Меню

Как определить направление тока в катушке мотке

Направление индукционного тока

Электромагнитная индукция

Явление электромагнитной индукции заключается в том, что в проводящем контуре при изменении магнитного потока, пронизывающего его, возникает электродвижущая сила (ЭДС), приводящая к возникновению индукционного тока.

Возникновение индукционного тока впервые обнаружил М. Фарадей в своих опытах. Если подключить катушку к гальванометру, и внутри нее двигать постоянный магнит, гальванометр будет отмечать появление индукционного тока:

Опыт Фарадея, катушка, постоянный магнит

Рис. 1. Опыт Фарадея, катушка, постоянный магнит.

Взаимодействие магнита и катушки

Если в опыте Фарадея двигающийся постоянный магнит будет связан с динамометром, то при движении динамометр будет фиксировать возникновение дополнительной силы. Происходит это потому, что возникающий в катушке индукционный ток, как и любой другой ток, приводит к появлению собственного магнитного поля, которое начинает взаимодействовать с магнитным полем постоянного магнита. Силу такого взаимодействия и будет фиксировать динамометр.

При движении магнита внутрь катушки сила будет направлена на выталкивание магнита. Однако, если мы начнем вынимать магнит из катушки, эта сила наоборот, начнет притягивать магнит, не давая его вынимать из катушки. То есть, возникающее магнитное поле в катушке в этих двух случаях имеет разное направление, а значит, и порождающий его ток также течет в разных направлениях.

Правило Ленца

Взаимодействие контура тока и магнитного поля изучалось русским физиком Э.Ленцем.

Он установил правило, которое было впоследствии названо его именем:

Индукционный ток, возникающий в контуре, всегда направлен так, чтобы препятствовать причине, его породившей.

И действительно, в соответствии с этим правилом, когда магнит вводится в катушку, возникающий в катушке ток создает такое магнитное поле, которое сопротивляется введению магнита. И наоборот – при выведении магнита из катушки, в ней возникает индукционный ток такого направления, чтобы препятствовать выведению магнита.

Обоснование правила Ленца

Для объяснения правила Ленца достаточно вспомнить закон сохранения энергии.

Возникающий в контуре ток, проходя по сопротивлению контура, совершает работу, которая тратится на нагревание провода катушки. Энергия для этого как раз и возникает при движении магнита. И, поскольку магнит должен при этом совершать положительную механическую работу – магнитное поле катушки должно быть направлено против поля самого магнита, в какую бы сторону он не двигался.

Только в этом случае магнит будет совершать положительную работу, энергия которой будет двигать заряды внутри контура, порождая индукционный ток, а индукционный ток, в свою очередь, будет совершать работу по нагреванию провода катушки (и отклонения стрелки гальванометра).

Направление индукционного тока

Рис. 3. Направление индукционного тока.

Что мы узнали?

Для определения направления индукционного тока используется правило, открытое Э. Ленцем. Индукционный ток всегда имеет такое направление, чтобы сопротивляться причине, его порождающей. Это правило является следствием законов сохранения.

Источник



Как определить направление тока в катушке мотке

Направление индукционного тока

При внесении в катушку магнита в ней возникает индукционный ток. Если к катушке присоединить гальванометр, то можно заметить, что направление тока будет зависеть от того приближаем ли мы магнит или удаляем его.

Магнит будет взаимодействовать с катушкой либо притягиваясь, либо отталкиваясь от нее. Это будет возникать вследствие того, что катушка с проходящим по ней током, будет подобна магниту с двумя полюсами. Направление индуцируемого тока будет определять, где у катушки будет находиться какой из полюсов.

Читайте также:  Урок переменный ток в резисторе

Если приближать к катушке магнит, то в ней будет возникать индукционный ток такого направления, что катушка обязательно будет отталкиваться от магнита. Если мы будет удалять магнит от катушки, то при этом в катушке возникнет такой индукционный ток, что она будет притягиваться к магниту.

Стоит отметить, что не важно каким полюсом мы подносим или убираем магнит, всегда при подносе катушка будет отталкиваться, а при удалении притягиваться. Различие состоит в том, что при приближении магнита к катушке магнитный поток, который будет пронизывать катушку, увеличивается, так как у полюса магнита кучность линий магнитной индукции увеличивается. А при удалении магнита, магнитный поток, пронизывающий катушку, будет уменьшаться.

Узнать направление индукционного тока можно. Для этого существует правило Ленца. Оно основано на законе сохранения. Рассмотрим следующий опыт.

Так как должен выполняться закон сохранения, должно возникнуть магнитное поле, которое будет препятствовать изменению магнитного потока. В нашем случае магнитный поток увеличивался, следовательно, ток должен течь в таком направлении, чтобы линии вектора магнитной индукции, создаваемые катушкой, были направлены в противоположном направлении линиям магнитной индукции, создаваемым магнитом.

То есть они должны в нашем случае быть направлены вверх. Теперь воспользуемся правилом буравчика. Направляем большой палец правой руки по необходимому нам направлению линий магнитной индукции, то есть — вверх. Тогда остальные пальцы укажут, в какую сторону должен быть направлен индукционный ток. В нашем случае, слева на право.

Аналогичный процесс происходит при удалении магнита. Убираем магнит, магнитный поток уменьшается, следовательно, должно возникнуть поле которое будет увеличивать магнитный поток. То есть поле линии магнитной индукции, которого будут сонаправлены с линиями магнитной индукции, создаваемыми постоянным магнитом. В нашем случае эти лини направлены вниз. Опять пользуемся правилом буравчика и определяем направление индукционного тока.

Правило Ленца.

Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.

Применять правило Ленца для нахождения направления индукционного тока в контуре надо так:

1. Определить направление линий магнитной индукции вектора В внешнего магнитного поля.

2. Выяснить, увеличивается ли поток вектора магнитной индукции этого поля через поверхность, ограниченную контуром ( Δ Ф > 0), или уменьшается ( Δ Ф

3. Установить направление линий магнитной индукции вектора В’ магнитного поля индукционного тока. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям магнитной индукции вектора В’ при Δ Ф > 0 и иметь одинаковое с ними направление при Δ Ф

4. Зная направление линий магнитной индукции вектора В’ , найти направление индукционного тока, пользуясь правилом буравчика.

Направление индукционного тока определяется с помощью закона сохранения энергии. Индукционный ток во всех случаях направлен так, чтобы своим магнитным полем препятствовать изменению магнитного потока, вызывающего данный индукционный ток.

Вихревое электрическое поле .

Причина возникновения электрического тока в неподвижном проводнике — электрическое поле.

Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Читайте также:  Оформление своего дома в тока бока

Индукционное электрическое поле является вихревым.Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

индукционное электрическое поле

(вихревое электрическое поле )

1. создается неподвижными электрическими зарядами

1. вызывается изменениями магнитного поля

2. силовые линии поля разомкнуты -потенциальное поле

2. силовые линии замкнуты — вихревое поле

3. источниками поля являются электрические заряды

3. источники поля указать нельзя

4. работа сил поля по перемещению пробного заряда по замкнутому пути равна нулю.

4. работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции

Источник

НАБЛЮДЕНИЕ ДЕЙСТВИЯ МАГНИТНОГО ПОЛЯ НА ТОК

Цель работы: экспериментально с определить зависимость действия магнитного поля на проводник с током от силы и направления тока в нем.

Оборудование: • источник электропитания • катушка-моток • переменный резистор • ключ

• полосовой магнит • штатив с муфтой и лапкой • соединительные провода.

В работе исследуют взаимодействие проволочной катушки-мотка, подвешенной на штативе, с постоянным магнитом, также установленном на этом штативе рядом с катушкой. Последова­тельно с катушкой включают переменное сопротивление, что позволяет менять в ходе опыта силу тока в ней. Электрическая схема установки показана на рисунке 1.

Рис.1.

Рис.2.

Ход работы . I

1. Соберите экспериментальную установку, как показано на рисунке 2. Ка­тушка и магнит должны располагаться так, чтобы плоскость катушки была перпендикулярна продольной оси магнита. Край магнита должен выступать на 1,5 — 2 см за основание штатива и находиться в центре ка­тушки.

2. Переменное сопротивление включите в цепь так, чтобы с его помощью можно было изменять силу тока в катушке. Ползунок переменного со­противления поставьте в такое положение, при котором в цепи протекал бы минимальный ток.

3. Замкните ключ и по изменению положения катушки сде­лайте вывод о характере действия на нее магнита.

4. Увеличивая с помощью переменного сопротивления ток в цепи, установите, как действие магнита на катушку зави­сит от силы тока в ней.

5. Изменив подключение соединительных поводов к источ­нику питания, установите, как зависит действие магнит­ного поля на катушку от направления тока в ней.

6. Измените положение полюсов магнита на противополож­ное и повторите действия, указанные в пунктах 3,4 и 5.

7. Для каждого этапа опыта сделайте схематичные рисунки, отражающие изменения во взаимодействии магнита и ка­тушки при изменении режимов работы установки.

8. Укажите на рисунках направления магнитного поля маг­нита, тока в катушке и магнитного поля катушки.

9. Объясните результаты наблюдений

ИЗУЧЕНИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Цель работы: Оборудование:

проверить на опыте зависимость ЭДС индукции от скорости изменения маг­нитного поля.

• миллиамперметр • катушка-моток — 1 шт. • постоянный магнит • штатив с муфтой и лапкой.

Ход работы

1. Закрепите в лапке штатива катушку и под­ключите ее к гнездам миллиамперметра.

2. Приближая и удаляя с разной скоростью маг­нит к катушке, установите по показаниям миллиамперметра, как зависит величина ин­дукционного тока от скорости изменения магнитного поля в месте расположения ка­тушки.

Читайте также:  Реле постоянного тока кдрш

3. Установите, зависит ли направление индукци­онного тока от положения полюсов движуще­гося магнита.

4. Повторите опыты, закрепив в лапке штатива магнит, приближая и удаляя к нему и от него катушку.

5. Определив направление намотки провода в катушке, направление тока в ней и направление магнитного поля магнита, проверьте справедливость правила Ленца.

Источник

§ 44. Направление тока и направление линий его магнитного поля —

Вопросы.

1. Как на опыте можно показать связь между направлением тока в проводнике и направлением линии его магнитного поля?

Если поменять направление тока в проводнике на противоположное все магнитные стрелки, расположенные в магнитном поле, созданном этим проводником, тоже повернутся на 180°.

2. Сформулируйте правило буравчика.

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля, созданного этим током.

3. Что можно определить, используя правило буравчика?

Используя правило буравчика можно определить направление линий магнитного поля, зная направление тока или наоборот.

4. Сформулируйте правило правой руки для соленоида.

Если представить, что правая рука это соляноид, и расположить её так, чтобы ток выходил из кончиков пальцев, то большой палец укажет направление линий магнитной индукции.

5. Что можно определить с помощью правила правой руки?

С помощью правила правой руки можно определить направление магнитных линий, зная направление тока и наоборот.

1. На рисунке 99 изображен проволочный прямоугольник, направление тока в нем показано стрелками. Перечертите рисунок в тетрадь и, пользуясь правилом буравчика, начертите вокруг каждой из его четырех сторон по одной магнитной линии, указав стрелкой ее направление.



2. На рисунке 100 показаны линии магнитного поля вокруг проводников с током. Проводники изображены кружочками. Перечертите рисунок в тетрадь и условными знаками обозначьте направления токов в проводниках, используя для этого правило буравчика.

3. Через катушку, внутри которой находится стальной стержень (рис. 101), пропускают ток указанного направления. Определите полюсы у полученного электромагнита. Как можно изменить положение полюсов у этого электромагнита?

По правилу правой руки получаем, что у изображенного на рисунке 101 электромагнита слева южный полюс S, а справа северный N. Чтобы изменить положение полюсов на противоположное нужно сделать так, чтобы ток шел в обратном направлении.

4. Определите направление тока в катушке и полюсы у источника тока (рис. 102), если при прохождении тока в катушке возникают указанные на рисунке магнитные полюсы.

В катушке ток идет справа налево, от плюса к минусу.

5. Направление тока в витках обмотки подковообразного электромагнита показано стрелками (рис. 103). Определите полюсы электромагнита.

Если подковообразный магнит расположен разрезом к нам, то слева будет S, справа N, если разрезом от нас, то наоборот.

6. Параллельные провода, по которым текут токи одного направления, притягиваются, а параллельные пучки электронов, движущихся в одном направлении, отталкиваются. В каком из этих случаев взаимодействие обусловлено электрическими силами, а в каком — магнитными? Почему вы так считаете?

Так как заряды одного знака всегда отталкиваются, то отталкивание пучков электронов обусловлено электрическими (кулоновскими) силами, а притяжение проводников обусловлено магнитными силами.

Источник