Характеристики вакуума

§ 112. Электрический ток в вакууме. Электронно-лучевая трубка

Каковы условия существования электрического тока?

До открытия уникальных свойств полупроводников в радиотехнике использовались исключительно электронные лампы.

Откачивая газ из сосуда (трубки), можно получить газ с очень малой концентрацией молекул.

Запомни Состояние газа, при котором молекулы успевают пролететь от одной стенки сосуда к другой, ни разу не испытав соударений друг с другом, называют вакуумом.

Если в сосуд с вакуумом поместить два электрода и подключить их к источнику тока, то ток между электродами не пойдёт, так как в вакууме нет носителей заряда. Следовательно, для создания тока в трубке должен быть источник заряженных частиц.

Термоэлектронная эмиссия. Чаще всего действие такого источника заряженных частиц основано на свойстве тел, нагретых до высокой температуры, испускать электроны.

Запомни Явление испускания электронов нагретыми металлами называется термоэлектронной эмиссией.

Это явление можно рассматривать как испарение электронов с поверхности металла. У многих твёрдых веществ термоэлектронная эмиссия начинается при температурах, при которых испарение самого вещества ещё не происходит. Такие вещества и используются для изготовления катодов.

Односторонняя проводимость. Диод. Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод, в отличие от холодного, непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако

. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод в секунду, равно числу электронов, возвратившихся на электрод за это время. Чем выше температура металла, тем выше плотность электронного облака.

При подключении электродов к источнику тока между ними возникает электрическое поле. Если положительный полюс источника тока соединён с холодным электродом (анодом), а отрицательный — с нагретым (катодом), то вектор напряжённости электрического поля направлен к нагретому электроду. Под действием этого поля электроны частично покидают электронное облако и движутся к холодному электроду. Электрическая цепь замыкается, и в ней устанавливается электрический ток. При противоположной полярности включения источника напряжённость поля направлена от нагретого электрода к холодному. Электрическое поле отталкивает электроны облака назад к нагретому электроду. Цепь оказывается разомкнутой.

Односторонняя проводимость широко использовалась раньше в электронных приборах с двумя электродами — вакуумных диодах, которые служили, как и полупроводниковые диоды, для выпрямления электрического тока. Однако в настоящее время вакуумные диоды практически не применяются.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в это отверстие, образуя за анодом электронный пучок. Количеством электронов в пучке можно управлять, поместив между катодом и анодом дополнительный электрод и изменяя его потенциал.

Свойства электронных пучков и их применение. Испускаемые катодом потоки электронов, движущихся в вакууме, называют иногда катодными лучами

Перечислим свойства электронных пучков (катодных лучей).

    1) Электроны в пучке движутся по прямым линиям.

2) Электронный пучок, попадая на мишень, передаёт ей часть кинетической энергии, что вызывает её нагревание. В современной технике это свойство используют для электронной плавки в вакууме сверхчистых металлов.

3) При торможении быстрых электронов, попадающих на вещество, возникает рентгеновское излучение. Это явление используют в рентгеновских трубках.

4) Некоторые вещества (стекло, сульфиды цинка и кадмия), бомбардируемые электронами, светятся. В настоящее время среди материалов этого типа (люминофоров) применяются такие, у которых в световую энергию превращается до 25% энергии электронного пучка.

5) Электронные пучки отклоняются электрическим полем. Например, проходя между пластинами конденсатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис. 16.20).

6) Электронный пучок отклоняется также в магнитном поле. Пролетая над северным полюсом магнита, электроны отклоняются влево, а пролетая над южным, отклоняются вправо. Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоёв атмосферы (полярное сияние) наблюдается только у полюсов.

7) Электронные пучки обладают ионизирующей способностью.

8)Электронные пучки могут проходить сквозь очень тонкие металлические пластины толщиной 0,003—0,03 мм.

Электронно-лучевая трубка. Возможность управления электронным пучком с помощью электрического или магнитного поля и свечение покрытого люминофором экрана под действием пучка применяют в электронно-лучевой трубке.

