Меню

Какова физическая природа емкостного сопротивления в цепи переменного тока

Емкостное сопротивление.

Емкостное сопротивление в цепи переменного тока — это та часть сопротивления, которая создается конденсатором, включенным в цепь переменного тока (при пренебрежимо малой емкости подводящих прово­дов).

Для получения формулы емкостного сопротивления определим, как меняется сила тока в цепи, содержащей только конденсатор.

Емкостное сопротивление

.

Напряжение на обкладках конденсатора u = φ1 – φ2 = q/C равно напряже­нию на входе цепи, поэтому

Для силы тока, которая определяется как производная заряда q по времени, из (q = C Um cos ωt) полу­чим:

Свободные электромагнитные колебания в колебательном контуре

Между напряжением и силой тока в цепи с конденсатором наблюдается сдвиг фаз на π/2 (), причем ток опережает напряжение. Когда конденсатор разряжается (напряжение на нем равно нулю), ток максима­лен.

Емкостное сопротивление

Амплитуда силы тока равна

Емкостное сопротивление

.

Емкостное сопротивление

называется емкостным сопротивлением. Если вместо амплитуд силы тока и напряжения в (Im = Um ) использовать их действующие значения, то, учитывая , получим:

Емкостное сопротивление

.

Это означает, что действующие значения силы тока и напряжения на конденсаторе связаны так же, как и сила постоянного тока и напряжение согласно закону Ома, причем роль активного сопротивления R играет емкостное сопротивление Хс.

Чем больше емкость конденсатора и частота напряжения, тем меньше емкостное сопротивле­ние и тем больше ток перезарядки.

Благодаря сдвигу фаз между током и напряжением в среднем за период не происходит ни накопления энергии на конденсаторе, ни ее диссипации (рассеяния). За четверть периода, когда конденсатор заряжается до максимального значения, на нем происходит накопление энергии электрического поля; в следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Источник



Емкостное сопротивление

Использование ёмкости в цепи постоянного тока знакомо каждому электронщику. В этом случае работа детали описывается сравнительно простыми физическими законами. Несколько сложнее дела обстоят с переменным током, ведь при таком применении ёмкости уже возникает необходимость учитывать реактивное сопротивление.

Активная и реактивная составляющие

Формула ёмкостного сопротивления

При подаче на обкладки конденсатора переменного напряжения ток через этот элемент первоначально стремится к максимальному значению. По мере заряда прибора он постепенно снижается. В то же время вольтаж ведёт себя иначе, т.е. плавно возрастает от нуля до максимального значения.

Подобный эффект вызван ёмкостным сопротивлением. Оно зависит как от строения самого электронного прибора, так и от характеристик поданного на него переменного напряжения.

Формула расчёта сопротивления

Где:

  • XC – реактивное сопротивление, ом;
  • p – 3,14;
  • f – частота переменного напряжения, приложенного к обкладкам, Гц;
  • C – ёмкость, Ф.

Обратите внимание! Ёмкость элемента можно узнать по маркировке, имеющейся на его корпусе. Если она нечитаемая или стёрлась, то эта величина определяется с помощью мультиметра. Он должен быть с функцией замера ёмкости (прим. DT9208A).

Векторное представление ёмкости

Для простоты понимания процессов, происходящих в конденсаторе под действием источника переменного тока, удобно воспользоваться векторным представлением ёмкости.

Векторная диаграмма

В начальный момент зарядки конденсатора потенциал U на его обкладках равен нулю (точка a). В то же время ток I имеет своё максимальное значение (точка b). На этом этапе уже заметно отставание. Ток начинает снижаться со своей пиковой величины (участок bd). Напряжение в этот момент ещё не выросло и только подбирается к своему максимуму (ac).

Подобное отражается и на диаграмме справа. В момент, когда вольтаж U имеет своё наименьшее значение (e), ток I только начинает переходить в отрицательную область (f).

Емкостное сопротивление

Ёмкостное, оно же реактивное, сопротивление принципиально зависит от частоты напряжения. Данная связь хорошо видна на графике, приведённом ниже. Чем выше частота, тем меньше реактивное сопротивление. Очевидно это и из вышеприведённой формулы. Переменная f (частота) стоит в знаменателе. Поэтому с её увеличением Xc будет уменьшаться.

