Меню

Как взаимодействуют параллельные проводники с токами идущими в противоположных направлениях

Взаимодействие параллельных проводников с током (параллельных токов)

Определить в некоторой точке пространства вектор индукции магнитного поля B, порождаемого постоянным электрическим током I, можно с помощью Закона Био-Савара. Это делается путем суммирования всех вкладов в магнитное поле от отдельных элементов тока.

Магнитное поле элемента тока dI, в точке, заданной вектором r, по Закону Био-Савара находится так (в системе СИ):

Одна из типичных задач состоит в том, чтобы далее определить силу взаимодействия двух параллельных токов. Ведь токи, как известно, порождают собственные магнитные поля, а ток, находящийся в магнитном поле (другого тока) испытывает на себе действие силы Ампера.

ОРУ трансформаторной подстанции

Под действием силы Ампера, противоположно направленные токи взаимно отталкиваются, а токи направленные в одну сторону — взаимно притягиваются.

Прежде всего для прямого тока I нам необходимо найти магнитное поле B на некотором расстоянии R от него.

Для этого вводится элемент длины тока dl (по направлению тока), и рассматривается вклад от тока в месте расположения данного элемента длины — в общую индукцию магнитного поля применительно к выбранной точке пространства.

Сначала будем записывать выражения в системе СГС, то есть появится коэффициент 1/с, а в конце приведем запись в системе СИ, где появится магнитная постоянная.

По правилу нахождения векторного произведения, вектор dB — результат векторного произведения dl на r для любого элемента dl, в каком бы месте рассматриваемого проводника он не находился, всегда будет направлен за плоскость рисунка. Результат будет равен:

Произведение косинуса на dl можно выразить через r и угол:

Значит выражение для dB примет вид:

Далее выразим r через R и косинус угла:

И выражение для dB примет вид:

Далее необходимо это выражение проинтегрировать в пределах от -пи/2 до +пи/2, и в результате получим для B в точке на расстоянии R от тока следующее выражение:

Определение B

Можно сказать, что вектор B найденной величины, для выбранной окружности радиуса R, через центр которой перпендикулярно проходит данный ток I, всегда будет направлен по касательной к данной окружности, какую бы точку окружности мы ни выбрали. Здесь присутствует осевая симметрия, так что вектор B в любой точке окружности получается одной и той же длины.

Теперь рассмотрим параллельные постоянные токи и решим задачу нахождения сил их взаимодействия. Допустим, что параллельные токи направлены в одну и ту же сторону.

Изобразим магнитную силовую линию в форме окружности радиуса R (о которой речь шла выше). И пусть второй проводник расположен параллельно первому в какой-то точке данной силовой линии, то есть в месте с индукцией, значение которой (в зависимости от R) мы только что научились находить.

Магнитное поле в этом месте направлено за плоскость рисунка, и оно действует на ток I2. Выделим элемент длины тока l2, равный одному сантиметру (единица длины в системе СГС). Далее рассмотрим силы, действующие на него. Будем использовать Закон Ампера. Индукцию в месте расположения элемента длины dl2 тока I2 мы нашли выше, она равна:

Следовательно сила, действующая со стороны всего тока I1 на единицу длины тока I2 будет равна:

Это и есть сила взаимодействия двух параллельных токов. Поскольку токи однонаправленные и они притягиваются, то сила F12 со стороны тока I1 направлена так, что она тянет ток I2 в сторону тока I1. Со стороны же тока I2 на единицу длины тока I1 действует сила F21 равной величины, но направленная в сторону противоположную силе F12, в соответствии с третьим законом Ньютона.

В системе СИ, сила взаимодействия двух постоянных параллельных токов находится по следующей формуле, где коэффициент пропорциональности включает в себя магнитную постоянную:

Источник



Как взаимодействуют параллельные проводники с токами идущими в противоположных направлениях

Оборудование для демонстрационного эксперимента: ленты из фольги, штатив, ключ, цветные соединительные провода, источник постоянного тока на 12 В.

Оборудование для фронтального эксперимента: проволочные мотки, штатив, цветные соединительные провода и источник постоянного тока на 4 В.

Безусловно, компьютерные лабораторные работы рекомендуется проводить только после реальных физических экспериментов.

