Меню

Как найти модуль плотности тока смещения

khabarova

Per aspera ad astra!

Приветствую вас, коллеги. Текущий курс — ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Еще раз о плотности тока смещения!

Первое и главное — ток смещения это не ток! в том смысле, в котором мы его определяли (ток — это упорядоченное движение носителей заряда). Ток смещения так называется потому, что имеет размерность тока и вводился в смысле тока, текущего между обкладками конденсатора, например при его зарядке или разрядке через внешнее сопротивление. Мы знаем, что заряд на самом деле не «перепрыгивает» с обкладки на обкладку, а «бегает» от одной обкладки к другой через внешнюю цепь. Ток смещения же в случае с конденсатором позволяет рассматривать ток, как замкнутую линию: ток в цепи — ток проводимости — замыкается током смещения между обкладками конденсатора.
Максвелл рассматривал конденсатор с диэлектриком между обкладками и через такой конденсатор ток все же течет (ток утечки!). Кроме того, так как в диэлектрике есть поляризация, то там будет и ток поляризации. Но эти токи по сути все равно токи проводимости (то есть обусловлены движением носителей заряда). Если же между обкладками вакуум, то там в принципе не может быть никакого движения носителей заряда, потому что НЕТ носителей заряда. А вот нестыковка в теореме о циркуляции вектора Н остается. Если не ввести поправку, которую мы называем плотностью тока смещения, не выполняется закон сохранения заряда! Эту поправку ввели из теоретического расчета, а не потому что обнаружили ток смещения экспериментально. То есть, можно сказать, это теоретическая находка. Находка бесспорная, но опытным путем пока никто ток смещения не объяснил. Скорее всего название «ток смещения» ввели для того, чтобы не уходить от принятой терминологии: магнитное поле порождается током. Поскольку обнаружилось, что переменное электрическое поле вызывает магнитное поле, то изменение электрического поля во времени назвали током смещения.

Вопрос: куда направлен вектор плотности тока смещения?
Ответ: туда же, куда и вектор электрического смещения D, поскольку равен его производной по времени.

План: 17.1-17.10 (Д/з: все, что не сделали на семинаре + вопросы)

Источник



46. Ток смещения. Плотность тока смещеня.

Согласно Максвеллу, если всякое пере­менное магнитное поле возбуждает в окру­жающем пространстве вихревое электри­ческое поле, то должно существовать и об­ратное явление: всякое изменение элек­трического поля должно вызывать появле­ние в окружающем пространстве вихрево­го магнитного поля. Для установления количественных соотношений между изме­няющимся электрическим полем и вызыва­емым им магнитным полем Максвелл ввел в рассмотрение так называемый ток сме­щения.

Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 196). Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор

«протекают» токи смещения, причем в тех участках, где отсутствуют проводники.

Найдем количественную связь между изменяющимся электрическим и вызывае­мым им магнитным полями. По Максвел­лу, переменное электрическое поле в кон­денсаторе в каждый момент времени со­здает такое магнитное поле, как если бы между обкладками конденсатора су­ществовал ток проводимости, равный току в подводящих проводах. Тогда можно утвер­ждать, что токи проводимости (I) и сме­щения (Iсм) равны: Iсм=I. Ток проводи­мости вблизи обкладок конденсатора

(поверхностная плотность заряда  на обкладках равна электрическому смещению D в конденсаторе (см. (92.1)). Подынтег­ральное выражение в (138.1) можно рас­сматривать как частный случай скалярного произведения (дD/дt)dS, когда дD/дt и dS взаимно параллельны. Поэтому для обще­го случая можно записать

Сравнивая это выражение с I=Iсм = (см. (96.2)), имеем

Читайте также:  Узнать по току мощность таблица

Выражение (138.2) и было названо Мак­свеллом плотностью тока смещения.

