Меню

Какие металлы не проводят электрический ток список

Создан материал, который проводит электричество, но не нагревается

Хорошо известно, что различного рода металлы, способные проводить электричество, в то же время довольно сильно нагреваются. Это обусловлено целым рядом химических и физических свойств материалов, но электро- и теплопроводность почти всегда «идут рука об руку». Однако, как мы знаем, в нашем мире нет ничего ничего не возможного. Например, как передает редакция издания Sciencealert, группа исследователей из лаборатории Университета Беркли (США) смогла создать металл, который отлично проводит электричество, но при это не нагревается.

Создан материал, нарушающий физические законы?

Какой металл обладает уникальными свойствами?

Как сообщают ученые, новый металл (а точнее соединение металла), что проводит электричество, не проводя тепла бросает вызов нашему нынешнему пониманию того, как работают проводники. Так как само его наличие противоречит тому, что называется законом Видемана-Франца. Если не вдаваться в подробности, то данный физический закон утверждает, что хорошие проводники электричества также будут пропорционально хорошими проводниками тепла. Этим объясняется, например, то, что приборы, использующие для своей работы электричество, со временем нагреваются. Но не будем больше оттягивать интригу. Команда ученых из США показала, что данное явление не наблюдается в оксиде ванадия, который обладает странной способностью «переключаться» с материала, являющегося изолятором, на проводящий металл при температуре 67 градусов Цельсия.

Это было совершенно неожиданное открытие, — сказал ведущий исследователь Джункуао Ву из отдела материаловедения Лаборатории Беркли. Это открытие имеет фундаментальное значение для понимания основного принципа работы новых проводников. Новое неожиданное свойство не только изменяет то, что мы знаем о проводниках, но и может быть невероятно полезным. Например, металл однажды может быть использован для преобразования отработанного тепла от двигателей и приборов обратно в электричество.

Так что никаких физических законов оксид ванадия не нарушает. Стоит заметить, что исследователи уже знали о нескольких других материалах, которые проводят электричество лучше, чем тепло, но они проявляют эти свойства только при температурах ниже нуля, что делает их крайне непрактичными для применения в реальной жизни. Оксид ванадия, с другой стороны, обычно является только проводником электричества при плюсовых температурах выше комнатной температуры, что означает, что он имеет быть намного более практичным. Чтобы открыть это странное свойство, команда изучила, как электроны движутся в кристаллической решетке оксида ванадия, а также то, сколько тепла в этот момент генерируется.

Удивительно, но они обнаружили, что теплопроводность, которую можно было бы приписать электронам в материале, была в 10 раз меньше той величины, которая предсказывалась законом Видемана-Франца. Причина этого, по-видимому, заключается в способе перемещения электронов через материал.

Электроны двигаются синхронно друг с другом. Как жидкость, а не как отдельные частицы, что наблюдается в обычных металлах. Для электронов теплопроводность — это случайное движение. Обычные металлы переносят тепло эффективно, потому что существует много различных возможных микроскопических конфигураций поведения электронов и они могут хаотично перемещаться. А вот скоординированное движение электронов в диоксиде ванадия наносит ущерб теплопередаче, поскольку существует меньше «возможностей для движения». При этом электропроводность в данном случае не страдает.

Интересно, что когда исследователи смешали оксид ванадия с другими металлами, они смогли «настроить» количество электричества и тепла, которое он может проводить, что может быть невероятно полезно для будущих применений. Например, когда эксперты добавили металл под названием вольфрам к оксиду ванадия, они сделали его лучшим теплопроводником. Хотите узнать больше новостей из мира высоких технологий? Подписывайтесь на нас в Яндекс.Дзен.

Настраивая таким образом теплопроводность, материал может эффективно применяться для автоматического рассеивания тепла в жаркое лето, потому что он будет иметь высокую теплопроводность, но предотвращать его потерю в холодную зиму из-за низкой теплопроводности при более низких температурах.

Источник



Какие вещества проводят электрический ток?

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: носители свободных электрических зарядов в металлах.

В этом листке мы приступаем к подробному изучению того, как осуществляется прохождение электрического тока в различных проводящих средах — твёрдых телах, жидкостях и газах.

Напомним, что необходимым условием возникновения тока является наличие в среде достаточно большого количества свободных зарядов, которые могут начать упорядоченное движение под действием электрического поля. Такие среды как раз и называются проводниками электрического тока.

Наиболее широко распространены металлические проводники. Поэтому начинаем мы с вопросов распространения электрического тока в металлах.

Мы много раз говорили о свободных электронах, которые являются носителями свободных зарядов в металлах. Вам хорошо известно, что электрический ток в металлическом проводнике образуется в результате направленного движения свободных электронов.

Свободные электроны

Металлы в твёрдом состоянии имеют кристаллическую структуру: расположение атомов в пространстве характеризуется периодической повторяемостью и образует геометрически правильный рисунок, называемый кристаллической решёткой.
Атомы металлов имеют небольшое число валентных электронов, расположенных на внешней электронной оболочке. Эти валентные электроны слабо связаны с ядром, и атом легко может их потерять.

Когда атомы металла занимают места в кристаллической решётке, валентные электроны покидают свои оболочки — они становятся свободными и отправляются «гулять» по всему кристаллу (а именно, свободные электроны перемещаются по внешним орбиталям соседних атомов. Эти орбитали перекрываются друг с другом вследствие близкого расположения атомов в кристаллической решётке, так что свободные электроны оказываются «общей собственностью» всего кристалла). В узлах кристаллической решётки металла остаются положительные ионы, пространство между которыми заполнено «газом» свободных электронов (рис. 1).

Рис. 1. Свободные электроны

Свободные электроны и впрямь ведут себя подобно частицам газа (другой адекватный образ — электронное море, которое «омывает» кристаллическую решётку) — совершая тепловое движение, они хаотически снуют туда-сюда между ионами кристаллической решётки. Суммарный заряд свободных электронов равен по модулю и противоположен по знаку общему заряду положительных ионов, поэтому металлический проводник в целом оказывается электрически нейтральным.

Газ свободных электронов является «клеем», на котором держится вся кристаллическая структура проводника. Ведь положительные ионы отталкиваются друг от друга, так что кристаллическая решётка, распираемая изнутри мощными кулоновскими силами, могла бы разлететься в разные стороны. Однако в тоже самое время ионы металла притягиваются к обволакивающему их электронному газу и, как ни в чём не бывало, остаются на своих местах, совершая лишь тепловые колебания в узлах кристаллической решётки вблизи положений равновесия.

Что произойдёт, если металлический проводник включить в замкнутую цепь, содержащую источник тока? Свободные электроны продолжают совершать хаотическое тепловое движение, но теперь — под действием возникшего внешнего электрического поля — они вдобавок начнут перемещаться упорядоченно. Это направленное течение электронного газа, накладывающееся на тепловое движение электронов, и есть электрический ток в металле (поэтому свободные электроны называются также электронами проводимости). Скорость упорядоченного движения электронов в металлическом проводнике, как нам уже известно, составляет приблизительно 0,1мм/с.

Читайте также:  Электромагниты постоянного тока pdf

самый электропроводный металл это Как работает заземление сопротивление земли самый электропроводный металл контур заземления самый электропроводный металл в мире

проводит ли стекло электрический ток? Почему?

Стекло при обычных условиях, т. е. в твердом состоянии, является изолятором, и эта его особенность широко используется. Например, металлические контакты — вводы — в приборах впаивают непосредственно в стекло. Однако в расплавленном состоянии стекло проводит электрический ток.

согласна с предыдущим ответом!

стекло не проводник и не диэлектрик, это полу проводник т. к. его свойства несовпадают ни с диэлектриками (пластичность, прочность, хорошая теплопроводность, горение) и проводниками (хорошая теплопроводность, стойкость к огню, остальные свойства могут быть разными в зависимости от вещества) но зато идентичны свойствам полупроводника. например при высокой температуре — проводник, при низкой — диэлектрик

Опыт Рикке

Почему мы решили, что ток в металлах создаётся движением именно свободных электронов? Положительные ионы кристаллической решётки также испытывают на себе действие внешнего электрического поля. Может, они тоже перемещаются внутри металлического проводника и участвуют в создании тока?

Упорядоченное движение ионов означало бы постепенный перенос вещества вдоль направления электрического тока. Поэтому надо просто пропускать ток по проводнику на протяжении весьма длительного времени и посмотреть, что в итоге получится. Такого рода эксперимент и был поставлен Э.Рикке в 1901 году.

В электрическую цепь были включены три прижатых друг к другу цилиндра: два медных по краям и один алюминиевый между ними (рис. 2). По этой цепи пропускался электрический ток в течение года.

Рис. 2. Опыт Рикке

За год сквозь цилиндры прошёл заряд более трёх миллионов кулон. Предположим, что каждый атом металла теряет по одному валентному электрону, так что заряд иона равен элементарному заряду Кл. Если ток создаётся движением положительных ионов, то нетрудно подсчитать (сделайте это сами!), что такая величина прошедшего по цепи заряда соответствует переносу вдоль цепи около 2кг меди.

Однако после разъединения цилиндров было обнаружено лишь незначительное проникновение металлов друг в друга, обусловленное естественной диффузией их атомов (и не более того). Электрический ток в металлах не сопровождается переносом вещества, поэтому положительные ионы металла не принимают участия в создании тока.

вещества которые проводят электрический ток какие из следующих жидкостей проводят электрический ток электролиты проводят электрический ток какие из следующих жидкостей проводят электрический ток расплавы проводят электрический ток

Ответы@Mail.Ru: проводит ли магнит ток

Это зависит от того, проводник это или диэлектрик. Проводники это такие материалы, которые проводят электрический ток. Например, железо является проводником и поэтому железные магниты проводят ток. Диэлектрики (или по другому, изоляторы) это такие материалы, которые не проводят электрический ток. Например, магнитные полимеры (в холодильнике магнитная резинка) ток не проводят. Диэлектрики и проводники отличаются тем, что в проводниках есть свободные электроны, а в диэлектриках их нет. Есть еще и третий тип магнитов. Это полупроводники.

Щас попробуем… . Как ни странно не проводит! Перепробовал все магнитики на холодильнике, а вот магнит из динамика попробовать нет возможности, много шурупов надо откручивать, лень.. . Один из магнитов на холодильнике по материалу был такой же как и в динамиках, он не проводил, так что по моему нет.

Проводит, так как он металл.

магниты есть разные, проводящие и нет

Металлические — проводят, но редко встречаются в быту, черные (ферритовые) — не проводят.

магниты бывают разными, есть проводящие, есть непроводящие

Если ферросплав-то нет

электромагнит — проводит электрический ток! ферритовые магниты — не проводят!

Проводят. Причём все, ферритовые меньше, но проводят.

Я не физик, я — лирик…. Словом, не технический человек, просто очень давно, как все, ходил в школу. Неодимовые и ферритовые магниты имеют в своих составах ЖЕЛЕЗО, значит, химически-физически просто ОБЯЗАНЫ быть проводниками электрического тока. Вопрос в другом: магниты хорошие проводники тока или так себе? Хуже — отвратительные, потому как капризные. В зависимости от %-ного содержания своих вспомогательных составов. К примеру, бора, неодима и проч., проч. Вот у меня дома (пойду подсчитаю!)… за сотню всяких-разных магнитов и магнитиков. Самые крупные — два по 500 примерно грамм. Как-то я проверял их на токопроводность. Ни один не оживил экранчик мультитестера. Хотя я не стал пробовать по-народному: через два провода и в розетку. Думаю, что тогда бы я сильно рисковал… Типа как некогда в армии. Проверяли «на живца» пробивную силу патронов из АК-47 — калибр 7,62. Каску стальную — насквозь и дальше. Рельсу — даже без вмятинок. А как по человеку? Если тот стоит за 1000 м от стрелка? Хорошо, что никто с такого расстояния (для перестраховки отмеряли аж 1100 шагов) не попал в тех наших горячих добровольцев-спорщиков! Пуля она дура…

Опыт Стюарта–Толмена

Прямое экспериментальное доказательство того, что электрический ток в металлах создаётся движением свободных электронов, было дано в опыте Т.Стюарта и Р.Толмена (1916 год).

Эксперименту Стюарта–Толмена предшествовали качественные наблюдения, сделанные четырьмя годами ранее русскими физиками Л.И.Мандельштамом и Н.Д.Папалекси. Они обратили внимание на так называемый электроинерционный эффект: если резко затормозить движущийся проводник, то в нём возникает кратковременный импульс тока. Эффект объясняется тем, что в течение небольшого времени после торможения проводника его свободные заряды продолжают двигаться по инерции.

Однако никаких количественных результатов Мандельштам и Папалекси не получили, и наблюдения их опубликованы не были. Честь назвать опыт своим именем принадлежит Стюарту и Толмену, которые не только наблюдали указанный электроинерционный эффект, но и произвели необходимые измерения и расчёты.

Установка Стюарта и Толмена показана на рис. 3.

Рис. 3. Опыт Стюарта–Толмена

Катушка большим числом витков металлического провода приводилась в быстрое вращение вокруг своей оси. Концы обмотки с помощью скользящих контактов были подсоединены к специальному прибору — баллистическому гальванометру, который позволяет измерять проходящий через него заряд.

После резкого торможения катушки в цепи возникал импульс тока. Направление тока указывало на то, что он вызван движением отрицательных зарядов. Измеряя баллистическим гальванометром суммарный заряд, проходящий по цепи, Стюарт и Толмен вычислили отношение заряда одной частицы к её массе. Оно оказалось равно отношению для электрона, которое в то время уже было хорошо известно.

Так было окончательно выяснено, что носителями свободных зарядов в металлах являются свободные электроны. Как видите, этот давно и хорошо знакомый вам факт был установлен сравнительно поздно — учитывая, что металлические проводники к тому моменту уже более столетия активно использовались в самых разнообразных экcпериментах по электромагнетизму (сравните, например, с датой открытия закона Ома — 1826 год. Дело, однако, заключается в том, что сам электрон был открыт лишь в 1897 году).

Читайте также:  Мощность автомобильных генераторов тока

Какой металл лучше проводит ток?

  • Сразу замечу, что у тех, у кого меньше примесей и будут лучшими. Ну а по металлам как-то вот так распределилось, всего 3 металла:
    1. Самый лучший — это серебро — сопротивление порядка 0,015 — 0,016 ом х мм2/м

Медь — сопротивление порядка 0,01720,018 ом х мм2/м

  • Алюминий — сопротивление порядка 0,026 — 0,029 ом х мм2/м
  • Самый лучший проводник — серебро:) Потом идет медь. Если нужно, чтобы провод не окислялся, то используют золото. А так fatalex верно подметил — при разных температурах все по-разному=)
  • Пальму первенства по наиболее скоростной передаче тока можно отдать всем известному серебру.

    Порой вместо серебра могут использовать для передачи тока другой материал, поскольку помимо электропроводности порой играет большую роль реакция металла на коррозию.

  • Тут надо упомянуть при какой температуре. Т.к. при сверх-низких температурах ни один хорошо проводящий ток металл как серебро или медь, уже не становиться хорошим проводником. Тут на оборот лидируют металлы с плохой проводимостью (титан, ртуть, свинец и т.д.) И при сверх низких температурах ток начинают проводить не только металлы, а как не странно на первый взгляд соединения которые в обычных условиях ток проводят довольно плохо (соединения ванадия с кремнием или кальцием, рубидия с таллием, молибдена с азотом и др.)
  • Самый лучший но и дорогой проводник это золото, но медь примерно уступает на немного золоту, потом уже алюминий.
  • Я ещ со школьной скамьи помню, что лучше всего проводит ток именно серебро. Второе место можно смело отдать меди. Ну а третье место принадлежит алюминию. Самое главное чтобы в металлах не было примесей, потому как они могут намного снизить способности к проводимости тока.
  • Этот вопрос довольно легкий, так как каждый ученик может узнать о лучшем проводнике из школьной программы.

    Самым лучшим проводником является конечно медь и серебро. Хуже всего проводит электрический ток свинец и ртуть. Золото можно считать тоже неплохим проводником, но оно значительно уступает, как серебру, так и меди.

  • Лидером в проводимости тока является серебро. Также отлично проводит ток всем известная медь. Именно она ныне наиболее часто используется для производства электропроводов. Далее следуют такие металлы как аллюминий и золото. Но так как золото — очень дорогой металл, то его редко используют в виде токопроводника. Хром, вольфрам тоже неплохо проводят ток.
  • Пожалуй первое место по тому, какой из металлов проводит ток занимает серебро. После него идут медь и затем третье место принадлежит алюминию. Но серебро не всегда используют для этих целей, так как оно неудобно в использовании. Его заменяют медью и золотом, смотря где используются.
  • Серебро, так как у этого металла самое малое удельное сопротивление при температуре 20*С. Удельное сопротивление это 1Ом на 1м длины и 1мм кв. сечения токоведущего элемента. Для сравнения, можно взглянуть на таблицу:
  • При нормальных условиях электрический ток лучше всего проводит серебро.

    Немного уступает серебру в проводимости медь, о зато оно более дешвое.

    Золото тоже довольно таки хороший проводник и у него есть преимущества, а именно то, что оно не окисляется, как те же медь и алюминий, к тому же оно очень пластично и из него можно вытянуть очень тонкую проволоку и из-за этого его даже используют в микроэлектронике и производстве микросхем и других деталей.

    Немного уступает в проводимости золоту алюминий, а его сравнительно дешвое производство делает его одним из самых популярных в электротехнике материалов, наряду с медью. Разве что ломаются алюминиевые провода гораздо легче, чем медные.

    Вот, пожалуй, так выглядит список чемпионов по проводимости среди металлов.

    Первое место в рейтинге по проводимости занимает серебро, вторая строчка принадлежит меди. Третье достойное место золоту. Четвертое место отдается алюминий. Как вы понимаете пропускная способность металла зависит от удельного сопротивления, чем оно ниже, тем выше проводимость.

    Источник

    ЭЛЕКТРОПРОВОДНОСТЬ

    Самые лучшие проводники электричества — металлы. Хорошей электропроводностью металлы опять-таки обя­заны свободным электронам.

    Когда мы присоединяем лампочку, плитку или какой — нибудь другой электрический прибор к источнику тока, в проводах, в нити лампочки, в спирали плитки мгно­венно возникают большие изменения: электроны теряют прежнюю полную свободу движения и устремляются к положительному полюсу источника тока. Такой на­правленный поток электронов и есть электрический ток в металлах.

    Поток электронов движется по металлу не беспрепят­ственно — он встречает на своём пути ионы. Движение от­дельных электронов тормозится. Электроны передают часть своей энергии ионам, благодаря чему скорость ко­лебательного движения ионов увеличивается. Это приво­дит к тому, что проводник нагревается.

    Ионы разных металлов оказывают движению электро­нов неодинаковое сопротивление. Если сопротивление мало, металл нагревается током слабо, если же сопроти­вление велико, металл может раскалиться. Медные про­вода, подводящие ток к электрической плитке, почти не нагреваются, так как электрическое сопротивление меди ничтожно. А нихромовая спираль плитки раскаляется до­красна. Ещё сильнее нагревается вольфрамовая нить элек­трической лампочки.

    Наиболее высокой электропроводностью отличаются серебро и медь, затем следуют золото, хром, алюминий, марганец, вольфрам и т. д. Плохо проводят ток железо, ртуть и титан. Если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия— 55, железа и ртути — 2, а титана — лишь 0,3.

    Серебро — металл дорогой и в электротехнике исполь­зуется мало, но медь применяется для изготовления прово­дов, кабелей, шин и других электротехнических изделий в громадных количествах. Электропроводность алюминия в 1,7 раза меньше, чем у меди, и поэтому алюминий приме­няется в электротехнике реже, чем медь.

    Серебро, медь, золото, хром, алюминий, . свинец, ртуть. Мы видели, что в таком же приблизительно по­рядке стоят металлы и в ряду с постепенно убывающей теплопроводностью (см. стр. 33).

    Наилучшие проводники электрического тока, как пра­вило, являются и наилучшими проводниками тепла. Между теплопроводностью и электропроводностью ме­таллов существует определённая связь, и чем выше электропроводность металла, тем обычно выше и его теплопроводность.

    Чистые металлы всегда проводят электрический ток лучше, чем их сплавы. Это объясняется следующим обра­зом. Атомы элементов, составляющих примеси, вклини­ваются в кристаллическую решётку металла и нарушают её правильность. В результате решётка становится более серьёзной преградой для электронного потока.

    Если в меди присутствуют ничтожные количества при­месей — десятые и даже сотые доли процента — электро­проводность её уже сильно понижается. Поэтому в элек­тротехнике используют преимущественно очень чистую медь, содержащую только 0,05% примесей. И наоборот, в тех случаях, когда необходим материал с высоким со­противлением— для реостатов[49]), для различных нагре­вательных приборов, применяются сплавы — нихром, ни­келин, константан и другие.

    Электропроводность металла зависит также и от харак­тера его обработки. После прокатки, волочения и обработ­ки резанием электропроводность металла понижается. Это связано с искажением кристаллической решётки при обработке, с образованием в ней дефектов, которые тор­мозят движение свободных электронов.

    Очень интересна зависимость электропроводности ме­таллов от температуры. Мы уже знаем, что при нагре­вании размах и скорость колебаний ионов в кристалли­ческой решётке металла увеличиваются. В связи с этим должно возрастать и сопротивление ионов электронному потоку. И действительно, чем выше температура, тем выше сопротивление проводника току. При температурах плавления сопротивление большинства металлов увеличи­вается в полтора-два раза.

    При охлаждении происходит-обратное явление: бес­порядочное колебательное движение ионов в узлах ре­шётки уменьшается, сопротивление потоку электронов по­нижается и электропроводность увеличивается.

    Исследуя свойства металлов при глубоком (очень сильном) охлаждении, учёные обнаружили замечательное явление: вблизи абсолютного нуля, то-есть при темпера­турах около минус 273,16°, металлы полностью утрачи­вают электрическое сопротивление. Они становятся «иде­альными проводниками»: в замкнутом металлическом кольце ток не ослабевает долгое время, хотя кольцо уже не соединено с источником тока! Это явление названо сверхпроводимостью. Оно наблюдается у алю­миния, цинка, олова, свинца и некоторых других метал­лов. Эти металлы становятся сверхпроводниками при тем­пературах ниже минус 263°.

    Как объяснить сверхпроводимость? Почему одни ме­таллы достигают состояния идеальной проводимости, а другие нет? На эти вопросы пока ещё нет ответа. Явле­ние сверхпроводимости имеет громадное значение для тео­рии строения металлов, и в настоящее время его изучают советские учёные. Работы академика Л. Д. Ландау и члена-корреспондента Академии наук СССР А. И. Шаль — никова в этой области удостоены Сталинских премий.

    Источник

    Классификация материалов по отношению к способности проводить электрический ток

    При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью.
    Исходя из всего выше сказанного, все материалы поделились на три группы:

    • проводники;
    • полупроводники;
    • диэлектрики;

    Каждая из групп нашла широкое применение в электротехнике.

    Проводники

    Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.

    Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.

    Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.

    Полупроводники

    Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.

    К полупроводниковым материалам относят: кремний, германий, графит, гр афен, индий и т.д.

    Диэлектрики

    Ну и последняя группа материалов, это диэлектрики, вещества не способные проводить электрический ток. К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д. Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.

    Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R, единица измерения [Ом] и проводимость, величина обратная сопротивлению. Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом. У диэлектриков сопротивление достигает десятков миллионов ом.

    Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.

    Источник