Меню

Как определить ток в ветвях не содержащих источников эдс

Определяем ток в ветви ab методом преобразования.

Кафедра ТОЭ

Расчетно-графическая работа №1

«Линейные электрические цепи с постоянными

напряжениями и токами»

Выполнила:

студентка группы Э7А40 Левина Е.А.

Проверил:

доцент Сипайлов А.Г.

Томск 2005

Изобразить схему, достаточную для расчета токов ветвей, соединяющих узлы, помеченные буквами, указав их номера и направления.

Т. к. в схеме действуют только источники постоянной энергии, то заменяем индуктивность на закоротку, а конденсатор на разрыв.

1. Определить токи во всех ветвях схемы и напряжение на зажимах источника тока используя законы Кирхгофа:

Записываем первый закон Кирхгофа для трех узлов: a, b, d

Записываем второй закон Кирхгофа для трех контуров: I11, I22, I33

Решаем систему в матричном виде:

2. Определить токи во всех ветвях схемы, используя метод контурных токов:

М.К.Т. можно определить как метод расчета, в котором за искомые принимают контурные токи. Полагая, что в каждом независимом контуре течет свой контурный ток, составляется уравнение относительно этих токов после чего, определяют токи ветвей через найденные контурные токи.

Решаем систему в матричном виде:

Определяем токи ветвей через найденные контурные токи:

Таким образом, мы получили одинаковые значения токов, сходные с предыдущими решениями.

Составить баланс вырабатываемой и потребляемой мощностей.

Определяем мощность источников энергии:

Определяем мощность потребителей энергии:

Определяем относительную погрешность расчета:

Определяем ток в ветви ab методом наложения.

Для определения тока в ветви данным методом, необходимо найти составляющие тока от каждого из источника энергии. При этом остальные источники ЭДС заменяются на закоротки, а источники тока на разрывы.

Определяем эквивалентное сопротивление цепи относительно источника ЭДС E2 и находим составляющую тока в ветви ab: Определяем составляющую тока в ветви ab от источника ЭДС E1 c использованием метода разброса тока в параллельных ветвях:
Используя правило разброса токов в параллельных ветвях определяем сначала ток , а затем тем же методом составляющую тока ветви ab:

Определяем ток в ветви ab как сумму составляющих от каждого из источников:

Определяем ток в ветви ab методом преобразования.

Преобразуем данную схему к схеме с двумя узлами. Для этого преобразуем источник тока в эквивалентные источники ЭДС в ветвях ca и ad. Преобразуем источники ЭДС в источники тока: Определяем эквивалентное сопротивление и значение эквивалентной ЭДС: Используя второй закон Кирхгофа:

6. Рассматривая цепь относительно сопротивления R ветви аb как активный двухполюсник, заменить его эквивалентным генератором, и при этом для определения ЭДС ЭГ использовать метод контурных токов, а ток короткого замыкания определить с использованием метода узловых потенциалов, и рассчитать ток в ветви ab, построить внешнюю характеристику эквивалентного генератора и по ней графически определить ток в ветви ab.

Определяем напряжение холостого хода ЭГ при разомкнутой ветви ab:

Используя метод контурных токов определяем : Из контура I22 определяем Uxx:
Определяем сопротивление ЭГ. При этом все источники ЭДС заменяются на закоротки, а источники тока на разрывы:

Определяем ток в ветви ab:

Определяем ток короткого замыкания ЭГ методом узловых потенциалов:

Определим токи , методом узловых потенциалов с учетом того, что , :

Определяем ток короткого замыкания ЭГ:

Строим внешнюю характеристику ЭГ, проходящую через точки Uxx, IКЗ и нагрузочную характеристику ветви ab.

В точке пересечения внешней и нагрузочной характеристики лежит решение. Из зависимостей видно, что Iab » 0.814 A.

Источник



Как определить ток в ветвях не содержащих источников эдс

Возьмем два участка цепи a b и c d (см. рис. 1) и составим для них уравнения в комплексной форме с учетом указанных на рис. 1 положительных направлений напряжений и токов.