Рассмотрим, каково же направление векторов плотностей токов проводимости и смещения j и jсм. При зарядке конденса­тора (рис. 197, а) через проводник, соеди­няющий обкладки, ток течет от правой обкладки к левой; поле в конденсаторе усиливается, вектор D растет со временем;

следовательно, дD/дt>0, т.е. вектор дD/дt

направлен в ту же сторону, что и D. Из рисунка видно, что направления векторов

дD/дt и j совпадают. При разрядке конденсатора (рис. 197, б) через проводник, сое­диняющий обкладки, ток течет от левой обкладки к правой; поле в конденсаторе ослабляется, вектор D убывает со временем; следовательно, дD/дt 32 / 35 32 33 34 35 > Следующая > >>

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Плотность тока проводимости, смещения, насыщения: определение и формулы

В данной статье мы рассмотрим плотность тока и формулы для нахождения различных видов плотности тока: проводимости, смещения, насыщения.

Плотность тока – это векторная физическая величина, характеризующая насколько плотно друг к другу располагаются электрические заряды.

Плотность тока проводимости

Ток проводимости – это упорядоченное движение электрических зарядов, то есть обыкновенный электрический ток, который возникает в проводнике. В большинстве случаев, когда речь заходит о токе, имеют ввиду именно ток проводимости.

В данном случае плотность тока – это векторная характеристика тока равная отношению силы тока I в проводнике к площади S поперечного сечения проводника (перпендикулярному по отношению к направлению тока). Эта величина показывает насколько плотно заряды располагаются на всей площади поперечного сечения проводника. Она обозначается латинской буквой j. Модуль плотности электрического тока пропорционален электрическому заряду, который протекает за определенное время через определенную площадь сечения, расположенную перпендикулярно по отношению к его направлению.

Если рассмотреть идеализированной проводник, в котором электрический ток равномерно распределен по всему сечению проводника, то модуль плотности тока проводимости можно вычислить по следующей формуле:

j – Плотность тока [A/м 2 ]

I – Сила тока [A]

S – Площадь поперечного сечения проводника [м 2 ]

Исходя из этого мы можем представить силу тока I как поток вектора плотности тока j, проходящий через поперечное сечение проводникаS. То есть для вычисления силы тока, текущей через определенное поперечное сечение нужно проинтегрировать (сложить) произведения плотности тока в каждой точке проводника jn на площадь поверхности этой точки dS:

I – сила тока [А]

jn — составляющая вектора плотности тока в направлении течения тока (по оси OX) [A/м 2 ]

dS — элемент поверхности площади [м 2 ]

Исходя из предположения, что все заряженные частицы двигаются с одинаковым вектором скорости v, имеют одинаковые по величине заряды e и их концентрация n в каждой точке одинаковая, получаем, что плотность тока проводимости j равна:

j – плотность тока [А/м 2 ]

n – концентрация зарядов [м -3 ]

e – величина заряда [Кл]

v – скорость, с которой движутся частицы [м/с]

Плотность тока смещения

В классической электродинамике существует понятие тока смещения, который пропорционально равен быстроте изменения индукции электрического поля. Он не связан с перемещением каких-либо частиц поэтому, по сути, не является электрическим током. Несмотря на то, что природа этих токов разная, единица измерения плотности у них одинаковая — A/м 2 .

Ток смещения – это поток вектора быстроты изменения электрического поля ∂E/∂t через S — некоторую поверхность. Формула тока смещения выглядит так:

JD — ток смещения [А]

ε – электрическая постоянная, равная 8,85·10 -12 Кл 2 /(H·м 2 )

∂E/∂t — скорость изменения электрического поля [Н/(Кл·с)]

ds – площадь поверхности [м 2 ]

Читайте также:  Почему металлы являются хорошими проводниками электрического тока

Плотность тока смещения определяется по следующей формуле:

jD — ток смещения [А/м 2 ]

ε – электрическая постоянная, равная 8,85·10 -12 Кл 2 /(H·м 2 )

∂E/∂t — скорость изменения электрического поля [Н/(Кл·с)]

∂D/∂t — скорость изменения вектора эл. индукции [Кл/м 2 ·с)]

Плотность тока насыщения

В физической электронике используют понятие плотности тока насыщения. Эта величина характеризует эмиссионную способность металла, из которого сделан катод, и зависит от его вида и температуры.

Плотность тока насыщения выражается формулой, которая была выведена на основе квантовой статистики Ричардсоном и Дешманом:

j – плотность тока насыщения[А/м 2 ]

R — среднее значение коэффициента отражения электронов от потенциального барьера

A — термоэлектрическая постоянная со значением 120,4 А/(K 2 ·см 2 )

T— температура [К]

— значение работы выхода из катода электронов [эВ], q – электронный заряд [Кл]

k — постоянная Больцмана, которая равна 1,38·10 -23 Дж/К

Понравилась статья, расскажите о ней друзьям:

Источник

Как найти модуль плотности тока смещения

Мы знаем, что постоянный ток в цепи с конденсатором не течет, переменный — протекает. Сила квазистационарного тока во всех элементах цепи, если они соединяются последовательно, одинакова. В конденсаторе, обкладки которого разделяет диэлектрик, ток проводимости, вызванный перемещением электронов, идти не может. Значит, если ток переменный (присутствует переменное электрическое поле), происходит некоторый процесс, который замыкает ток проводимости без переноса заряда между обкладками конденсатора. Этот процесс называют током смещения.

Любое переменное магнитное поле порождает вихревое электрическое поле. Исследуя разные электромагнитные процессы, Максвелл сделал вывод о том, что существует обратное явление: изменение электрического поля вызывает появление вихревого магнитного поля. Это одно из основных утверждений в теории Максвелла.

Готовые работы на аналогичную тему

Так как магнитное поле — обязательный признак любого тока, Максвелл назвал переменное электрическое поле током смещения. Ток смещения следует отличать от тока проводимости, который вызван движением заряженных частиц (электронов и ионов). Токи смещения появляются только в том случае, если электрическое смещение ($\overrightarrow$) переменно. Объемная плотность тока смещения определяется как:

Именно вследствие этого физическое содержание предположения Максвелла о токах смещения сводится к утверждению о том, что переменные электрические поля — источники переменных магнитных полей.

Следует заметить, что плотность тока смещения определена производной вектора $\overrightarrow$, а не самим вектором.

Ток смещения в диэлектрике

По определению вектора электрической индукции ($\overrightarrow$):

где $<\varepsilon >_0$ — электрическая постоянная, $\overrightarrow$ — вектор напряженность, $\overrightarrow

$ — вектор поляризации. Следовательно, ток смещения можно записать как:

где величина $\frac<\partial \overrightarrow

><\partial t>$ — плотность тока поляризации. Токи поляризации — токи, которые вызваны движением связанных зарядов, которые принципиально не отличаются от свободных зарядов. Поэтому нет ни чего странного, что токи поляризации порождают магнитное поле. Принципиальная новизна содержится в утверждении, что вторая часть тока смещения ($<\varepsilon >_0\frac<\partial \overrightarrow><\partial t>$), не связанная с движением зарядов, также порождает магнитное поле. Получается, что в вакууме, любое изменение электрического поля по времени вызывает магнитное поле.

Однако, надо заметить, что сам термин «ток смещения» для диэлектриков имеет какое-то обоснование, так как в них действительно происходит смещение зарядов в атомах и молекулах. Но этот термин применяется и к вакууму, где зарядов нет, значит, нет их смещения.

Полный ток

В том случае, если в проводнике течет переменный ток, то внутри него имеется переменное электрическое поле. Значит, в проводнике существует ток проводимости ($j$) и ток смещения. Магнитное поле проводника определено суммой вышеназванных токов, то есть полным током ($\overrightarrow$):

Читайте также:  Масло за генератор за ток

В зависимости от электропроводности вещества, частоты переменного тока, слагаемые в выражении (4), играют разную роль. В веществах с хорошей проводимостью (например, металлах) и при низких частотах переменного тока плотность тока смещения невелика, тогда как ток проводимости существенен. В таком случае, током смещения пренебрегают, в сравнении с током проводимости. В веществах с высоким сопротивлением (изоляторах) и при больших частотах тока ведущую роль играет ток смещения.

Оба слагаемых в выражении (4) могут иметь одинаковые знаки и противоположные. Следовательно, полный ток может быть и больше и меньше тока проводимости, может даже быть равен нулю.

Значит, в общем случае переменных токов магнитное поле определяется полным током. Если контур разомкнут, то на концах проводника обрывается только ток проводимости. В диэлектрике между концами проводника присутствует ток смещения, который замыкает ток проводимости. Получается, что если под электрическим током понимать полный ток, то в природе все токи замкнуты.

Задание: Плоский конденсатор заряжен и отключен от источника заряда. Он медленно разряжается объемными токами проводимости, которые появляются между обкладками, так как присутствует небольшая электрическая проводимость. Чему равна напряжённость магнитного поля внутри конденсатора? Считать, что краевых эффектов в конденсаторе нет.

Решение:

Допустим, что поверхностная плотность заряда на обкладках равна $\sigma \ и-\sigma .$ В таком случае, модуль вектора электрического смещения ($D$) для плоского конденсатора равен:

Ток смещения можно найти как:

Подставив вместо $D$ правую часть выражения (1.1), имеем:

В соответствии с законом сохранения заряда, можно записать, что:

Полный ток равен:

Для нашего плоского конденсатора, учитывая полученные выражения (1.3), (1.4), имеем:

Ответ: Магнитное поле в конденсаторе равно нулю.

Задание: Допустим, что неограниченную однородную проводящую среду поместили в металлический шар, имеющий заряд $Q$. В этой среде возникнут электрические токи, которые потекут в радиальных направлениях. Покажите, что данная ситуация требует введения тока смещения при описании возникающих полей.

Решение:

Электрические токи, которые текут от (или к ) шару, возбуждают магнитное поле. Определим направление вектора магнитной индукции этого магнитного поля.

Вектор $\overrightarrow$ не имеет радиальной составляющей. Система обдает сферической симметрией. Если бы радиальная составляющая вектора индукции имелась, то она была бы одинаковой для всех точек сферы $S$ (рис.1), концентрической с поверхностью шара, имела направление от центра шара или к его центру. В обоих случаях поток вектора индукции через сферу $S$ был бы не равен нулю, что противоречит уравнению из системы Максвелла:

Значит, вектор индукции магнитного поля должен быть перпендикулярен к радиусу, который проведен из центра шара к рассматриваемой точке. Это также невозможно, так как все направления, перпендикулярные к радиусу, равноправны. Единственная возможность, которая не противоречит симметрии шара, заключается в том, что векторы $\overrightarrow\ и\ \overrightarrow$ всюду равны нулю. Следовательно, равна нулю плотность тока проводимости $\overrightarrow,\ $ что противоречит уравнению:

Для устранения полученного противоречия следует предположить, что магнитные поля порождаются не только токами проводимости. Добавим к току проводимости ток смещения ($I_$), который в нашем случае будет уничтожать возбуждаемое магнитное поле. Его величина определяется из условия:

Ток проводимости, который течет от заряженного шара можно выразить как:

Из выражения (2.3) следует, что:

В соответствии с законом Кулона заряженного проводящего шара, имеем:

\[Q=4\pi r^2D\ \left(2.6\right).\]

Найдем производную по времени от заряда, получим:

Плотность тока смещения при этом будет равна:

Полученное выражение совпадает с определением плотности тока смещения.

Источник