Читайте также:  Максимальный ток медь диаметр

I. Проведение демонстрационного эксперимента и проведение фронтального эксперимента.

Подготовить и провести демонстрационный эксперимент «Взаимодействие двух параллельных токов» с лентами из фольги, подробно разобранный в книге «Демонстрационный эксперимент по физике. Том 2» 1 [1, С.76-78]. При этом целесообразно показать взаимодействие токов на двух опытах, вначале на двух параллельных проводниках с током одинакового и противоположного направлений. Вокруг каждого проводника с током обнаруживается магнитное поле (рис. 1). Акцентировать внимание учащихся на то, что силовые линии магнитного поля вокруг проводника с током являются концентрическими окружностями и лежат в плоскости, перпендикулярной этому проводнику.

Затем перейти к фронтальному эксперименту взаимодействия катушек с током, который будут проводить сами учащиеся.

Объяснить учащимся, что первый эксперимент достаточно труден в исполнении и требует тщательной подготовки. Именно поэтому фронтально учащимся предлагается провести эксперимент по взаимодействию двух круговых токов, используя проволочные мотки, ключ, штатив, цветные соединительные провода и источник постоянного тока на 4 В.

Проведение фронтального эксперимента.

Отметить направление тока в каждом витке, используя цветные провода. Включив на непродолжительное время ток, пронаблюдать взаимодействие двух катушек с током.

Учащиеся должны зафиксировать притяжение и отталкивание двух катушек с током в зависимости от направления тока. Витки с током одинакового направления притягиваются, а противоположного – отталкиваются.

После первичного формирования представлений о взаимодействии двух проводников с токов, акцентируем внимание учащихся на вопросы:
1) Магнитное поле создается электрическим током каждого проводника. Силовые линии магнитного поля обозначены на рис. 2. красным цветом.
2) Магнитное поле обнаруживается по его действию на электрический ток. Соответствующие силы обозначены как 1 и 2 синим цветом.

Затем рекомендуется вначале ознакомиться с соответствующей интерактивной моделью (рис. 3).

Затем ответить на контрольные вопросы к лабораторной работе «Взаимодействие параллельных токов»:

1. Каковы направления тока в проводах и индукции магнитного поля от проводов, если параллельные провода притягиваются?
А) Токи протекают в одном направлении, индукция магнитного поля от проводов направлена в разные стороны.
Б) Токи протекают в разных направлениях, индукция магнитного поля от проводов направлена в одну сторону.
В) Токи протекают в одном направлении, индукция магнитного поля от проводов направлена в одну сторону.
Г) Токи протекают в разных направлениях, индукция магнитного поля от проводов направлена в разные стороны.
Д) Токи протекают в одном направлении, индукция магнитного поля от проводов направлена в ту же сторону.

2. Как взаимодействуют параллельные проводники с током, если токи протекают в разных направлениях, и как направлена индукция магнитного поля от каждого из проводов?
А) Проводники притягиваются, векторы индукции магнитного поля от проводов направлены в разные стороны.
Б) Проводники притягиваются, векторы индукции магнитного поля от проводов направлены в одну сторону.
В) Проводники отталкиваются, векторы индукции магнитного поля от проводов направлены в одну сторону.
Г) Проводники отталкиваются, векторы индукции магнитного поля от каждого из проводов направлены в разные стороны.
Д) Проводники притягиваются, векторы индукции магнитного поля от каждого из проводов параллельны направлению соответствующих токов.

3. По двум параллельным проводам в одном направлении протекает электрический ток 1 А. Расстояние между проводами 1 м. Определите, как изменится сила Ампера, действующая на участок провода, если расстояние между проводами увеличить в 2 раза?
А) Увеличится в 2 раза.
Б) Уменьшится в 2 раза.
В) Увеличится в 4 раза.
Г) Уменьшится в 4 раза.
Д) Не изменится.

4. По двум параллельным проводам в разных направлениях протекает электрический ток 2 А. Расстояние между проводами 1 м. Определите, как изменится сила Ампера, действующая на участок провода, если расстояние между проводами уменьшить в 2 раза?
А) Увеличится в 2 раза.
Б) Уменьшится в 2 раза.
В) Увеличится в 4 раза.
Г) Уменьшится в 4 раза.
Д) Не изменится.

5. По двум бесконечным параллельным проводникам протекают токи в разных направлениях. Определить направление индукции магнитного поля от каждого проводника.
А) Вектор индукции магнитного поля от каждого проводника направлен в ту же сторону, что и соответствующий ток.
Б) Вектор индукции магнитного поля от каждого проводника направлен в противоположную сторону к соответствующему току.
В) Векторы индукции магнитного поля от каждого проводника направлены в одну сторону по касательным к окружностям, центр которых находится на оси проводников.
Г) Индукция магнитного поля от каждого проводника направлена в разные стороны по касательным к окружностям, центр которых находится на оси проводников.
Д) Определить направление индукции магнитного поля от каждого проводника невозможно.

Читайте также:  При постоянном напряжении с увеличением сопротивления сила тока уменьшается

6. По двум параллельным проводам в разных направлениях протекает электрический ток 1 А. Расстояние между проводами 1 м. Определите, как изменится сила Ампера, действующая на участок провода, если расстояние между проводами уменьшить в 2 раза, а силу тока в одном из проводов увеличить в 4 раза?
А) Увеличится в 2 раза.
Б) Уменьшится в 2 раза.
В) Увеличится в 4 раза.
Г) Уменьшится в 4 раза.
Д) Увеличится в 8 раз.
Верные ответы: 1 – А, 2 – В, 3 – Б, 4 – А, 5 – В, 6 – Д. При решении учащимися соответствующих контрольных вопросов статистика верных и неверных ответов будет внесена в журнал достижений.

После этого провести компьютерные эксперименты по определенным заданиям и проверить свои решения. Компьютерные эксперименты к лабораторной работе, по которым можно провести соответствующий компьютерный эксперимент, специально составлены как задания с числами, соответствующими интерактивной лабораторной работе.

Эксперимент № 1. По двум бесконечным параллельным проводникам протекают токи 1 А и 2 А в разных направлениях. Расстояние между проводниками 0,8 м. Определить величину и направление индукции магнитного поля на расстоянии 0,8 м от каждого проводника. Провести компьютерный эксперимент и проверить ваш ответ.
Ответ. Индукция магнитного поля направлена в одну сторону. От первого тока , от второго тока .

Эксперимент № 2. Сила тока в проводниках, расположенных параллельно на расстоянии 1 м друг от друга, равна соответственно 1 А и 2 А. Токи протекают в одном направлении. Определить индукцию магнитного поля на расстоянии 1 м от каждого проводника. Во сколько раз по модулю индукция от второго проводника больше индукции от первого проводника? Провести компьютерный эксперимент и проверить ваш ответ. Индукция магнитного поля 12 = 2∙10 –7 Тл, 12 = –4∙10 -7 Тл.
Ответ. В 2 раза.

Эксперимент № 3. По двум длинным параллельным проводникам, находящимся на расстоянии 0,5 м, течет ток соответственно 2 А и 1,5 А в разных направлениях. Определить, во сколько раз изменится сила взаимодействия, если расстояние увеличить в 2 раза. Провести компьютерный эксперимент и проверить ваш ответ.
Ответ. Уменьшится в 2 раза.

Эксперимент № 4. По двум длинным параллельным проводникам, находящимся на расстоянии 0,5 м, протекают токи в одном направлении. Сила тока в проводниках 2 А. Во сколько раз изменится сила взаимодействия проводников, если расстояние увеличить в три раза? Провести компьютерный эксперимент и проверить ваш ответ.
Ответ. Уменьшится в 3 раза.

Все действия учащихся с заданиями к лабораторной работе также фиксируются в журнале достижений курса «Открытая Физика 2.6».

Умения учащихся творчески использовать полученные знания по теме «Взаимодействие параллельных токов» могут быть продемонстрированы на заданиях проблемного и творческого характера, которые предлагается составить самостоятельно. Примеры таких ожидаемых заданий:

  • В каком случае совпадают направления векторов магнитной индукции 1 и 2 при взаимодействии двух параллельных проводов с током?
  • Могут ли силы, действующие на два параллельных проводника с током быть разными по значению? А по направлению?
  • Как изменяется при взаимодействии двух параллельных током при увеличении расстояния между ними в 2 раза индукция магнитного поля и сила взаимодействия двух проводников?

В тетрадях для лабораторных работ у учащихся после выполнения компьютерной лабораторной работы «Взаимодействие параллельных токов» должны быть записи:

  • По проведению фронтального эксперимента.
  • Данные из журнала достижений по ответам на контрольные вопросы.
  • Данные из журнала достижений по проведению компьютерных экспериментов.

Отметка за выполнение компьютерной работы ставится по журналу достижений индивидуально каждому учащемуся.

Источник

6.5. Взаимодействие двух проводников с током

Применим закон Ампера для вычисления силы взаимодействия двух длинных прямолинейных проводников с токами I1 и I2, находящихся на расстоянии d друг от друга (рис. 6.26).

Рис. 6.26. Силовое взаимодействие прямолинейных токов:
1 — параллельные токи; 2 — антипараллельные токи

Проводник с током I1 создает кольцевое магнитное поле, величина которого в месте нахождения второго проводника равна

Это поле направлено «от нас» ортогонально плоскости рисунка. Элемент второго проводника испытывает со стороны этого поля действие силы Ампера

Подставляя (6.23) в (6.24), получим

При параллельных токах сила F21 направлена к первому проводнику (притяжение), при антипараллельных — в обратную сторону (отталкивание).

Аналогично на элемент проводника 1 действует магнитное поле, создаваемое проводником с током I2 в точке пространства с элементом с силой F12. Рассуждая таким же образом, находим, что F12 = –F21, то есть в этом случае выполняется третий закон Ньютона.

Итак, сила взаимодействия двух прямолинейных бесконечно длинных параллельных проводников, рассчитанная на элемент длины проводника, пропорциональна произведению сил токов I1 и I2 протекающих в этих проводниках, и обратно пропорциональна расстоянию между ними. В электростатике по аналогичному закону взаимодействуют две длинные заряженные нити.

На рис. 6.27 представлен опыт, демонстрирующий притяжение параллельных токов и отталкивание антипараллельных. Для этого используются две алюминиевые ленты, подвешенные вертикально рядом друг с другом в слабо натянутом состоянии. При пропускании через них параллельных постоянных токов силой около 10 А ленты притягиваются. а при изменении направления одного из токов на противоположное — отталкиваются.

Рис. 6.27. Силовое взаимодействие длинных прямолинейных проводников с током

На основании формулы (6.25) устанавливается единица силы тока — ампер, являющаяся одной из основных единиц в СИ.

Ампер — это сила неизменяюшегося тока, который, протекая по двум длинным параллельным проводникам, расположенным в вакууме на расстоянии 1 м, вызывает между ними силу взаимодействия 2×10 –7 Н на каждый метр длины провода.

Пример. По двум тонким проводам, изогнутым в виде одинаковых колец радиусом R = 10 см, текут одинаковые токи I = 10 А в каждом. Плоскости колец параллельны, а центры лежат на ортогональной к ним прямой. Расстояние между центрами равно d = 1 мм. Найти силы взаимодействия колец.

Решение. В этой задаче не должно смущать, что мы знаем лишь закон взаимодействия длинных прямолинейных проводников. Поскольку расстояние между кольцами много меньше их радиуса, взаимодействующие элементы колец «не замечают» их кривизны. Поэтому сила взаимодействия дается выражением (6.25), куда вместо надо подставить длину окружности колец Получаем тогда

Источник

Как взаимодействуют два параллельных друг другу проводника

Два проводника с токами также взаимодействуют между собой через магнитное поле, создаваемое токами. Если взять два проводника, расположенных параллельно, и создать в них токи одного направления, то они будут притягиваться друг к другу.

Два параллельных пучка электронов взаимодействуют между собой по закону Кулона, т. к. относительно друг друга эти заряды неподвижны, если движутся под воздействием одного и того же электрического поля. Видимо, вопрос следует понимать именно так?
Что же касается проводников с током, то каждый из них создает магнитное поле. Это поле, воздействуя на другой проводник, выталкивает его из себя (два магнита, поднеси друг к другу одноименные полюса — получишь отталкивание) . Поэтому два проводника отталкиваются.
В первом случае действуют законы электростатики, во втором — законы магнитного поля.

Взаимодействие параллельных проводников с током

Два проводника с токами также взаимодействуют между собой через магнитное поле, создаваемое токами. Если взять два проводника, расположенных параллельно, и создать в них токи одного направления, то они будут притягиваться друг к другу.

Два параллельных пучка электронов взаимодействуют между собой по закону Кулона, т. к. относительно друг друга эти заряды неподвижны, если движутся под воздействием одного и того же электрического поля. Видимо, вопрос следует понимать именно так?
Что же касается проводников с током, то каждый из них создает магнитное поле. Это поле, воздействуя на другой проводник, выталкивает его из себя (два магнита, поднеси друг к другу одноименные полюса — получишь отталкивание) . Поэтому два проводника отталкиваются.
В первом случае действуют законы электростатики, во втором — законы магнитного поля.

Источник