Объединяя оба случая, получим

или для постоянного тока

Формулы (1) и (2) являются аналитическим выражением закона Ома для участка цепи с источником ЭДС, согласно которому ток на участке цепи с источником ЭДС равен алгебраической сумме напряжения на зажимах участка цепи и ЭДС, деленной на сопротивление участка. В случае переменного тока все указанные величины суть комплексы. При этом ЭДС и напряжение берут со знаком “+”, если их направление совпадает с выбранным направлением тока, и со знаком “-”, если их направление противоположно направлению тока.

Основы символического метода расчета цепей
синусоидального тока

Расчет цепей переменного синусоидального тока может производиться не только путем построения векторных диаграмм, но и аналитически – путем операций с комплексами, символически изображающими синусоидальные ЭДС, напряжения и токи. Достоинством векторных диаграмм является их наглядность, недостатком – малая точность графических построений. Применение символического метода позволяет производить расчеты цепей с большой степенью точности.

Символический метод расчета цепей синусоидального тока основан на законах Кирхгофа и законе Ома в комплексной форме.

Уравнения, выражающие законы Кирхгофа в комплексной форме, имеют совершенно такой же вид, как и соответствующие уравнения для цепей постоянного тока. Только токи, ЭДС, напряжения и сопротивления входят в уравнение в виде комплексных величин.

1. Первый закон Кирхгофа в комплексной форме:

2. Второй закон Кирхгофа в комплексной форме:

или применительно к схемам замещения с источниками ЭДС

3. Соответственно матричная запись законов Кирхгофа в комплексной форме имеет вид:

§ первый закон Кирхгофа:

§ второй закон Кирхгофа

Определить:
1) полное комплексное сопротивление цепи ;
2) токи

4. Принимая начальную фазу напряжения за нуль, запишем:

5. Поскольку ток распределяется обратно пропорционально сопротивлению ветвей (это вытекает из закона Ома), то

7. Аналогичный результат можно получить, составив для данной схемы уравнения по законам Кирхгофа в комплексной форме

или после подстановки численных значений параметров схемы

Специальные методы расчета

Режим работы любой цепи полностью характеризуется уравнениями, составленными на основании законов Кирхгофа. При этом необходимо составить и решить систему с n неизвестными, что может оказаться весьма трудоемкой задачей при большом числе n ветвей схемы. Однако, число уравнений, подлежащих решению, может быть сокращено, если воспользоваться специальными методами расчета, к которым относятся методы контурных токов и узловых потенциалов.

Метод контурных токов

Идея метода контурных токов: уравнения составляются только по второму закону Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих по замкнутым контурам, т.е. в случае выбора главных контуров равных токам ветвей связи. Число уравнений равно числу независимых контуров, т.е. числу ветвей связи графа . Первый закон Кирхгофа выполняется автоматически. Контуры можно выбирать произвольно, лишь бы их число было равно и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие. Такие контуры называются независимыми. Их выбор облегчает использование топологических понятий дерева и ветвей связи.

Направления истинных и контурных токов выбираются произвольно. Выбор положительных направлений перед началом расчета может не определять действительные направления токов в цепи. Если в результате расчета какой-либо из токов, как и при использовании уравнений по законам Кирхгофа, получится со знаком “-”, это означает, что его истинное направление противоположно.

Пусть имеем схему по рис. 3.

Выразим токи ветвей через контурные токи:

Обойдя контур aeda , по второму закону Кирхгофа имеем

Читайте также:  Действующее значение тока формула через

Таким образом, получили уравнение для первого контура относительно контурных токов. Аналогично можно составить уравнения для второго, третьего и четвертого контуров:

совместно с первым решить их относительно контурных токов и затем по уравнениям, связывающим контурные токи и токи ветвей, найти последние.

Однако данная система уравнений может быть составлена формальным путем:

При составлении уравнений необходимо помнить следующее:

— сумма сопротивлений, входящих в i —й контур;

— сумма сопротивлений, общих для i —го и k —го контуров, причем ;

члены на главной диагонали всегда пишутся со знаком “+”;

знак “+” перед остальными членами ставится в случае, если через общее сопротивление i —й и k — й контурные токи проходят в одном направлении, в противном случае ставится знак “-”;

если i —й и k — й контуры не имеют общих сопротивлений, то ;

в правой части уравнений записывается алгебраическая сумма ЭДС, входящих в контур: со знаком “+”, если направление ЭДС совпадает с выбранным направлением контурного тока, и “-”, если не совпадает.