Электронно-лучевая трубка была основным элементом первых телевизоров и осциллографа — прибора для исследования быстропеременных процессов в электрических цепях (рис. 16.21).

Устройство электронно-лучевой трубки показано на рисунке 16.22. Эта трубка представляет собой вакуумный баллон, одна из стенок которого служит экраном. В узком конце трубки помещён источник быстрых электронов — электронная пушка

(рис. 16.23). Она состоит из катода, управляющего электрода и анода (чаще несколько анодов располагается друг за другом). Электроны испускаются нагретым оксидным слоем с торца цилиндрического катода С, окружённого теплозащитным экраном Н. Далее они проходят через отверстие в цилиндрическом управляющем электроде В (он регулирует число электронов в пучке). Каждый анод (А1 и А2) состоит из дисков с небольшими отверстиями. Эти диски вставлены в металлические цилиндры. Между первым анодом и катодом создаётся разность потенциалов в сотни и даже тысячи вольт. Сильное электрическое поле ускоряет электроны, и они приобретают большую скорость. Форма, расположение и потенциалы анодов выбирают так, чтобы наряду с ускорением электронов осуществлялась и фокусировка электронного пучка, т. е. уменьшение площади поперечного сечения пучка на экране почти до точечных размеров.

На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин, подобных пластинам плоского конденсатора (см. рис. 16.22). Если электрического поля между пластинами нет, то пучок не отклоняется и светящаяся точка располагается в центре экрана. При сообщении разности потенциалов вертикально расположенным пластинам пучок смещается в горизонтальном направлении, а при сообщении разности потенциалов горизонтальным пластинам он смещается в вертикальном направлении.

Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса электронов очень мала, то они почти мгновенно, т. е. за очень короткое время, реагируют на изменение разности потенциалов управляющих пластин.

В настоящее время чаще используются телевизоры с жидкокристаллическим или плазменным экраном.

В электронно-лучевой трубке, применяемой в телевизоре (так называемом кинескопе), управление пучком, созданным электронной пушкой, осуществляется с помощью магнитного поля. Это поле создают катушки, надетые на горловину трубки (рис. 16.24).

Цветной кинескоп содержит три разнесённые электронные пушки и экран мозаичной структуры, составленный из люминофоров трёх типов (красного, синего и зелёного свечения). Каждый электронный пучок возбуждает люминофоры одного типа, свечение которых в совокупности даёт на экране цветное изображение.

Электронно-лучевые трубки широко применялись в дисплеях — устройствах, присоединяемых к электронно-вычислительным машинам (ЭВМ). На экран дисплея, подобный экрану телевизора, поступала информация, записанная и переработанная ЭВМ. Можно было непосредственно видеть текст на любом языке, графики различных процессов, изображения реальных объектов, а также воображаемые объекгы, подчиняющиеся законам, записанным в программе вычислительной машины.
Ключевые слова для поиска информации по теме параграфа. Термоэлектронная эмиссия. Катодные лучи

Вопросы к параграфу

    1. Для какой цели в электронных лампах создают вакуум?

2. Наблюдается ли термоэлектронная эмиссия в диэлектриках?

3. Как осуществляется управление электронными пучками?

4. Как устроена электронно-лучевая трубка?

Электронная пушка создаёт пучок электронов в стеклянной вакуумирован- ной камере. Все электроны, покинувшие раскалённый катод пушки, покидают катод и ударяются в экран электронно-лучевой трубки. Если увеличить ускоряющее напряжение в пушке в 2 раза, то сила тока, идущего в вакууме через трубку,

    1) не изменится 3) возрастёт примерно в 2 раза 2) возрастёт примерно в раза 4) возрастёт примерно в 4 раза

Вакуумный диод, у которого анод (положительный электрод) и катод (отрицательный электрод) — параллельные пластины, работает в режиме, когда между током и напряжением выполняется соотношение I = aU3/2 (где а — некоторая постоянная величина). Линейная зависимость тока от напряжения (закон Ома) нарушается из-за

    1) свойств электронного пучка

2) появления дополнительных носителей тока

3) того, что свойства анода и катода разные

4) движения электронов в вакууме

Электрический ток в вакууме

Ток в вакууме не может существовать самостоятельно, так как вакуум является диэлектриком. В таком случае создать ток можно с помощью термоэлектронной эмиссии. Термоэлектронная эмиссия – явление, при котором электроны выходят из металлов при нагревании. Такие электроны называются термоэлектронами, а все тело – эмиттер.