Зависимость от частоты

Емкость в цепи переменного тока

При подаче на конденсатор постоянного напряжения он постепенно зарядится до максимальной разности потенциалов на его обкладках. После этого ток через электронный компонент прекратится и, не считая ничтожной утечки, будет равняться нулю. Поэтому в цепи постоянного тока конденсатор имеет огромное сопротивление. При расчетах его величину принимают равной бесконечности.

Реактивное сопротивление имеет вполне исчисляемое значение. Его можно измерить с помощью осциллографа, генератора и постоянного резистора. Для этого потребуется собрать схему. В ней конденсатор образует с резистором делитель напряжения. С помощью осциллографа будет измеряться потенциал, который образуется на выводах ёмкости.

Для данной схемы вычисления имеют следующий вид.

Формула косвенного измерения

Здесь:

  • Ur – разность потенциалов на резисторе, В;
  • Uc – напряжение на обкладках, В;
  • R – сопротивление резистора, ом;
  • Xc – сопротивление ёмкости, ом;
  • I – ток, протекающий в цепи, А.

Косвенное измерение

Важно! Электрический кабель также обладает ёмкостью. Поэтому после снятия напряжения на нём остаётся некоторый заряд. Данное явление опасно для человека, особенно, если проводник до отключения находился под потенциалом 1000 В и выше.

Единицы измерения

Для правильного проведения всех расчетов важно понимать, какие величины в них используются, и что они обозначают:

  • Ёмкость – ед. изм. фарад, Ф;
  • Напряжение – вольт, В;
  • Сопротивление, в т.ч. и реактивное – ом, Ом;
  • Частота – герц, Гц;
  • Ток – ампер, А.

Пример расчета емкостного сопротивления

Для расчета понадобится большинство из перечисленных физических величин. Они обозначены на схеме и в качестве примера имеют следующие значения:

  • частота f = 50 Гц (типичная бытовая сеть);
  • ёмкость C = 33 нФ = 0,000000033 Ф = 3,3*10-8 Ф;

Схема для примера

Реактив будет рассчитываться по вышеописанной формуле:

В таком случае сопротивление конденсатора в цепи переменного тока равно 96,5 кОм. Если расписать все вычисления, то получится следующее.

Читайте также:  Ударило током человека высоковольтная 1

Пример расчёта

Сама по себе формула не вызывает сложности. Однако для проведения вычислений необходимы знания школьного курса алгебры, т.е. умение работать со степенями, дробями и прочими алгоритмами математики. На практике имеет смысл немного схитрить. Чтобы каждый раз не городить сложные вычисления, можно воспользоваться одним из онлайн калькуляторов из сети Интернет. Подобные ресурсы позволяют произвести комплексный расчёт и выяснить некоторые другие параметры цепи.

Свойства ёмкостей

Основное свойство состоит в их способности накапливать и отдавать электрический заряд. Оба этих процесса происходят не мгновенно, а за вполне определённый период, который поддаётся расчету. Данное свойство используется для создания различных времязадающих RC цепей. Если зарядить конденсатор до некоторого значения, то время его разряда через резистор R будет зависеть от ёмкости C.

RC цепь

Ещё одно распространённое свойство конденсаторов – это возможность ограничивать переменный ток. Вызвана она реактивом этих элементов. Ёмкость, включенная в цепь переменного тока, ограничивает его до значения I = 2pfCU. Здесь U – напряжение источника питания.

Дополнительная информация. Ёмкость, подключенная параллельно с катушкой, имеющей индуктивный характер сопротивления, называется колебательным контуром. Данная цепь обладает высокой амплитудой колебаний на резонансной частоте. Она применяется для выделения из множества окружающих радиосигналов именно того, на который требуется настроить приём.

Сопротивление – это одна их характеристик конденсатора, подключенного к цепи переменного тока. Понимание процессов, происходящих с этим элементом в подобных схемах, существенно расширяет сферу его использования. Реактивное сопротивление конденсаторов учитывается как в простых бытовых электроприборах, так и в сложной вычислительной технике.

Видео

Источник

Емкостное и индуктивное сопротивление в цепи переменного тока

Если мы включим конденсатор в цепь постоянного тока, то обнаружим, что он оказывает бесконечно большое сопротивление, поскольку постоянный ток просто не может пройти через диэлектрик между обкладками, так как диэлектрик по определению не проводит постоянный электрический ток.