В нашем случае, для первого уравнения системы, имеем:

Следует обратить внимание на то, что, поскольку , коэффициенты контурных уравнений всегда симметричны относительно главной диагонали.

Если в цепи содержатся помимо источников ЭДС источники тока, то они учитываются в левых частях уравнений как известные контурные токи: k — й контурный ток, проходящий через ветвь с k — м источником тока равен этому току .

Метод узловых потенциалов

Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно , т.е. числу ветвей дерева .

Пусть имеем схему по рис. 4, в которой примем .

Допустим, что и известны. Тогда значения токов на основании закона Ома для участка цепи с источником ЭДС

Запишем уравнение по первому закону Кирхгофа для узла а :

и подставим значения входящих в него токов, определенных выше:

Сгруппировав соответствующие члены, получим:

Аналогично можно записать для узла b :

Как и по методу контурных токов, система уравнений по методу узловых потенциалов может быть составлена формальным путем. При этом необходимо руководствоваться следующими правилами:

1. В левой части i —го уравнения записывается со знаком “+”потенциал i —го узла, для которого составляется данное i —е уравнение, умноженный на сумму проводимостей ветвей, присоединенных к данному i —му узлу, и со знаком “-”потенциал соседних узлов, каждый из которых умножен на сумму проводимостей ветвей, присоединенных к i —му и k —му узлам.

Из сказанного следует, что все члены , стоящие на главной диагонали в левой части системы уравнений, записываются со знаком “+”, а все остальные – со знаком “-”, причем . Последнее равенство по аналогии с методом контурных токов обеспечивает симметрию коэффициентов уравнений относительно главной диагонали.

2. В правой части i —го уравнения записывается так называемый узловой ток , равный сумме произведений ЭДС ветвей, подходящих к i —му узлу, и проводимостей этих ветвей. При этом член суммы записывается со знаком “+”, если соответствующая ЭДС направлена к i —му узлу, в противном случае ставится знак “-”. Если в подходящих к i —му узлу ветвях содержатся источники тока, то знаки токов источников токов, входящих в узловой ток простыми слагаемыми, определяются аналогично.

В заключение отметим, что выбор того или иного из рассмотренных методов определяется тем, что следует найти, а также тем, какой из них обеспечивает меньший порядок системы уравнений. При расчете токов при одинаковом числе уравнений предпочтительнее использовать метод контурных токов, так как он не требует дополнительных вычислений с использованием закона Ома. Метод узловых потенциалов очень удобен при расчетах многофазных цепей, но не удобен при расчете цепей со взаимной индуктивностью.

1. Основы теории цепей: Учеб.для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с

Контрольные вопросы и задачи

1. В ветви на рис. 1 . Определить ток .

2. В чем заключается сущность символического метода расчета цепей синусоидального тока?

3. В чем состоит сущность метода контурных токов?

4. В чем состоит сущность метода узловых потенциалов?

; . Методом контурных токов определить комплексы действующих значений токов ветвей.

6. В цепи на рис. 6 . Рассчитать токи в ветвях, используя метод узловых потенциалов.

Источник

МЕТОДЫ РАСЧЕТА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Суть расчетов заключается, как правило, в том, чтобы по известным значениям всех сопротивлений цепи и параметров источников (ЭДС или тока) определить токи во всех ветвях и напряжения на всех элементах (сопротивлениях ) цепи.

Для расчета электрических цепей постоянного тока могут применяться различные методы. Среди них основными являются :

– метод, основанный на составлении уравнений Кирхгофа;

– метод эквивалентных преобразований;

– метод контурных токов ;

– метод узловых потенциалов;

– метод эквивалентного источника;

Метод, основанный на составлении уравнений Кирхгофа, является универсальным и может применяться как для одноконтурных, так и для многоконтурных цепей. При этом количество уравнений, составленных по второму закону Кирхгофа, должно быть равно количеству внутренних контуров схемы.

Количество уравнений, составленных по первому закону Кирхгофа, должно быть на единицу меньше количества узлов в схеме.

Например, для данной схемы

составляется 2 уравнения по 1-му закону Кирхгофа и 3 уравнения по 2-му закону Кирхгофа.