На это явление впервые обратил внимание американский ученый Томас Эдисон в 1879 году.

Рис. 2. Термоэлектронная эмиссия

Эмиссия делится на:

  • вторичную электронную (выбивание быстрыми электронами);
  • термоэлектронную (испарение электронов с горячего катода);
  • фотоэлектронная (электроны выбиваются светом);
  • электронная (выбивание сильным полем).

Электроны смогут вылететь из металла, если будут обладать достаточной кинетической энергией. Она должна быть больше работы выхода электронов для данного металла. Электроны, вылетающие из катода, образуют электронное облако. Половина из них возвращается в исходное положение. В равновесном состоянии число вылетевших электронов равно количеству вернувшихся. От температуры прямо пропорционально зависит плотность электронного облака (т.е. при повышении температуры, плотность облака становится больше).

При подключении электродов к источнику между ними возникает электрическое поле. Если положительный полюс источника тока соединить с анодом (холодным электродом), а отрицательный – с катодом (нагретым электродом), то напряженность электрического поля будет направлена к нагретому электроду.

Как электрический ток может появиться в вакууме

Для того, чтобы создать в вакууме полноценный электрический ток, необходимо использовать такое физическое явление, как термоэлектронная эмиссия. Она основана на свойстве какого-либо определенного вещества испускать при нагревании свободные электроны. Такие электроны, выходящие из нагретого тела, получили название термоэлектронов, а все тело целиком называется эмиттером.

Что представляет собой электрический ток в вакууме

Термоэлектронная эмиссия лежит в основе работы вакуумных приборов, более известных, как электронные лампы. В самой простейшей конструкции содержится два электрода. Один из них катод, представляет собой спираль, материалом которой служит молибден или вольфрам. Именно он накаливается электрическим током. Второй электрод называется анодом. Он находится в холодном состоянии, выполняя задачу по сбору термоэлектронов. Как правило, анод изготавливается в форме цилиндра, а внутри его размещается нагреваемый катод.

Читайте также:  Почему нет тока с генератора

Где берутся свободные носители зарядов в вакууме? Вакуумный диод

Если в сосуде создан вакуум, то в нем все же есть немало молекул, некоторые из них могут быть и ионизированы. Но заря­женных частичек в таком сосуде для вы­явления заметного тока мало.

Как же получить в вакууме достаточное количество свободных носителей заряда? Если нагреть проводник, пропуская по нему электрический ток или другим способом (рис. 7.6), то часть свободных электронов в металле будут иметь достаточную энергию, чтобы выйти из металла (выполнить работу выхода).

Явление излучения электронов нака­ленными телами называется термоэлектрон­ной эмиссией.

Однако кинетическую энергию свобод­ных электронов в веществе можно увели­чить и с помощью света.

Излучение элект­ронов веществом под действием света назы­вается фотоэлектронной эмиссией, или внеш­ним фотоэффектом.

Рис. 7.6. Излучение электронов раска­ленным проводником

Природу и закономернос­ти внешнего фотоэффекта объяснил Альберт Эйнштейн, за что и получил Нобелевскую премию по физике 1921 г.

Рассмотрим подробнее явления, происхо­дящие в сосуде (баллоне), где имеется про­водник, который может быть накален с помощью электрического тока (рис. 7.6). В баллоне создан вакуум.

Поскольку при нагревании проводника из него излучаются электроны, то может возникнуть мысль, что электроны с тече­нием времени могут заполнить весь баллон. Тем не менее это не так. Будем называть этот проводник в баллоне катодом. Элект­роны, которые оставили накаленный катод, образуют вокруг него облачко. Это вызвано тем, что катод, утратив часть свободных электронов, заряжается положительно. Поло­жительно заряженный катод и удерживает возле себя облачко электронов.

Рис. 7.7. Если в баллон ввести поло­жительно заряженный анод, то в пепи появится электрический ток

Катод (гр.— опускание, движе­ние книзу): 1) Электрод прибора или ус­тройства, который соединяют с отрицательным полюсом ис­точника тока. 2) Отрицательный полюс источ­ника тока (гальванического эле­мента и т. п.). 3) Источник электронов в элект­ронно-вакуумных приборах. Материал с сайта https://worldofschool.ru

Рис. 7.8. Внутреннее строение вакуум­ного диода

Если теперь в баллон ввести еще один электрод (анод) и создать электрическое поле между анодом и катодом (рис. 7.7), то в баллоне возникнет электрический ток. В этом случае ток возможен, поскольку по­ложительно заряженный анод притягивает отрицательно заряженные электроны. Если же анод будет иметь отрицательный заряд, то электроны от него будут отталкиваться. Однако при небольших напряжениях наи­более быстрые электроны все же могут до­лететь до анода, и в цепи может наблюдать­ся небольшой ток. При увеличении напря­жения (если анод заряжен отрицательно) ток в цепи совсем прекратится.

Анод (гр.— путь вверх, восхож­дение): 1) Электрод электро- и радио­технических приборов, электро­литических ванн и других ус­тройств, соединяющихся с по­ложительным полюсом источ­ника электрического тока. 2) Положительный полюс источ­ника электрического тока.

Рассмотренный прибор называется ваку­умным диодом, строение одного из которых показано на рис. 7.8. Практически диод про­водит ток лишь в одном направлении — когда анод заряжен положительно. Поэтому его используют в основном для выпрям­ления переменных токов. Однако в наше время вакуумные диоды в выпрямителях повсеместно вытеснены полупроводниковы­ми диодами — более надежными, экономич­ными, долговечными.

Источник



Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Чем отличаются и где используются постоянный и переменный ток

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Чем отличаются и где используются постоянный и переменный ток

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Чем отличаются и где используются постоянный и переменный ток

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Читайте также:  Контроллер для электродвигателя постоянного тока 24 вольта

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Чем отличаются и где используются постоянный и переменный ток

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Чем отличаются и где используются постоянный и переменный ток

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Чем отличаются и где используются постоянный и переменный ток

Как устроен генератор переменного тока — назначение и принцип действия

Что такое активная и реактивная мощность переменного электрического тока?

Чем отличаются и где используются постоянный и переменный ток

Что такое частотный преобразователь, основные виды и какой принцип работы

Чем отличаются и где используются постоянный и переменный ток

Что такое конденсатор, виды конденсаторов и их применение

Чем отличаются и где используются постоянный и переменный ток

Как условно обозначаются элементы на электрических схемах?

Чем отличаются и где используются постоянный и переменный ток

Что такое варистор, основные технические параметры, для чего используется

Источник

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Электрический ток — это упорядоченное (направленное) движение заряженных частиц.

1. Направленное движение свободных зарядов в проводнике под действием сил тока называется электрическим током проводимости или электрическим током.
2. За направление тока принимают направление движения положительно заряженных частиц,которое совпадает с направлением электрического поля.
Действия тока:
• Проводник, по которому течёт ток, нагревается.
• Электрический ток может изменять химический состав проводника.

• Ток оказывает силовое воздействие на соседние токи и намагниченные тела, что является основным свойством тока.
Условия существования электрического тока.
• Наличие свободных заряженных частиц
• Наличие электрического поля

Основные характеристики электрического тока
1. Характеристика тока (самая зависимая величина). Величина, измеряемая отношением заряда, проходящего через поперечное сечение проводника за какой-нибудь промежуток времени, к величине этого промежутка, называется силой тока. Если сила тока со временем не меняется, то ток называют постоянным.

2. Характеристика источника питания(зависимая только от силы электрического поля). Напряжение — это физическая величина, характеризующая работу электрического поля по перемещению заряда

З. Характеристика проводника. Электрическое сопротивление выражается в Омах.

Закон Ома для участка цепи. Вольт — амперная характеристика тока. Соединение проводников.

Когда по какому-либо участку протекает ток, то между силой тока и напряжением для этого участка существует определённая функциональная зависимость, которую называют вольт-амперной характеристикой.
Сила тока на участке цепи прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.

Соединение проводников
• Последовательное соединение
1. При последовательном соединении сила тока во всех участках цепи одинакова

2. При последовательном соединении напряжение на внешней цепи равно сумме напряжений на отдельных участках
U=U+U+U
З. Напряжение на отдельных участках цепи при последовательном соединении прямо пропорциональны сопротивлениям участков

UUU=RRR
4. При последовательном соединении эквивалентное сопротивление всей цепи равно сумме сопротивлений отдельных участков цепи

R=R+R+R
• Параллельное соединение
1. При параллельном соединении напряжения на отдельных ветвях и на всём разветвлении одинаково

U=U=U=U
2. Ток до и после разветвления равен сумме токов в отдельных ветвях

3. Токи в отдельных ветвях разветвления обратно пропорциональны сопротивлениям этих ветвей
I+I+I=1/R+1/R+1/R

4. Проводимость всего разветвления равна сумме проводимостей. отдельных ветвей

Закон Ома для полной цепи. Физический смысл ЭДС. Внутренней и внешнее сопротивление цепи. Соединение одинаковых источников электрической энергии в батарею.

Сила тока в электрической цепи с одним источником ЭДС прямо пропорциональна электродвижущей силе и обратно пропорциональна сумме сопротивлений внешней и внутренней цепей.

Величина, измеряемая отношением работы сторонних сил, совершаемой источником тока при перемещении заряда по замкнутой цепи, к величине заряда, называется электродвижущей силой источника (ЭДС)
ɛ=A/g — ЭДСчисленно равна энергии, полученной единичным электрическим зарядом во внутренней цепи, а напряжение равно той энергии, которую он теряет во внешней цепи.

Внутренней цепью является источник электрической энергии, а внешней вся остальная часть.

Магнитный поток. Закон электромагнитной индукции. Правило правой руки для индукционного тока.

Магнитный Поток — поток вектора магнитной индукции В через какую-либо поверхность. через малую площадку dS, в пределах которой вектор В неизменен. Для замкнутой поверхности магнитный поток равен нулю, что отражает отсутствие в природе магнитных зарядов — источников магнитного поля.

Закон электромагнитной индукции — ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило правой руки.Направление индукционного тока, возникающего в прямолинейном проводнике при его движении в магнитном поле, определяется правилом правой руки: Если правую руку расположить вдоль проводника так, чтобы линии магнитной индукции входила в ладонь, а отогнутый большой палец показывал направление движения проводника, то четыре вытянутых пальца укажут направление индукционного тока в проводнике.

Автоколебательные системы. Ток высокой частоты и его особенности.

Для того чтобы получить незатухающие колебания нужно иметь посторонний источник энергии.,

удовлетворяющий 2 условиям: Поступление энергии за период должно быть точно ее убыли из системы.

Внешняя сила должна действовать в «такт» с собственными колебаниями.

Производство электрической энергии. Генератор.

Индукционные генераторы.

Электрические машины, в которых механическая энергия превращается в электрическую с помощью явления электромагнитной индукции, называется индукционными генераторами.

Закон преломления света.

1. Преломленный луч лежит в той же плоскости, в которой лежат падающий луч и перпендикуляр, восстановленный в точке падения луча к границе разделов двух сред.

2. При всех изменениях углов падения и преломления отношение синуса угла падения к синусу угла преломления для данных двух сред есть величина постоянная, называется показателем преломления второй среды относительно первой. (относительный показатель преломления)Он показывает, насколько среда уменьшает скорость распространения света в себе.

Абсолютный показатель преломления-показатель преломления данного вещества по отношению к вакууму. Указывает во сколько раз скорость света в вакууме больше скорости света в данном веществе. N=

Явление при котором световое излучение полностью отражается от поверхности раздела прозрачных сред, называется полным отражением. Наименьший угол падения, при котором наступает полное отражение, называется предельным углом полного отражения.Используется в оптических приборах: бинокли, перископах.

Цвета тонких пленок.

Белый свет падает на тонкую пленку. Частично свет отражается от верхней поверхности пленки, частично, пройдя пленку, отражается от ее нижней поверхности. Обе отраженные волны отличаются разностью хода. Белый свет монохроматичен он содержит электромагнитные волны разной длин от 400 до 760нм. Из-за того что разность хода зависит от длины волны, максимумы интерференционной картины для разных длин волн получаются в разных точках приемника. Поэтому пленки имеют радужный окрас.

Голография и её применение.

Сущность идеи состояла в фиксации полной информации о предмете.. Изображения получаемые

в фотоаппаратах регистрируют интенсивность волны. Фаза волны теряется. Габорг предложил

использовать явление интерференции чтоб зафиксировать частотные соотношения в волне. Если фотография регистрирует 1 параметр волны –амплитуду то, по методу регистрации полная информации о всех параметрах волны –частоте фазы и амплитуде. Голографический метод состоит из 2 этапов. Сначала получают интерференционную картину, Оба потока которые отражаются от зеркала и от предмета образуют интерференционную картину., представляющую собой чередование темных и светлых пятен. Для восстановления голограммы ее освещают излучениями.

Достоинства: В обычной фотографии каждый участок эмульсии изображает отдельный участок предмета. В голограмме каждый участок содержит информацию о всей картине .Голограмму характеризует большая емкость информации по сравнению с фотоснимком.

Применяется в количественном исследовании воздушных потоков в аэродинамических трубах.

52. Виды излучения. Тепловое и люминесцентное излучение (основные характеристики с примерами).

Свет- Электромагнитные волны излучают при ускоренном движении заряженных частиц. Излучение переходит при переходе из стационарного состояния с большей энергией в стационарное состояние с меньшей .При поглощении света атом переходит из стационарного состояния с меньшей энергией в состояние в большей энергией, Излучая атом теряет полученную энергию и для непрерывного свечения необходим приток энергии .

Читайте также:  Что измеряют амперметром в цепи переменного тока

Тепловое излучение — электромагнитное излучение с непрерывным спектром, испускаемое нагретыми телами за счёт их тепловой энергии. Примером теплового излучения является свет от лампы накаливания.

Спектром люминесценции называют зависимость интенсивности люминесцентного излучения от длины

волны испускаемого света.

Квантовая оптика. Абсолютно чёрное тело. Закон Стефана — Больцмана. Распределение энергии в спектре. Квантовая гипотеза Планка.

Излучение испускаемое нагретыми телами наз. тепловым. Каждое тело может не только испускать но и поглощать. Опыты показали что чем больше энергии тело излучает тем сильнее оно поглощает излучение. Хар-кой любого тела является поглощательная способность(показывает какая доля энергии поглощается телом)

Тело которое при любой не разрушающей его температуре полностью поглощает всю энергию падающего на него света любой частоты наз абсолютно черным.(отверстие в ящике сферической формы)Абсолютно черное тело является наиболее интенсивным источником теплового излучения. При оной температуре черное тело испускает в единицу времени больше энергии чем любое другое тело.

Закон ст.б-интегральной светимостью тела наз отношение мощность излучения к площади поверхности излучателя. Спектральной светимостью наз отношение светимости в данном диапазоне длин волн к ширине диапазона.

Задача о распределении энергии излучения абсолютно черного тела между волнами разной длинны сыграла огромную роль .ее решение привело к созданию квантовой физики. на рисунке хар-ие распределение энергии в спектре при разных Темп. площадь ограниченная каждой кривой определяет интенсивность полного излучения. Площадь быстро растет с увелич темп. все кривые имеют максимумы. Длинна волны на которую приходится максимум энергии излучения обратно пропорциональная абсолютной температуре.

Планка- абсолютно черное тело испускает и поглощает свет не непрерывно а определенными порциями энергии –квантами

59. Фотоэффект. Законы фотоэффекта. Квантовая теория фотоэффекта. Фотон и его энергетические характеристики.

Явление выравнивания электронов из твердых и жидких тел под действием света наз внешним фотоэлектрическим эффектом. Фотоэффект создается ультрафиолетовыми лучами.

Законы: максимальная начальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности,

-для каждого вещества сущ красная граница фотоэффекта

-число фотоэлектронов вырываемых из катода за 1 с прямо пропорционально интенсивности света

Ур Эйнштейна –h*v=Aв+m*vв2 /2 Красная граница фотоэффекта зависит только от работы выхода электрона.

Фотон его импульс направлен световому лучу .чем больше частота тем больше энергия фотона и тем отчетливее выражены корпускулярные свойства света.

Фотохимические законы

1. Каждый поглощенный веществом фотон вызывает превращение одной молекулы.

2. Молекула вступает в фотохимическую реакцию под действием фотона лишь в том случае, когда энергия фотона не меньше определеннного значения необходимого для разрыва молекулярных связей.

Световое давление.Прибор Лебедева представляет собой очень чувствительные крутильные весы подвижной частью является легкая рама с укрепленными на ней крылышками — светлыми и черными дисками. Так на черный диск почти вдвое меньше давления, чем на светлый. Плотность энергии Лебедев измерял с помощью специально сконструированного калориметра, направляя на него пучок света на определенное время и регистрируя повышение температуры.

Свет – это распространяющиеся в пространстве фотоны, то фотон обладает импульсом. Импульс фотона существенно отличается от импульса других элементарных частиц. Покоящихся фотонов не существует .Если распространяющуюся волну остановить то свет прекратит свое существование, значит фотоны будут поглощены атомами вещества, а их энергия перейдет в другой вид энергии.

Открытие нейтрона. Открытие протона. Протонно — нейтронная модель ядра. Нуклоны.

Открытие нейтрона. В начале 30-х гг. были обнаружены неизвестные ранее лучи. Они были названы бериллиевым излучением. так как возникали при бомбардировке альфа — частицами бериллия.
В 1932 г английский учёный Джеймс Чедвик (ученик Резерфорда) с помощью опытов, проведённых в камере Вильсона, доказал, что бериллиевое излучение представляет собой поток электрически нейтральных частиц, масса которых приблизительно равна массе протона. Отсутствие у исследуемых частиц электрического заряда следовало, в частности, из того, что они не отклонялись ни в электрическом, ни в магнитном поле. А массу частиц удалось оценить по их взаимодействию с другими частицами.
Эти частицы были названы нейтронами (ни тот, ни другой).

Открытие протона.В 1913 г. Э. Резерфорд выдвинул гипотезу о том, что одной из частиц, входящих в состав атомных ядер всех химических элементов, является ядро атома водорода.

Основание: массы атомов химических элементов превышают массу атома водорода в целое число раз (т.е. кратны ей).

В 1919 г. Резерфорд поставил опыт по исследованию взаимодействия альфа — частиц с ядрами атомов азота.

В этом опыте альфа — частица, летящая с огромной скоростью, при попадании в ядро атома азота выбивала из него какую- то частицу. По предположению Резерфорда, этой частицей было ядро атома водорода, которое Резерфорд назвал протоном (первый).

Нуклон.Так как протон и нейтрон по взаимодействию ядерными силами не отличаются друг от друга, их часто рассматривают как одну частицу нуклон в двух различных состояниях (ядро). Нуклон в состоянии без электрического заряда называется нейтроном, нуклон в состоянии с положительным электрическим зарядом называется протоном.

Одно из замечательных свойств ядерных сил — свойство насыщения — заключается в том, что нуклон оказывается способным к ядерному взаимодействию одновременно лишь с небольшим числом нуклонов-соседей. Свойство насыщения ядерных сил делает их в некоторой мере сходными с силами связи атомов в молекулах.

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Электрический ток — это упорядоченное (направленное) движение заряженных частиц.

1. Направленное движение свободных зарядов в проводнике под действием сил тока называется электрическим током проводимости или электрическим током.
2. За направление тока принимают направление движения положительно заряженных частиц,которое совпадает с направлением электрического поля.
Действия тока:
• Проводник, по которому течёт ток, нагревается.
• Электрический ток может изменять химический состав проводника.

• Ток оказывает силовое воздействие на соседние токи и намагниченные тела, что является основным свойством тока.
Условия существования электрического тока.
• Наличие свободных заряженных частиц
• Наличие электрического поля

Основные характеристики электрического тока
1. Характеристика тока (самая зависимая величина). Величина, измеряемая отношением заряда, проходящего через поперечное сечение проводника за какой-нибудь промежуток времени, к величине этого промежутка, называется силой тока. Если сила тока со временем не меняется, то ток называют постоянным.

2. Характеристика источника питания(зависимая только от силы электрического поля). Напряжение — это физическая величина, характеризующая работу электрического поля по перемещению заряда

З. Характеристика проводника. Электрическое сопротивление выражается в Омах.

Источник

Постоянный ток, его характеристики. Условия необходимые для существования электрического тока

date image2015-04-20
views image8000

facebook icon vkontakte icon twitter icon odnoklasniki icon

Направленное (упорядоченное) движение свободных заряженных частиц под действием электрического поля называется электрическим током.

Условия существования тока:

1. Наличие свободных зарядов.

2. Наличие электрического поля, т.е. разности потенциалов. Свободные заряды имеются в проводниках. Электрическое поле создается источниками тока.

При прохождении тока через проводник он оказывает следующие действия:

· Тепловое (нагревание проводника током). Например: работа электрического чайника, утюга и т.д.).

· Магнитное (возникновение магнитного поля вокруг проводника с током). Например: работа электродвигателя, электроизмерительных приборов).

· Химическое (химические реакции при прохождении тока через некоторые вещества). Например: электролиз.

Можно также говорить о

· Световом (сопровождает тепловое действие). Например: свечение нити накала электрической лампочки.

· Механическом (сопровождает магнитное или тепловое). Например: деформация проводника при нагревании, поворот рамки с током в магнитном поле).

· Биологическом (физиологическом). Например: поражение человека током, использование действия тока в медицине.

Основные величины, описывающие процесс прохождения тока по проводнику.

1. Сила тока I — скалярная величина, равная отношению заряда, прошедшего через поперечное сечение проводника, промежутку времени, в течение которого шел ток. Сила тока показывает, какой заряд проходит через поперечное сечение проводника за единицу времени. Ток называют постоянным, если сила тока не меняется со временем. Для того чтобы ток через проводник был постоянным необходимо, чтобы разность потенциалов на концах проводника была постоянной.

2. Напряжение U. Напряжение численно равно работе электрического поля по перемещению единичного положительного заряда вдоль силовых линий поля внутри проводника.

3. Электрическое сопротивление R — физическая величина, численно равная отношению напряжения (разности потенциалов) на концах проводника к силе тока, проходящего через проводник.

60. Закон Ома для участка цепи.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:

I = U / R; [A = В / Ом]

Ом установил, что сопротивление прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

где ρ — удельное сопротивление, l — длина проводника, S — площадь поперечного сечения проводника.

61. Сопротивление как электрическая характеристика резистора. Зависимость сопротивления металлических проводников от рода материала и геометрических размеров.

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где R — сопротивление; U — разность электрических потенциалов на концах проводника; I — сила тока, протекающего между концами проводника под действием разности потенциалов.

Сопротивление проводника является такой же характеристикой проводника как и его масса. Сопротивление проводника не зависит ни от силы тока в проводнике, ни от напряжения на его концах, а зависит только от рода вещества, из которого изготовлен проводник и его геометрических размеров: ,где: l — длина проводника, S — площадь поперечного сечения проводника, ρ — удельное сопротивление проводника, показывающее каким сопротивлением будет обладать проводник длиной 1 м и площадью сечения 1 м 2 , изготовленный из данного материала.

Проводники, подчиняющиеся закону Ома, называются линейными. Существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Зависимость сопротивления проводника от температуры выражается формулой: , где: R — сопротивление проводника при температуре Т, R — сопротивление проводника при температуре 0ºС, α — температурный коэффициент сопротивления.

Источник