Меню

Как определить направление тока в трубке

Постоянный электрический ток

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1 ; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2) , плотность тока измеряется в А/м2.

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Читайте также:  Электрический стул сила тока

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

Положим мм . Из формулы (5) получим:

Это порядка одной десятой миллиметра в секунду.

Стационарное электрическое поле

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.

Источник



Как определить направление тока в трубке

Необходимость подтверждения идентификации заданной линии и определения изменения тока привели к созданию ряда самых современных локаторов, которые имеют функцию измерения тока. Измерение тока в заданной линии выполняется с целью обеспечения помощи при ее точной идентификации. Линия с наибольшим током (не обязательно линия, дающая наибольший отклик) — неизменно заданная линия, к которой подводится сигнала генератора.

Отклик приемника зависит от уровня усиления и глубины залегания линии. Это может привести к ошибкам при трассировке сигналов от нескольких линий, расположенных на разной глубине. Ошибки следуют из предположения, что линия, дающая наиболее сильный отклик, является линией, которая несет наиболее сильный сигнал. Во многих случаях, линия, несущая наиболее сильный сигнал, не дает самого большого отклика, как это иллюстрирует приведенный ниже рисунок.

На рисунке приведены результаты измерений на различных линиях. Показания 27 мА соответствуют заданному кабелю, к которому подведен сигнал генератора.

Возможность считывания показаний тока на экране дисплея приемника значительно увеличивает вероятность корректной идентификации линии, особенно в зонах с большим числом линий.

Определение тока является расширением способа измерения глубины залегания линии. На рисунке указаны сигналы, детектируемые двумя антеннами, и приведены формулы для расчета величины тока.

1.7.5 Распознавание направления тока

Значение этой процедуры связано с необходимостью точной идентификации линий, что особенно важно в случае локации длинных телефонных кабелей, которые часто идут параллельно с другими кабелями.

Читайте также:  Постоянный ток частота в герц

Для распознавания кабеля в пучке может использоваться тип приборов с другим принципом работы. Из другой публикации → Выбор кабеля из пучка методом направления постоянного тока

Функция распознавания направления тока является последним достижением современных локаторов и используется как их дополнительная опция. Стрелки на дисплее приемника показывают условное направление текущего тока (вперед или назад), и, таким образом, направление линии, к которой подведен сигнал генератора.

Однако, переменный ток не имеет направления. Электроны, двигаясь вперед и назад вдоль проводника, остаются в некотором среднем положении.

Несмотря на это, на многих рисунках и схемах, используемых в этой и других книгах, показывают генераторы локаторов, подключенные к проводникам, и используют стрелки для указания направления текущего тока.

В действительности, стрелки показывают мгновенное направление протекающего тока; которое через несколько тысячных долей секунды может измениться на обратное.

Однако, использование этих стрелок, указывающих направление тока, является полезным, так как они показывают поведение введенного тока и позволяют использовать выражения типа «ток протекает по трубе и постепенно уходит на землю через близлежащий кабель».

На рисунке ток течет в одном направлении по трубе и в противоположном направлении в кабеле. Практически же, оба сигнала являются сигналами переменного тока и идентичны для приемника локатора.

Функция распознавания направления тока позволяет идентифицировать условное направление тока и дает возможность различать трубу и кабель.

Основы теории прохождения электрического тока

Сигналы переменного тока не имеют направления, но имеют характеристику известную как фаза, которая некоторым образом отражает направление тока.

Если генератор сигналов подключен к трубе, то это вызовет течение тока сначала с Юга на Север, затем с Севера на Юг и так далее. Это может быть представлено на графике, где показано направление и амплитуда электрического тока в различные моменты времени.

Напряжение, индуцируемое в антенне, которая удерживается над трубой, пропорционально электрическому току и может быть представлено аналогичными графиками.

Когда антенна расположена в точке В, ток, который она детектирует, сначала течет с Севера на Юг, затем с Юга на Север; точно в противоположном направлении течет ток, детектируемый антенной в положении А. Отсюда следует, что направление сигнала, индуцируемого в поисковой антенне, также изменяется на обратное — в любой момент времени детектируемое направление электрического тока изменяется на обратное.

Из приведенных рисунков видно, что имеет место отличие между «прямым» и «обратным» направлением переменного тока, которое и используется для определения условного направления тока.

Неблагоприятные условия распознавания направления тока

В предыдущем разделе предполагалось, что реверсивный сигнал переменного тока — это сигнал, который протекает в обратном направлении.

Это действительно так, но данный эффект можно рассматривать просто как задержку сигнала во времени.

Рисунок с двумя формами волны, аналогичными приведенным на предыдущем рисунке, показывает, что точно такая же форма сигнала может получена, если он просто задержан на период времени t. Если частота, например, равна 500 Гц, то сигнал полностью (положительный и отрицательный полупериоды) повторяется 500 раз в секунду. В этом случае, при времени задержки 1/1000 секунды происходит сдвиг волны на полупериод вперед и сигналы находятся в противофазе, что и соответствует прохождению сигнала в противоположном направлении.

Таким образом, время задержки обычно приводит к сдвигу фаз. Сдвиг фаз имеет место всегда, когда сигнал переменного тока проходит в системе проводников, которые имеют значительную емкость или индуктивность.

Так как сигнал постепенно «утекает» через емкость подземной линии на землю, то постепенно изменяется и угол сдвига фаз оставшегося в линии сигнала.

На этом рисунке показана подземная линия, имеющая значительную емкость на землю. Он иллюстрирует постепенный сдвиг фаз, который имеет место по длине линии. Кроме того, на рисунке показаны характерные точки на каждой форме волны. Первой характерной точкой является точка прямо на пике положительной полуволны (А). Она, постепенно перемещаясь к нулю, проходит через точку D, и затем подходит к точке максимума отрицательной полуволны (F).

Для распознавания кабеля в пучке может использоваться тип приборов с другим принципом работы. Из другой публикации → Выбор кабеля из пучка методом направления постоянного тока

Направление сигнала изменяется на противоположное, как показано на рисунке стрелками. В промежуточной точке (D) электрический ток не определен. Для того, чтобы исключить неопределенность информации, которую может дать использование функции распознавания направления тока, обычно приостанавливают ее выполнение на экране дисплея. Остановку этой функции целесообразно проводить между точками С и Е.

В большинстве случаев, промежуточная точка имеет место на расстоянии нескольких км/миль от генератора. Эта ситуация может быть легко преодолена путем возврата к последней точке, в которой были показания направления тока (С), и сброса этого режима. Это может быть выполнено, так как отклик в точке С в режиме распознавания направления тока соответствует отклику в точке А.

Источник

Как определить направление тока в трубке

Направление электрического потока. Диод

«Приятной особенностью большого количества стандартов является то, что есть из чего выбрать»

Эндрю Таненбаум, профессор информатики

Когда Бенджамин Франклин сделал своё предположение относительно направления потока зарядов (из воска в шерсть), он создал прецедент для электрических обозначений, который существует и по сей день, несмотря на то, что все знают, что электроны являются составными частями заряда, и что при натирании они переходят из шерсти в воск, а не наоборот. Благодаря именно Франклину говорят что электроны имеют отрицательный заряд, и движется этот заряд, на самом деле, в направлении противоположном тому, которое указал Франклин. Поэтому объекты, которые он назвал «отрицательными» (имеющими недостаток заряда), фактически имеют избыток электронов.

К тому времени, когда было открыто истинное направление движения потока электронов, обозначения «положительный» и «отрицательный» уже настолько прочно укоренились в научном сообществе, что попытки изменить их даже не предпринимались, хотя, применительно к «избыточному» заряду, правильно было бы назвать электрон «положительно» заряженным . По большому счету, термины «положительный» и «отрицательный» являются человеческими изобретениями и, как таковые, не имеют абсолютного значения за пределами условного языка научных описаний. С такой же легкостью Франклин мог бы назвать избыток заряда «черным», а его недостаток — «белым», в этом случае ученые говорили бы, что электрон имеет «белый» заряд (при условии использования гипотезы Франклина).

Поскольку мы склонны связывать слово «положительный» с «избытком» а слово «отрицательный» с «недостатком», то стандартное обозначение электрического заряда нам кажется противоположным. Благодаря этому, многие инженеры решили сохранить старое понятие электричества, где «положительный» означает избыток заряда, и соответственно обозначается направление движения зарядов (тока). Такое обозначение известно как общепринятое обозначение потока:

stat37

Другие инженеры для обозначения потока зарядов выбрали фактическое направление движения электронов в цепи. Такое обозначение известно как обозначение потока электронов:

stat38

Общепринятое обозначение потока показывает нам движение заряда в соответствии со знаками + и — (технически неправильно). Применять это обозначение имеет смысл, но направление движения потока зарядов здесь не соответствует действительности. Обозначение потока электронов показывает нам фактическое направление движения электронов в цепи, но знаки + и — выглядят здесь задом наперед. А вообще, имеет ли значение, как мы определяем направление движения потока зарядов в цепи? Не имеет, если мы последовательно используем одно из обозначений. Производя анализ цепи, вы можете с равным успехом использовать любое из этих обозначений. Понятия напряжения, тока, сопротивления, непрерывности, и даже математические методы анализа, такие как законы Ома и Кирхгофа будут действовать как в одном, так и в другом случае.

Читайте также:  Как можно обнаружить магнитное действие тока для

Как вы можете убедиться, общепринятому обозначению потока следует большинство инженеров-электриков, и оно встречается в большинстве технических учебников. Обозначение потока электронов встречается в учебниках для начинающих и в трудах профессиональных ученых, особенно физиков твердых тел, которым важно фактическое движение электронов в веществах. Большинство исследований электрических цепей не зависит от технически точного отображения направления потока зарядов, поэтому выбор между общепринятым обозначением потока и обозначением потока электронов произволен . почти.

Многие электрические устройства допускают прохождение через них реальных токов любого направления без каких либо различий в работе. Например, лампы накаливания излучают свет одинаково эффективно, независимо от направления тока. Они хорошо работают даже при переменном токе (AC), который с течением времени быстро меняет свое направление. Проводники и выключатели также отлично работают независимо от направления тока. Все вышеперечисленные компоненты (электрическая лампочка, выключатель и провода) называются неполярными. И наоборот, любые устройства, которые по разному реагируют на токи разных направлений, называются полярными.

Существует множество полярных устройств, применяемых в электрических схемах. Основная масса этих устройств изготавливается из так называемых полупроводниковых материалов, и подробно будет рассмотрена нами позже. Каждое из этих устройств (как и выключатели, ламы и батареи) изображается на схеме с помощью уникального символа. Как можно догадаться, символы полярных устройств в своем составе обычно сдержат стрелку для обозначения допустимого направления тока. Вот здесь-то конкуренция обозначений общепринятого потока и потока электронов имеет большое значение. Но, поскольку инженеры уже давно в качестве стандартного используют общепринятое обозначение, и они же изобретают электрические устройства и придумывают для них условные обозначения (символы), то стрелки, используемые в символах этих устройств, показывают направление общепринятого потока. Иными словами, у всех символов таких устройств есть значок стрелки, который указывает против фактического потока электронов.

Лучшим примером полярного устройства может послужить диод, который является односторонним «клапаном» для электрического тока. Принцип его действия аналогичен обратному клапану, используемому в водопроводе и гидравлических системах. В идеале, диод обеспечивает беспрепятственный поток для тока в одном направлении (практически не оказывая ему сопротивления), и препятствует этому потоку в обратном направлении (оказывая ему бесконечное сопротивление). Условное обозначение (символ) диода выглядит следующим образом:

stat39

Если мы поместим диод в схему с батареей и лампочкой, то выполняемая им работа будет следующей:

stat40

Когда диод стоит в правильном направлении, разрешающем поток, лампочка горит. В противном случае диод блокирует поток электронов аналогично обрыву цепи, и лампочка гореть не будет.

Если мы используем общепринятое обозначение потока в цепи, то стрелка символа диода указывает на направление потока зарядов от положительного контакта к отрицательному:

stat41

И наоборот, при использовании обозначения потока электронов, стрелка символа диода направлена против этого потока:

stat42

Исходя из вышеизложенного и во избежание путаницы с условными обозначениями электронных компонентов, большинство людей выбирает общепринятое обозначение потока при анализе электрических схем.

Источник

Направление электрического тока — условия и причины возникновения

Однако ток может возникнуть и в других средах, например, в газах. Как только физики открыли это явление, им предстояло определить, каково направление электрического тока.

Причины появления

Заряженные частицы начинают перемещаться благодаря действию различных источников питания. К их числу принадлежат батареи, аккумуляторы, генераторы и другие устройства, способные превращать всевозможные виды энергии в электрическую. Во время этих преобразований наглядно проявляется закон сохранения энергии. Частицы начинают движение в тот момент, когда электрическая цепь замыкается, что приводит к появлению в проводнике электрополя.

Именно оно и оказывает определенное воздействие на свободные частицы. Во время исследований ученые установили, что каждый источник электротока обладает электродвижущей силой (ЭДС). Следует помнить, что электроны не появляются благодаря источнику питания, а присутствуют в материале проводника. Они начинают двигаться под прямым воздействием электрополя, так как не связаны атомными связями и являются свободными.

В качестве примера можно привести замкнутую систему труб, воду в которых перекачивает насос. В зависимости от размеров труб и числа ответвлений, жидкость будет перемещаться в них с разной скоростью.

Все эти свойства присущи и течению электротока, которое изменяется в зависимости от сечения проводников.

Направление электротока

Необходимо понимать, что электроток вызывает не каждое перемещение заряженных частиц. Под воздействием тепла электроны также начинают двигаться, но их движение является хаотичным и не имеет конкретного направления. Если к тепловому воздействию на проводник добавить электрополе, то электроны начнут двигаться с определенной направленностью.

Направление перемещения частиц, образующих электроток, зависит от их заряда:

  • положительные движутся от «плюса» к «минусу»;
  • отрицательные — от «минуса» к «плюсу».

Встречное перемещение частиц наблюдается в электролитических растворах и газах. Поэтому крайне важно точно установить, каково настоящее направление тока в цепи. В результате было принято решение, что движение положительных частиц является направлением электротока. Однако это утверждение не совпадает с действительностью, когда разговор идет о металлических проводниках.

Дело в том, что в них перенос заряда происходит из-за перемещения электронов, заряженных отрицательно. При этом точно известно, что они двигаются от минуса к положительному полюсу. В данном случае приходится считать направление тока противоположным перемещению заряженных частиц.

Несмотря на определенное неудобство, это правило четко говорит, что принимают за направление электрического тока и куда он течет.

Движение частиц в различных проводниках

Электроток способен возникнуть не только в металлах, но и других веществах. При этом они могут находиться в различных агрегатных состояниях. Чтобы лучше понять тему, стоит указать и движение тока в жидкостях, газах и твердых веществах:

  • Металлы обладают большим количеством свободных электронов, которые и являются основным источником электротока.
  • Электролиты представляют собой жидкости, которые способны проводить электроток. К этой группе проводников принадлежат растворы солей, кислот, щелочей. Оказавшись в воде, молекулы всех этих веществ расщепляются на ионы — заряженные отдельные атомы либо их группы. Ионы могут иметь положительный (катионы) либо отрицательный (анионы) заряд. Именно вследствие их направленного движения в растворах возникает электроток.
  • В плазме и газах электроток вызывает перемещение положительных ионов и электронов, имеющих отрицательный заряд.
  • В вакууме ток появляется благодаря вылетающим с поверхности металла электронам.

Ток, возникающий вследствие передвижения заряженных частиц внутри тел относительно определенной среды, называется электротоком проводимости.

Также существует определение конвекционного электротока, представляющего собой движение макроскопических частиц. Примером конвекционного тока являются дождевые капли во время молнии.

Действие тока

Зная, что принимается за направление тока, стоит выяснить и его действие. О появлении силы электротока можно узнать по показаниям специальных приборов. Однако они не всегда есть под рукой. В такой ситуации о наличии электротока можно судить по следующим явлениям:

  • Тепловое. Движение заряженных частиц приводит к нагреву материала проводника. Именно это явление используется в работе ламп освещения либо нагревательных приборов.
  • Магнитное. Если в цепи есть ток, то он создаст магнитное поле. Проверить этот факт можно с помощью компаса: если поднести его к проводу, то стрелка повернется перпендикулярно проводнику. Созданное током магнитное поле можно усилить, обмотав железный стержень проволокой. В результате получится электромагнит.
  • Химическое. Если ток протекает в электролитах, то химический состав раствора изменится. Например, в растворе CuSO4 электроток возникает благодаря движению положительных ионов Cu. Они перемещаются к отрицательному электроду, который со временем покроется слоем меди.

Сегодня сложно представить человеческую цивилизацию без электричества. Природу этих явления пытались установить многие ученые еще до открытия электронов. Первым физиком, выдвинувшим гипотезу о наличии двух типов зарядов, стал Бенджамин Франклин.

После открытия электронов не состыковка гипотезы Франклина была обнаружена, но ученые решили, что определяться направление электротока будет по-прежнему.

Источник