Рассмотрим остальные методы расчета электрических цепей:

Метод эквивалентных преобразований применяется для упрощения схем и расчетов электрических цепей. Под эквивалентным преобразованием понимается такая замена одной схемы другой, при которой электрические величины схемы в целом не меняются ( напряжение, ток, потребляемая мощность остаются неизменными ).

Рассмотрим некоторые виды эквивалентных преобразований схем.

а). последовательное соединение элементов

Общее сопротивление последовательно соединенных элементов равно сумме сопротивлений этих элементов.

б). параллельное соединение элементов.

Рассмотрим два параллельно соединенных элемента R1 и R2 . Напряжение на этих элементах равны, т.к. они подключены к одним и тем же узлам а и б.

Применяя закон Ома получим

Применим 1-й закон Кирхгофа к узлу ( а )

Выразим токи I1 и I2 через напряжения получим

В соответствии с законом Ома имеем I=UАБ / RЭ ; где RЭ – эквивалентное сопротивление

Учитывая это, можно записать

Введем обозначения: 1/RЭ=GЭ – эквивалентная проводимость

1/R1=G1 – проводимость 1-го элемента

1/R2=G2 – проводимость 2-го элемента.

Запишем уравнение (6) в виде

Из этого выражения следует, что эквивалентная проводимость параллельно соединенных элементов равна сумме проводимостей этих элементов.

На основе (3.13) получим эквивалентное сопротивление

в). Преобразование треугольника сопротивлений в эквивалентную звезду и обратное преобразование.

Читайте также:  Дома постоянно бьет током от предметов

Соединение трех элементов цепи R1 , R2 , R3 , имеющее вид трех лучевой звезды с общей точкой ( узлом ), называется соединением “звезда”, а соединение этих же элементов, при котором они образуют стороны замкнутого треугольника – соединением “треугольник”.

соединение – звезда ( ) соединение – треугольник ( )

Преобразование треугольника сопротивлений в эквивалентную звезду проводится по следующим правилу и соотношениям:

Сопротивление луча эквивалентной звезды равно произведению сопротивлений двух примыкающих сторон треугольника, деленному на сумму всех трех сопротивлений треугольника.

(3.15)

Преобразование звезды сопротивлений в эквивалентный треугольник производится по следующим правилу и соотношениям:

Сопротивление стороны эквивалентного треугольника равно сумме сопротивлений двух примыкающих лучей звезды плюс произведение этих двух сопротивлений, деленное на сопротивление третьего луча:

(3.16)

г). Преобразование источника тока в эквивалентный источник ЭДС Если в схеме имеется один или несколько источников тока, то часто для удобства расчетов следует заменить источники тока на источники ЭДС

Пусть источник тока имеет параметры IК и GВН .

ЕЭ

Тогда параметры эквивалентного источника ЭДС можно определить из соотношений

При замене источника ЭДС эквивалентным источником тока необходимо использовать следующие соотношения

Метод контурных токов.

Этот метод применяется, как правило, при расчетах многоконтурных схем, когда число уравнений, составленных по 1-му и 2-му законам Кирхгофа, равно шести и более.

Для расчета по методу контурных токов в схеме сложной цепи определяются и нумеруются внутренние контуры. В каждом из контуров произвольно выбирается направление контурного тока, т.е. тока, замыкающегося только в данном контуре.

Затем для каждого контура составляется уравнение по 2-му закону Кирхгофа. При этом, если какое-либо сопротивление принадлежит одновременно двум смежным контурам, то напряжение на нем определяется как алгебраическая сумма напряжений, создаваемых каждым из двух контурных токов.

Если количество контуров n , то и уравнений будет n. Решая данные уравнения ( методом подстановки или определителей ), находят контурные токи. Затем, используя уравнения , записанные по 1-му закону Кирхгофа, находят токи в каждой из ветвей схемы.

Запишем контурные уравнения для данной схемы.

Для 1-го контура:

Для 2-го контура

Для 3-го контура

Производя преобразования запишем систему уравнений в виде

Решая данную систему уравнений, определяем неизвестные I1 , I2 , I3. Токи в ветвях определяются, используя уравнения

Этот метод основан на принципе наложения и применяется для схем с несколькими источниками электроэнергии. Согласно этому методу при расчете схемы, содержащей несколько источников э.д.с. , поочередно полагаются равными нулю все ЭДС , кроме одной. Производится расчет токов в схеме, создаваемой одной этой ЭДС. Расчет производится отдельно для каждой ЭДС, содержащейся в схеме. Действительные значения токов в отдельных ветвях схемы определяются как алгебраическая сумма токов, создаваемых независимым действием отдельных ЭДС.

Пример:

На рис. 3.19 исходная схема, а на рис.3.20 и рис.3.21 схемы замещается с одним источником в каждой.

Определяются токи в ветвях исходной схемы по формулам;

Метод узловых потенциалов

Метод узловых потенциалов позволяет уменьшить число совместно решаемых уравнений до У – 1, где У – число узлов схемы замещения цепи. Метод основан на применении первого закона Кирхгофа и заключается в следующем:

1. Один узел схемы цепи принимаем базисным с нулевым потенциалом. Такое допущение не изменяет значения токов в ветвях, так как – ток в каждой ветви зависит только от разностей потенциалов узлов, а не от действительных значений потенциалов;

2. Для остальных У — 1 узлов составляем уравнения по первому закону Кирхгофа, выражая токи ветвей через потенциалы узлов.

При этом в левой части уравнений коэффициент при потенциале рассматриваемого узла положителен и равен сумме проводимостей сходящихся к нему ветвей.

Коэффициенты при потенциалах узлов, соединенных ветвями с рассмат- риваемым узлом, отрицательны и равны проводимостям соответствующих ветвей. Правая часть уравнений содержит алгебраическую сумму токов ветвей с источниками токов и токов короткого замыкания ветвей с источниками ЭДС, сходящихся к рассматриваемому узлу, причем слагаемые берутся со знаком плюс (минус), если ток источника тока и ЭДС направлены к рассматриваемому узлу (от узла).

3. Решением составленной системы уравнений определяем потенциалы У-1 узлов относительно базисного, а затем токи ветвей по обобщен- ному закону Ома .

Рассмотрим применение метода на примере расчета цепи по рис. 3.22.

Для решения методом узловых потенциалов принимаем .

Система узловых уравнений: число уравнений N = Ny – NB -1,

где: Ny = 4 – число узлов,

NB = 1 – число вырожденных ветвей (ветви с 1-м источником ЭДС),

т.е. для данной цепи: N = 4-1-1=2.

Составляем уравнения по первому закону Кирхгоф для (2) и (3) узлов;

I2 – I4 – I5 – J5=0; I4 + I6 –J3 =0;

Представим токи ветвей по закону Ома через потенциалы узлов:

I2 = (φ2 − φ1) / R2 ; I4 = (φ2 +E4 − φ3) / R4

I5 = (φ2 − φ4) / R5 ; I6 = (φ3 – E6 − φ4) / R6;

где,

Подставив эти выражения в уравнения токов узлов, получим систему;

где ,

Решая систему уравнений численным методом подстановки или определи- телей находим значения потенциалов узлов, а по ним значения напряжений и токов в ветвях.

Метод Эквивалентного источника (активного двухполюсника)

Двухполюсником называется цепь, которая соединяется с внешней частью через два вывода – полюса. Различают активные и пассивные двухполюсники.

Активный двухполюсник содержит источники электрической энергии, а пас- сивный их не содержит. Условные обозначения двухполюсников прямоугольни- ком с буквой А для активного и П для пассивного (рис. 3.23.)

Для расчета цепей с двухполюсниками последние представляют схемами заме -щения. Схема замещения линейного двухполюсника определяется его вольт-амперной или внешней характеристикой V (I ). Вольт-амперная характеристика пассивного двухполюсника – пря мая. Поэтому его схема замещения представ- ляется резистивным элементом с сопротивлением:

где: U – напряжение между выводами, I-ток и rвх – входное сопротивление.

Вольт-амперную характеристику активного двухполюсника (рис. 3.23, б) можно построить по двум точкам, соответствующим режимам холостого хода, т. е. при гн = °°, U = Uх, I = 0, и короткого замыкания, т. е. при гн =0, U = 0, I =Iк. Эта характеристика и ее уравнение имеет вид:

где: гэк – эквивалентное или выходное сопротивление двухполюсника, совпа-

дают с одноименными характеристикой и уравнением источника электроэнер- гии, представляемого схемами замещения на рис. 3.23.

Итак, активный двухполюсник представляется эквивалентным источником с ЭДС – Еэк = Uх и внутренним сопротивлением – гэк = гвых (рис. 3.23, а) Пример активного двухполюсника.- гальванический элемент. При изменении тока в пределах 0 2

η= Рн / РЕ 100% = (1 – гэк I / Еэк) 100%

При двух предельных значениях сопротивления гн = 0 и гн = °° мощность приемника равна нулю, так как в первом случае равно нулю напряжение между выводами приемника, а во втором случае – ток в цепи. Следовательно, некоторому определенному значению гн соответствует наибольшее возможное (при данных еэк и гэк) значение мощности приемника. Чтобы определить это значение сопротивления, приравняем нулю первую производную от мощности рн по гн и получим:

откуда следует, что при условии

Читайте также:  Схема реле с управлением по току

мощность приемника будет максимальна:

Равенство (1.38) называется условием максимальной мощности приемника, т.е. передачи максимальной энергии.

На рис. 3.26 приведены зависимости Рн ,РЕ, Uн и η от тока I.

ТЕМА 4: ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО

Переменным называется периодически изменяющийся по направлению и амплитуде электрический ток. При этом, если переменный ток изменяется по синусоидальному закону – он называется синусоидальным, а если нет – несинусоидальым. Электрическая цепь с таким током называется цепью переменного (синусоидального или несинусоидального) тока.

Электротехнические устройства переменного тока находят широкое приме- нение в различных областях народного хозяйства, при генерировании, передаче и трансформировании электрической энергии, в электроприводе, бытовой тех- нике, промышленной электронике, радиотехнике и т. д.

Преимущественное распространение электротехнических устройств пере- менного синусоидального тока обусловлено рядом причин.

Современная энергетика основана на передаче энергии на дальние расстояния при помощи электрического тока. Обязательным условием такой передачи является возможность простого и с малыми потерями энергии преобразова- ния тока. Такое преобразование осуществимо лишь в электротехнических устройствах переменного тока — трансформаторах. Вследствие громадных преимуществ трансформирования в современной электроэнергетике приме- няется прежде всего синусоидальный ток.

Большим стимулом для разработки и развития электротехнических уст- ройств синусоидального тока является возможность получения источников электрической энергии большой мощности. У современных турбогенераторов тепловых электростанций мощность равна100-1500 МВт на один агрегат, большие мощности имеют и генераторы гидростанций.

К наиболее простым и дешевым электрическим двигателям относятся асин- хронные двигатели переменного синусоидального тока, в которых отсутствуют движущиеся электрические контакты. Для электроэнергетических установок (в частности, для всех электрических станций) в России и в большинстве стран мира принята стандартная частота 50 Гц (в США – 60 Гц). Причина такого выбора простые: понижение частоты неприемлемо, так как уже при частоте тока 40 Гц лампы накаливания заметно для глаза мигают; повышение часто- ты нежелательно, так как пропорционально частоте растет ЭДС само индукции, отрицательно влияющая на передачу энергии по проводам” и работу многих электротехнических устройств. Эти соображения, однако, не ограничивают при- менение переменного тока других частот для решения различных технических и научных задач. Например, частота переменного синусоидального тока элек- три ческих печей для выплавки тугоплавких металлов составляет до 500Гц.

В радиоэлектроннике применяются высокочастотные (мегогерцовые) устрой- ства, так на таких частотах повышается излучение электромагнитных волн.

В зависимости от числа фаз электрические цепи переменного с тока под- разделяются на однофазные и трехфазные.

Источник

Помощь студентам в учёбе

Помощь студентам в учёбе

Я, Людмила Анатольевна Фирмаль, бывший преподаватель математического факультета Дальневосточного государственного физико-технического института со стажем работы более 17 лет. На данный момент занимаюсь онлайн обучением и помощью по любыми предметам. У меня своя команда грамотных, сильных бывших преподавателей ВУЗов. Мы справимся с любой поставленной перед нами работой технического и гуманитарного плана. И не важно: она по объёму на две формулы или огромная сложно структурированная на 125 страниц! Нам по силам всё, поэтому не стесняйтесь, присылайте.

Срок выполнения разный: возможно онлайн (сразу пишите и сразу помогаю), а если у Вас что-то сложное – то от двух до пяти дней.

Для качественного оформления работы обязательно нужны методические указания и, желательно, лекции. Также я провожу онлайн-занятия и занятия в аудитории для студентов, чтобы дать им более качественные знания.

У меня конфиденциальность и безопасность высокого уровня. Никто не увидит Ваше задание, кроме меня и моих преподавателей, потому что WhatsApp и Gmail — это закрытые от индексирования системы , в отличие от других онлайн-сервисов (бирж и агрегаторов), в которые Вы загружаете своё задание, и поисковые системы Yandex и Google индексируют всё содержимое файлов, и любой пользователь сможет найти историю Вашего заказа, а значит, преподаватели смогут узнать всю историю заказа. Когда Вы заказываете у меня — Вы получаете максимальную конфиденциальность и безопасность.

Моё видео:

Помощь студентам в учёбе

Как вы работаете?

Вам нужно написать сообщение в WhatsApp (Контакты ➞ тут) . После этого я оценю Ваш заказ и укажу срок выполнения. Если условия Вас устроят, Вы оплатите, и преподаватель, который ответственен за заказ, начнёт выполнение и в согласованный срок или, возможно, раньше срока Вы получите файл заказа в личные сообщения.

Сколько может стоить заказ?

Стоимость заказа зависит от задания и требований Вашего учебного заведения. На цену влияют: сложность, количество заданий и срок выполнения. Поэтому для оценки стоимости заказа максимально качественно сфотографируйте или пришлите файл задания, при необходимости загружайте поясняющие фотографии лекций, файлы методичек, указывайте свой вариант.

Какой срок выполнения заказа?

Минимальный срок выполнения заказа составляет 2-4 дня, но помните, срочные задания оцениваются дороже.

Как оплатить заказ?

Сначала пришлите задание, я оценю, после вышлю Вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

Какие гарантии и вы исправляете ошибки?

В течение 1 года с момента получения Вами заказа действует гарантия. В течении 1 года я и моя команда исправим любые ошибки в заказе.

Помощь студентам в учёбе

Помощь студентам в учёбе

Качественно сфотографируйте задание, или если у вас файлы, то прикрепите методички, лекции, примеры решения, и в сообщении напишите дополнительные пояснения, для того, чтобы я сразу поняла, что требуется и не уточняла у вас. Присланное качественное задание моментально изучается и оценивается.

Помощь студентам в учёбе

Помощь студентам в учёбе

Теперь напишите мне в Whatsapp или почту (Контакты ➞ тут) и прикрепите задания, методички и лекции с примерами решения, и укажите сроки выполнения. Я и моя команда изучим внимательно задание и сообщим цену.

Помощь студентам в учёбе

Помощь студентам в учёбе

Если цена Вас устроит, то я вышлю Вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

Помощь студентам в учёбе

Помощь студентам в учёбе

Мы приступим к выполнению, соблюдая указанные сроки и требования. 80% заказов сдаются раньше срока.

Помощь студентам в учёбе

Помощь студентам в учёбе

После выполнения отправлю Вам заказ в чат, если у Вас будут вопросы по заказу – подробно объясню. Гарантия 1 год. В течении 1 года я и моя команда исправим любые ошибки в заказе.

Помощь студентам в учёбе






of your page —>

Можете смело обращаться к нам, мы вас не подведем. Ошибки бывают у всех, мы готовы дорабатывать бесплатно и в сжатые сроки, а если у вас появятся вопросы, готовы на них ответить.

В заключение хочу сказать: если Вы выберете меня для помощи на учебно-образовательном пути, у вас останутся только приятные впечатления от работы и от полученного результата!

Жду ваших заказов!

С уважением

Помощь студентам в учёбе
Помощь студентам в учёбе
Помощь студентам в учёбе

Помощь студентам в учёбе

Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

Помощь студентам в учёбе

Помощь студентам в учёбеf9219603113@gmail.com


Помощь студентам в учёбе

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник