Меню

Как рассчитать ток разряда конденсатора

Расчет заряда и разряда конденсатора через сопротивление

Заряд конденсатора емкостью \(C\) от источника тока через наружное сопротивление \(R\) происходит в соответствии с формулой

при этом мгновенный зарядный ток:

где \(t\) — рассматриваемый момент времени в секундах от момента начала заряда;

\(U_t\) — напряжение на обкладках конденсатора момент времени t в Вольтах;

\(U_0\) — напряжение источника, от которого производится заряд конденсатора в Вольтах

\(C\) — емкость конденсатора в Фарадах

\(R\) — сопротивление последовательной цепи в Омах

\(T\) — постоянная времени в секундах (\(T=RC\)).

Разряд конденсатора емкостью \(C\), заряженного до разности потенциалов \(U_0\) через сопротивление \(R\) представляющее внешнее сопротивление разрядной цепи или внутреннее сопротивление утечки самого конденсатора происходит в соответствии с формулой

Мгновенная величина разрядного тока

где \(U_t\) — напряжение между обкладками конденсатора через \(t\) секунд после начала разряда,\(i_t\)— ток в цепи (внешней или внутренней) конденсатора существующей через \(t\) секунд после начала разряда.

Процессы заряда и разряда конденсаторов рассматриваются обычно в зависимости от постоянной времени цепи \(RC\). Постоянная времени практически указывает, через какой промежуток времени (в секундах) напряжение разряжаемого конденсатора уменьшается в \(e=2.718\) раз, от рассматриваемого напряжения. При заряде конденсатора постоянная времени указывает время (в секундах), в течение которого напряжение на обкладках повышается на 63% от разницы между имевшимся напряжением и напряжением источника тока заряда.

В связи с тем что заряд и разряд до полных значений конечных напряжений длятся неопределенно долгий срок, часто удобнее считать режим заряда законченным при доведении напряжения на обкладках до 99% от заряжающего напряжения (или до 1% от первоначальной величины напряжения при разряде).

Определим время заряда конденсатора ёмкостью 1микроФарад, до 5 Вольт, если сопротивление цепи 1 килоОм.

Напряжение внешнего источника питания 12 Вольт, а на обкладках конденсатора напряжение, в момент подключения источника питания, составляло 1 Вольт.

Что бы сразу хотелось бы заметить. Как видно из задачи у нас есть остаточное напряжение на конденсаторе в размере 1 Вольт, которое надо учитывать в расчетах времени заряда.

Данные, которые мы будем вводить следующие:

пишем запрос fiz U0=11В;Ut=4В;R=1кОм;C=1мкФ;key=zaryad

и получаем ответ

C = 1 микрофарад

T = 1 миллисекунда

tt = 0.4519851237 милисекунда

То есть решение = 451.98 мкс

Теперь давайте проверим наши расчеты. Если бы конденсатор был бы в момент подключения источника питания полностью разряжен

То при условии зарядки его до 1 Вольта наш запрос был бы таким

fiz U0=12В;Ut=1В;R=1кОм;C=1мкФ;key=zaryad

и время заряда было бы tt = 87.011377 микросекунда

а при зарядки до 5 Вольт был бы таким

fiz U0=12В;Ut=5В;R=1кОм;C=1мкФ;key=zaryad

и время заряда было бы tt = 538.9965007 микросекунда

То время заряда конденсатора с 1В до 5 Вольт составило бы 538.9965007 микросекунда минус 87.011377 микросекунда = 451.98 мкс

Что несомненно говорит о правильности наших расчетов по изначальным условиям.

Источник



Постоянная времени цепи RC

Электрическая цепь RC

Рассмотрим ток в электрической цепи, состоящей из конденсатора ёмкостью C и резистора сопротивлением R, соединённых параллельно.
Значение тока заряда или разряда конденсатора определится выражением I = C(dU/dt), а значение тока в резисторе, согласно закону Ома, составит U/R, где U — напряжение заряда конденсатора.

Из рисунка видно, что электрический ток I в элементах C и R цепи будет иметь одинаковое значение и противоположное направление, согласно закону Кирхгофа. Следовательно, его можно выразить следующим образом:

Решаем дифференциальное уравнение C(dU/dt)= -U/R

Из таблицы интегралов здесь используем преобразование

Получаем общий интеграл уравнения: ln|U| = — t/RC + Const.
Выразим из него напряжение U потенцированием: U = e -t /RC * e Const .
Решение примет вид:

U = e -t /RC * Const.

Здесь Const — константа, величина, определяемая начальными условиями.

Следовательно, напряжение U заряда или разряда конденсатора будет меняться во времени по экспоненциальному закону e -t /RC .

Экспонента — функция exp(x) = e x
e – Математическая константа, приблизительно равная 2.718281828.

Постоянная времени τ

Если конденсатор емкостью C последовательно с резистором сопротивлением R подключить к источнику постоянного напряжения U, в цепи пойдёт ток, который за любое время t зарядит конденсатор до значения UC и определится выражением:

Тогда напряжение UC на выводах конденсатора будет увеличиваться от нуля до значения U по экспоненте:

UC = U(1 — e -t/RC )

При t = RC, напряжение на конденсаторе составит UC = U(1 — e -1 ) = U(1 — 1/e) .
Время, численно равное произведению RC, называется постоянной времени цепи RC и обозначается греческой буквой τ.

Постоянная времени τ = RC

За время τ конденсатор зарядится до (1 — 1/e)*100% ≈ 63,2% значения U.
За время 3τ напряжение составит (1 — 1/e 3 )*100% ≈ 95% значения U.
За время 5τ напряжение возрастёт до (1 — 1/e 5 )*100% ≈ 99% значения U.

Читайте также:  Графики мощностей переменного тока

Если к конденсатору емкостью C, заряженному до напряжения U, параллельно подключить резистор сопротивлением R, тогда в цепи пойдёт ток разряда конденсатора.

Напряжение на конденсаторе при разряде будет составлять UC = Ue -t/τ = U/e t/τ .

За время τ напряжение на конденсаторе уменьшится до значения U/e, что составит 1/e*100% ≈ 36.8% значения U.
За время 3τ конденсатор разрядится до (1/e 3 )*100% ≈ 5% от значения U.
За время 5τ до (1/e 5 )*100% ≈ 1% значения U.

Параметр τ широко применяется при расчётах RC-фильтров различных электронных цепей и узлов.

Замечания и предложения принимаются и приветствуются!

Источник

Время разряда конденсатора формула. Формулы для конденсаторов

Как рассчитать время заряда конденсатора? Заряд конденсатора - формула для расчета емкости и тока

Конденсатор

Как рассчитать время заряда конденсатора?

Конденсатор – электронный компонент, предназначенный для накопления электрического заряда. Способность конденсатора накапливать электрический заряд зависит от его главной характеристики – емкости. Емкость конденсатора (С) определяется как соотношение количества электрического заряда (Q) к напряжению (U).

Емкость конденсатора измеряется в фарадах (F) – единицах, названых в честь британского ученого физика Майкла Фарадея. Емкость в один фарад (1F) равняется количеству заряда в один кулон (1C), создающему напряжение на конденсаторе в один вольт (1V). Вспомним, что один кулон (1С) равняется величине заряда, прошедшего через проводник за одну секунду (1sec) при силе тока в один ампер (1A).

Однако кулон, это очень большое количество заряда относительно того, сколько способно хранить большинство конденсаторов. По этой причине, для измерения емкости обычно используют микрофарады (µF или uF), нанофарады (nF) и пикофарады (pF).

  • 1nF = 0.000000001 = 10-9 F
  • 1pF = 0.000000000001 = 10-12 F

Плоский конденсатор

Существует множество типов конденсаторов различной формы и внутреннего устройства. Рассмотрим самый простой и принципиальный — плоский конденсатор. Плоский конденсатор состоит из двух параллельных пластин проводника (обкладок), электрически изолированных друг от друга воздухом, или специальным диэлектрическим материалом (например бумага, стекло или слюда).

Заряд конденсатора. Ток

По своему предназначению конденсатор напоминает батарейку, однако все же он сильно отличается по принципу работы, максимальной емкости, а также скорости зарядки/разрядки.

Заряд конденсатора - формула для расчета емкости и тока

Практические измерения

Значение ёмкости конденсатора обозначается на корпусе в дробных фарадах или с помощью цветового кода. Но со временем компоненты способны потерять свои качества, поэтому для некоторых критических случаев последствия могут быть неприемлемыми. Существуют и другие обстоятельства, требующие измерений. Например, необходимость знать общую ёмкость цепи или части электрооборудования. Приборов, осуществляющих непосредственное считывание ёмкости, не существует, но значение может быть вычислено вручную или интегрированными в измерительные устройства процессорами.

Для обнаружения фактической ёмкости нередко используют осциллограф как средство измерения постоянной времени (т). Эта величина обозначает время в секундах, за которое конденсатор заряжается на 63%, и равна произведению сопротивления цепи в омах на ёмкость цепи в фарадах: т=RC. Осциллограф позволяет легко определить постоянную времени и даёт возможность с помощью расчётов найти искомую ёмкость.

Существует также немало моделей любительского и профессионального электронного измерительного оборудования, оснащённого функциями для тестирования конденсаторов. Многие цифровые мультиметры обладают возможностью определять ёмкость. Эти устройства способны контролируемо заряжать и разряжать конденсатор известным током и, анализируя нарастание результирующего напряжения, выдавать довольно точный результат. Единственный недостаток большинства таких приборов — сравнительно узкий диапазон измеряемых величин.

Вам это будет интересно Характеристика и схема подключения электросчётчика СО-505

Более сложные и специализированные инструменты — мостовые измерители, испытывающие конденсаторы в мостовой схеме. Этот метод косвенного измерения обеспечивает высокую точность. Современные устройства такого типа оснащены цифровыми дисплеями и возможностью автоматизированного использования в производственной среде, они могут быть сопряжены с компьютерами и экспортировать показания для внешнего контроля.

Слободянюк А.И. Физика 10/16.4

Как рассчитать время заряда конденсатора?

Предыдующая страница

16.4 Зарядка конденсатора от источника постоянной ЭДС

Рассмотренный в предыдущем разделе процесс зарядки конденсатора посредством перенесения заряда с одной обкладки на другую имеет исключительно теоретический интерес, как метод расчета энергии конденсатора. Реально конденсаторы заряжают, подключая их к источнику ЭДС, например, к гальванической батарее.

Пусть конденсатор емкостью C подключен к источнику, ЭДС которого равна ε

(Рис. 145). Полное электрическое соединение цепи (включающее и внутренне сопротивление источника) обозначим
R
. При замыкании ключа в цепи пойдет электрический ток, благодаря которому на зарядках конденсатора будет накапливаться электрический заряд. По закону Ома сумма напряжений на конденсаторе \(

Читайте также:  Свойства электрического тока 8 класс презентация

U_C = \frac\) и резисторе \(U_R = IR\) равна ЭДС источника \(\varepsilon = U_C + U_R\), что приводит к уравнению

IR = \varepsilon — \frac\) . (1)

В этом уравнении заряд конденсатора и сила тока зависят от времени. Скорость изменения заряда конденсатора по определению равна силе тока в цепи \(

I = \frac<\Delta q><\Delta t>\), что позволяет получить уравнение, описывающее изменение заряда конденсатора с течением времени

Можно также получить уравнение, непосредственно описывающее изменение силы тока в цепи с течением времени. Для этого на основании уравнения (1) запишем уравнения для малых изменений входящих величин

\Delta \varepsilon = \Delta (IR) + \Delta \left (\frac \right )\) .

Формально эту операцию можно описать следующим образом: уравнение (1) следует записать для двух моментов времени t

и (
t
+ Δ
t
), а затем из второго уравнения вычесть первое. Так как ЭДС источника постоянна, то ее изменение равно нулю Δ
ε
= 0, сопротивление цепи и емкость конденсатора постоянны, поэтому их можно вынести из под знака изменения Δ , поэтому полученное уравнение приобретает вид

R \Delta I = — \frac<1> \Delta q\) .

Наконец разделим его на промежуток времени, в течение которого произошли эти изменения, в результате получаем искомое уравнение (с учетом связи между силой тока и изменения заряда)

Математическая смысл этого уравнения указывает, что скорость уменьшения тока пропорциональна самой силе тока. Для однозначного решения этого уравнения необходимо задать начальное условие – значение силы тока в начальный момент времени I

С уравнениями такого типа мы познакомились в «математическом отступлении», поэтому здесь его анализ проведем кратко.

В начальный момент времени, когда заряд конденсатора равен нулю, скорость возрастания заряда (то есть сила тока) максимальна и равна \(

Затем по мере накопления заряда сила тока будет уменьшаться, когда напряжение на конденсаторе станет равным ЭДС источника, заряд конденсатора достигнет максимального стационарного значения \(

\overline = C\varepsilon\) и ток в цепи прекратится.

Схематически зависимости заряда конденсатора и силы тока в цепи от времени показаны на рис. 146. Для оценки времени зарядки конденсатора можно принять, что заряд возрастает до максимального значения с постоянной скоростью, равной силе тока в начальный момент времени. В этом случае

Аналогичная оценка исчезновения тока, полученная на основании уравнения (3) приводит к этому же результату.

Строго говоря, время зарядки конденсатора, описываемой уравнением (2) равно бесконечности. Это парадокс можно исключить, если принять во внимание дискретность электрического заряда.

Кроме того, заряд конденсатора, подключенного к батарее с течением времени случайным образом изменяется, флуктуирует, поэтому рассматриваемое уравнение описывает некоторые усредненные характеристики процесса.

Тем не менее, полученная оценка времени RC широко применяется в приближенных расчетах, часто ее называют просто временем зарядки конденсатора

Рассмотрим теперь превращения различных форм энергии в данном процессе. Понятно, что причиной тока в цепи и как следствие зарядки конденсатора являются сторонние силы источника.

На первый взгляд, энергетический баланс включает определенное противоречие: если источник сообщил конденсатору заряд q

, то сторонние силы совершили при этом работу
A
0 =

, при этом энергия конденсатора стала равной \(

W = \frac <2C>= \frac<2>\) , что в два раза меньше работы совершенной источником.

Противоречие исчезает, если принять во внимание, что в процессе зарядки по цепи течет электрический ток, поэтому на резисторе выделяется некоторое количество теплоты, то есть часть энергии источника переходит в тепловую. Мысленно разобьем время зарядки на малые промежутки Δt

i (
i
= 1,2,3…). Перепишем уравнение (1) в виде

\varepsilon = IR + \frac\) , (5)

и умножим его на величину малой порции заряда, переносимого за малый промежуток времени Δt

i, Δ
q
i =
I

t
i . В результате получим

\varepsilon \Delta q_i = I_i R \Delta q_i + \frac \Delta q_i\) . (6)

Здесь обозначено q

i — заряд конденсатора перед перенесением рассматриваемой порции заряда. Каждый член полученного уравнения имеет явный физический смысл:\[

\varepsilon \Delta q_i = \delta A\] — работа сторонних сил по перемещению порции заряда Δ
q
i;\[

\frac \Delta q_i = \Delta W_C\] — увеличение энергии конденсатора при увеличении его заряда на Δ
q
i;\[

I_i R \Delta q_i = I2_i R \Delta t_i = \delta Q\] — количество теплоты, выделившееся на резисторе, при протеканиипорции заряда Δ
q
i.

Таким образом, закон сохранения энергии, выражаемый уравнением баланса (6) для малого промежутка времени оказывается выполненным, следовательно, он будет выполнен и для всего процесса зарядки.

Просуммируем выражение (5) по всем промежуткам времени зарядки, в результате чего получим:\[

Читайте также:  Как измерить погрешность трансформаторов тока

\sum_i \varepsilon \Delta q_i = \varepsilon \overline = A\] — полная работа сторонних сил по перенесению электрического заряда, равного стационарному заряду конденсатора;\[

\sum_i I_i R \Delta q_i = \sum_i I2_i R \Delta t_i\) — количество выделившейся на резисторе теплоты.

Принимая во внимание уравнение (3) и формулы из «математического отступления», последнюю сумму можно выразить в виде

Q = R \sum_i I2_i \Delta t_i = R \frac<1> <2>I2_0 \tau = R \frac<1> <2>\left ( \frac<\varepsilon> \right )2 RC = \frac<2>\) . (6)

Эта сумма же может быть вычислена графически. Формула (1) задает зависимость напряжения на резисторе \(U_R = IR\) от заряда конденсатора. Эта зависимость линейна, ее график (Рис. 147) является отрезком прямой линии.

За малый промежуток времени через резистор протечет малый заряд Δq

i, при этом выделится количество теплоты \(

\delta Q_i = I_i R \Delta q_i\), которое численно равно площади узкой полоски, выделенной на рисунке.

Полное количество теплоты, выделившейся при прохождении всего заряда численно равно площади треугольника под графиком зависимости U

Процессы зарядки и разрядки конденсаторов.

С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:

Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что же будет происходить?

Свободные электроны с первой обкладки конденсатора

устремятся к положительному полюсу источника, в связи с чем на обкладке возникнет недостаток отрицательно заряженных частиц и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора, в результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной. Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную . Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока, после этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.

При отключении от источника конденсатор может на протяжении длительного времени сохранять накопленные заряды. Соответственно, заряженный конденсатор является источником электрической энергии, это означает, что он может отдавать энергию во внешнюю цепь. Давайте создадим простейшую цепь, просто соединив обкладки конденсатора друг с другом:


В данном случае по цепи начнет протекать ток разряда конденсатора

, а электроны начнут перемещаться с отрицательно заряженной обкладки к положительной. В результате напряжение на конденсаторе (разность потенциалов между обкладками) начнет уменьшаться. Этот процесс завершится в тот момент, когда заряды пластин конденсаторов станут равны друг другу, соответственно электрическое поле между обкладками пропадет и по цепи перестанет протекать ток. Вот так и происходит разряд конденсатора, в результате которого он отдает во внешнюю цепь всю накопленную энергию.

Источник

Конденсатор в цепи постоянного тока

Калькуляторы рассчитывают параметры разрядки и зарядки конденсатора от источника постоянной ЭДС через сопротивление.

Калькуляторы рассчитывают параметры разрядки и зарядки конденсатора от источника постоянной ЭДС через сопротивление. Формулы, по которым идет расчет, приведены под калькуляторами.

Заряд конденсатора от источника постоянной ЭДС

Разряд конденсатора через сопротивление

Понять приводимые ниже формулы поможет картинка, изображающая электрическую схему заряда конденсатора от источника постоянной ЭДС (батареи):

capacitor.jpg

Итак, при замыкании ключа К в цепи пойдет электрический ток, который будет приводить к заряду конденсатора.
По закону Ома сумма напряжений на конденсаторе и резисторе равна ЭДС источника, таким образом:
\epsilon=IR+\frac<q data-lazy-src=