Конденсатор разрывает цепь постоянного тока. Но если тот же конденсатор включить теперь в цепь переменного тока, то окажется, что ее конденсатор будто бы и не разрывает полностью, он просто попеременно заряжается и разряжается, то есть электрический заряд движется, и ток во внешней цепи поддерживается.

Опираясь на теорию Максвелла, в этом случае можно сказать, что переменный ток проводимости внутри конденсатора все же замыкается, только в данном случае — током смещения. Значит конденсатор в цепи переменного тока выступает неким сопротивлением конечной величины. Такое сопротивление называется емкостным.

Емкостное и индуктивное сопротивление в цепи переменного тока

Практика давно показала, что величина переменного тока, текущего через провод, зависит от формы этого провода и от магнитных свойств среды вокруг него. При прямом проводе ток будет наибольшим, а если этот же провод свернуть в катушку с большим количеством витков, то величина тока окажется меньше.

А если в ту же катушку еще и ввести ферромагнитный сердечник, то ток еще сильнее уменьшится. Следовательно проводник оказывает переменному току не только омическое (активное) сопротивление, но еще и некое дополнительное сопротивление, зависящее от индуктивности проводника. Данное сопротивление называется индуктивным.

Его физический смысл состоит в том, что изменяющийся ток в проводнике, обладающем некой индуктивностью, инициирует в этом проводнике ЭДС самоиндукции, стремящуюся препятствовать изменениям тока, то есть стремящуюся уменьшить ток. Это равносильно увеличению сопротивления проводника.

Емкостное сопротивление в цепи переменного тока

Емкостное сопротивление в цепи переменного тока

Для начала поговорим более подробно о емкостном сопротивлении. Допустим, что конденсатор емкостью С подключен к источнику синусоидального переменного тока, тогда ЭДС этого источника будет описываться следующей формулой:

ЭДС источника

Падением напряжения на соединительных проводах пренебрежем, так как оно обычно очень мало, а при необходимости его можно будет рассмотреть отдельно. Примем сейчас, что напряжение на обкладках конденсатора равно напряжению источника переменного тока. Тогда:

Напряжение на обкладках конденсатора

В любой момент времени заряд на конденсаторе зависит от его емкости и от напряжения между его обкладками. Тогда для данного известного источника, о котором говорилось выше, получим выражение для нахождения заряда на обкладках конденсатора через напряжение источника:

Заряд на обкладках конденсатора

Пусть за бесконечно малое время dt заряд на конденсаторе изменяется на величину dq, тогда по проводам от источника к конденсатору потечет ток I, равный:

Ток

Амплитудное значение тока окажется равно:

Амплитудное значение тока

Тогда окончательное выражение для тока будет иметь вид:

Ток

Перепишем формулу для амплитуды тока в следующем виде:

Амплитудное значение тока

Данное соотношение есть закон Ома, где величина обратная произведению угловой частоты на емкость играет роль сопротивления, и по сути являет собой выражение для нахождения емкостного сопротивления конденсатора в цепи синусоидального переменного тока:

Емкостное сопротивление конденсатора

Значит емкостное сопротивление обратно пропорционально угловой частоте тока и емкости конденсатора. Легко понять и физический смысл данной зависимости.

Чем больше емкость конденсатора в цепи переменного тока и чем чаще изменяется направление тока в этой цепи, тем в конце концов больший суммарный заряд проходит за единицу времени через поперечное сечение проводов, соединяющих конденсатор с источником переменного тока. Значит ток пропорционален произведению емкости и угловой частоты.

Для примера выполним расчет емкостного сопротивления конденсатора электроемкостью 10 мкф для цепи синусоидального переменного тока с частотой 50 Гц:

Расчет емкостного сопротивления конденсатора

Если бы частота была 5000 Гц, то тот же самый конденсатор представлял бы собой сопротивление около 3 Ом.

Из приведенных выше формул ясно, что ток и напряжение в цепи переменного тока с конденсатором всегда изменяются в разных фазах. Фаза тока опережает фазу напряжения на пи/2 (90 градусов). А значит максимум тока во времени существует всегда на четверть периода раньше, чем максимум напряжения. Таким образом на емкостном сопротивлении ток опережает напряжение на четверть периода по времени или на 90 градусов по фазе.

Читайте также:  Электротехника спо цепи переменного тока

Напряжение в цепи переменного тока с конденсатором всегда изменяются в разных фазах

Давайте поясним физический смысл данного явления. В самый первый момент времени конденсатор полностью разряжен, поэтому самое малое приложенное к нему напряжение уже перемещает заряды на пластинах конденсатора, создавая ток.

По мере того как конденсатор заряжается, напряжение на его обкладках увеличивается, оно препятствует дальнейшему притоку заряда, поэтому ток в цепи уменьшается невзирая на дальнейший рост прикладываемого к обкладкам напряжения.

Значит, если в начальный момент времени ток был максимальным, то когда напряжение достигнет своего максимума через четверть периода, ток прекратится вовсе.

В начале периода ток максимален а напряжение минимально и начинает нарастать, но через четверть периода напряжение достигает максимума, но ток к этому моменту уже упал до нуля. Вот и получается опережение током напряжения на четверть периода.

Индуктивное сопротивление в цепи переменного тока

Индуктивное сопротивление в цепи переменного тока

Теперь вернемся к индуктивному сопротивлению. Допустим, что через катушку, обладающую индуктивностью, течет переменный синусоидальный ток. Его можно выразить так:

Ток

Ток обусловлен приложенным к катушке переменным напряжением. Значит на катушке возникнет ЭДС самоиндукции, которая выражается следующим образом:

ЭДС самоиндукции

Снова пренебрежем падением напряжения на проводах, соединяющих источник ЭДС с катушкой. Их омическое сопротивление очень мало.

Пусть приложенное к катушке переменное напряжение в каждый момент времени полностью уравновешивается возникающей ЭДС самоиндукции, равной ему по величине, но противоположной по направлению:

ЭДС

Тогда имеем право записать:

ЭДС

Поскольку амплитуда приложенного к катушке напряжения равна:

Амплитуда приложенного к катушке напряжения

ЭДС

Выразим максимальный ток следующим образом:

Ток

Это выражение по сути является законом Ома. Величина равная произведению индуктивности на угловую частоту играет здесь роль сопротивления, и представляет собой ни что иное, как индуктивное сопротивление катушки индуктивности:

Индуктивное сопротивление катушки индуктивности

Так, индуктивное сопротивление пропорционально индуктивности катушки и угловой частоте переменного тока, через данную катушку пропускаемого.

Это объясняется тем, что индуктивное сопротивление обусловлено влиянием ЭДС самоиндукции на напряжение источника, — ЭДС самоиндукции стремится уменьшить ток, а значит сносит в цепь сопротивление. Величина ЭДС самоиндукции, как известно, пропорциональна индуктивности катушки и скорости изменения тока через нее.

Для примера рассчитаем индуктивное сопротивление катушки с индуктивностью 1 Гн, которая включена в цепь с частотой тока 50 Гц:

Расчет индуктивного сопротивления

Если бы частота бала 5000 Гц, то сопротивление этой же катушки оказалось бы равно приблизительно 31400 Ом. Напомним, что омическое сопротивление провода катушки составляет обычно единицы Ом.

Изменения тока через катушку и напряжения на ней, происходят в разных фазах

Из приведенных выше формул очевидно, что изменения тока через катушку и напряжения на ней, происходят в разных фазах, причем фаза тока всегда меньше чем фаза напряжения на пи/2. Следовательно максимум тока наступает на четверть периода позже наступления максимума напряжения.

На индуктивном сопротивлении ток отстает от напряжения на 90 градусов из-за тормозящего действия ЭДС самоиндукции, которая препятствует изменению тока (и нарастанию, и убыванию), вот почему максимум тока наблюдается в цепи с катушкой позднее максимума напряжения.

Совместное действие катушки и конденсатора

Если включить в цепь переменного тока последовательно катушку с конденсатором, то напряжение на катушке будет опережать напряжение на конденсаторе по времени на половину периода, то есть на 180 градусов по фазе.

Емкостное и индуктивное сопротивление называются реактивными сопротивлениями. На реактивном сопротивлении энергия не расходуется как на активном. Энергия накапливаемая в конденсаторе периодически возвращается обратно к источнику, когда электрическое поле в конденсаторе исчезает.

Так же и с катушкой: пока магнитное поле катушки создается током, энергия в ней на протяжении четверти периода накапливается, а в следующую четверть периода возвращается к источнику. В данной статье речь шла о синусоидальном переменном токе, для которого данные положения выполняются строго.

В цепях синусоидального переменного тока катушки индуктивности с сердечниками, называемые дросселями, традиционно используются для ограничения тока. Их преимущество перед реостатами в том, что энергия не рассеивается в огромном количестве в форме тепла.

Источник

Вынужденные колебания. Переменный ток. Явление резонанса , страница 10

Коренное отличие емкостного сопротивления от активного: активное сопротивление ограничивает силу тока в цепи и полностью преобразует подводимую к нему энергию электромагнитного поля во внутреннюю энергию, а емкостное сопротивление только ограничивает силу тока, но не преобразует энергию электромагнитного поля в другие виды энергии. Поэтому, в отличие от активного сопротивления, емкостное сопротивление называют реактивным.

12 Цепь переменного тока с индуктивным сопротивлением

Подключим к источнику постоянного тока, например к аккумулятору, цепь, состоящую из катушки индуктивности, намотанной из толстого медного провода, амперметра и вольтметра. Несмотря на то, что напряжение мало, по цепи идет большой ток. Это объясняется тем, что сопротивление катушки мало.

Если источник постоянного тока заменить источником переменного тока с таким же напряжением, то мы заметим, что сила тока в цепи станет значительно меньшей. Итак, для переменного тока катушка индуктивности представляет большее сопротивление, чем для постоянного. Сопротивление, оказываемое катушкой индуктивности переменному току, обусловленное колебаниями тока, называется индуктивным сопротивлением и обозначается через ХL.

Природа индуктивного сопротивления состоит в следующем. Протекающий по катушке переменный ток создает переменное магнитное поле. Линии индукции этого магнитного поля пронизывают витки катушки. Поэтому в витках катушки возникает индуцированное электрическое поле, которое в соответствии с законом Ленца противодействует изменениям силы тока в цепи. Это приводит к уменьшению амплитуды переменного тока. Действие индуцированного электрического поля и учитывается при вычислении силы тока как наличие у катушки особого сопротивления переменному току – индуктивного сопротивления XL

Читайте также:  При параллельном соединении потребителей ток равен

а) Фазовые соотношения. Подключив двух лучевой осциллограф к клеммам катушки и параллельно активному сопротивлению R, мы заметим, что осциллограммы тока и напряжения в цепи с индуктивностью не совпадают по фазе.

Внимательное изучение осциллограмм показывает, что в цепи с индуктивностью колебания тока и напряжения сдвинуты по фазе на п/2. При этом колебания напряжения опережают колебания тока. Если,

б) Закон Ома. Несовпадение колебаний тока и напряжения по фазе приводит к тому, что закон Ома (в том виде, в каком он был сформулирован для постоянного тока) в цепи переменного тока с индуктивностью несправедлив для мгновенных значений силы тока и напряжения. Однако, он справедлив для максимальных и действующих значений.

в) Формула индуктивного сопротивления. Выясним, от каких причин и как зависит индуктивное сопротивление. Мы знаем, что в любой момент времени напряжение на катушке равно по модулю ЭДС самоиндукции .Поэтому

Но ЭДС самоиндукции выражается формулой

где i есть производная от тока по времени. Так как

При sinwt=1 напряжение принимает максимальное значение

Величина Хl и есть индуктивное сопротивление:

г) Преобразование энергии. Найдем мощность в цепи переменного тока, содержащей только индуктивность. Мы знаем, что мощность в цепи переменного тока определяется формулой:

так как колебания тока в цепи, содержащей только индуктивность, отстают от колебаний напряжения на , то

Как и в случае цепи с конденсатором, цепь, содержащая только индуктивность, не преобразует подводимую к ней от источника энергию. На рисунке 13 показан график изменения мгновенной мощности. В течение первой и третьей четверти периода мгновенная мощность положительна, и в цепи с индуктивностью за счет энергии генератора создается магнитное поле, энергия которого увеличивается от нуля до некоторого наибольшего значения. В течение второй и третьей четверти периода мгновенная мощность отрицательна. Это значит, что запасенная в магнитном поле энергия возвращается обратно генератору. Таким образом, энергия, полученная цепью с индуктивностью за каждый период, равна нулю и, следовательно, равна нулю средняя мощность переменного тока в этой цепи:

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник