Меню

Кабельная линия связи переменного тока

Расчет влияний тяговой сети переменного тока на кабельную линию связи

1.7 Расчет влияний тяговой сети переменного тока на кабельную линию связи

Кабельные линии связи подвергаются опасным и мешающим магнитным влияниям тяговой сети переменного тока. Цель расчета этих влияний заключается в определении такой ширины сближения кабельной линии с тяговой сетью, при которой опасное напряжение, индуцируемое в жилах кабеля, не превышало бы допускаемого нормами значения 200 В, а результирующее напряжение шума – допускаемого значения 0,9 мВ.

Расчет опасных влияний тяговой сети переменного тока.

Опасные напряжения в жилах кабеля могут возникать при аварийном (замыкании тяговой сети на землю или рельсы) и вынужденном (отключении от контактной сети одной из тяговых подстанций) режимах работы тяговой сети. Однако в целях сокращения расчетов, в курсовом проекте произведен расчет опасных влияний лишь для вынужденного режима, когда тяговая подстанция отключена, на станции Д, и тяговая подстанция, расположенная на станции А, питает все плечо тяговой сети протяженностью А-Д.

Тяговая сеть переменного тока наводит напряжение во всех жилах кабеля, однако наибольшее напряжение возникает на жилах цепей связи тональной частоты, поскольку длина сближения их с контактной сетью, определяемая длиной усилительного участка низкочастотных цепей, является наибольшей.

Опасное напряжение U, индуктируемое на изолированном конце жилы кабеля при заземленном противоположном конце (в этом случае величина напряжения максимальна), определяется вольтах по формуле:

(1)

где — круговая частота влияющего тока частотой f=50 Гц (=f=314 рад/с;

М – взаимная индуктивность между тяговой сетью и жилой кабеля при частоте 50 Гц, (Г/км) определяемая по формуле:

М= (2)

м — ширина сближения

См/м проводимость грунта

Sp=0,5 – коэффициент экранирования рельсов;

Sk=0,1 – коэффициент защитного действия оболочки кабеля на частоте 50 Гц;

lp=30 км – расчетная длина сближения кабельной цепи связи тональной частоты с тяговой сетью (соответствует расстоянию от начала цепи (ст.А) до ближайшего промежуточного усилителя тональной частоты);

— эквивалентный влияющий ток частотой 50 Гц, (А), определяемый при вынужденном режиме работы тяговой сети по формуле:

(3)

— результирующий нагрузочный ток расчетного плеча питания при вынужденном режиме работы тяговой сети, (А);

(4)

В – максимальная потеря напряжения в тяговой сети между подстанцией и максимально удаленным электровозом при lэ>30 км, (В)

Lэ=50 км – длина плеча питания тяговой сети при вынужденном режиме работы;

Rmс, Хmc – соответственно активное и реактивное сопротивление тяговой сети, Ом/км (величины Rmс и Хmc принимаются равными 0,12 и 0,48 Ом/км);

*— коэффициент мощности электровоза, составляющий 0,8;

m – количество поездов, одновременно находящихся в пределах плеча питания тяговой сети при вынужденном режиме (принимаем для двух путной дороги m=12);

Кm – коэффициент, характеризующий уменьшение влияющего тока по сравнению с нагрузочным (I рез)

(5)

=0,9 км – расстояние от тяговой подстанции до начала цепи связи (соответствует расстоянию между тяговой подстанцией ст.А и ОУП).

Г/км

А

А

В

Источник



Кабельные линии связи. Электрические кабельные линии связи. Основные электромагнитные характеристики электрических кабелей связи. Витая пара. Коаксиальный кабель.

Кабельные линии связи

При организации компьютерных сетей широко используются кабельные линии связи.

Кабельная линия связи (КЛС) – линия связи, состоящая из кабеля, кабельной арматуры и кабельных сооружений (туннели, колодцы, распределительные шкафы, кабельные столбы).

Кабель (от голл. kabel – канат, трос) – совокупность гибких изолированных проводов, заключенных в защитную (обычно герметичную) оболочку.

Электрический (медный) кабель – кабель из электрических (медных) проводников (токопроводящих жил), применяемый для передачи на расстояние электрической энергии (силовой кабель) или электрических сигналов (кабель связи).

Волоконно-оптический кабель – кабель из оптических волокон для передачи светового потока.

Кабель связи предназначен для передачи информации электрическими или оптическими (световыми) сигналами.

Электрические кабельные линии связи

В сетях передачи данных применяются следующие типы электрических кабелей:

2) коаксиальный кабель:

Основные электромагнитные характеристики электрических кабелей связи

1. Затухание (коэффициент затухания) – уменьшение мощности сигнала (потеря амплитуды) при передаче между двумя точками:

· является одной из основных характеристик, учитываемых при проектировании ЭЛС и определении максимальной длины кабеля между узлами;

· зависит от частоты передаваемого сигнала;

· измеряется в [дБ/м].

2. Импеданс (волновое сопротивление) – полное (активное и реактивное) сопротивление электрической цепи:

· измеряется в Омах и является относительно постоянной величиной для кабельных систем (в высокоскоростных сетях зависит от частоты);

· резкие изменения импеданса по длине кабеля могут вызвать процессы внутреннего отражения, приводящие к возникновению стоячих волн, при этом станция, подключенная вблизи узла стоячей волны, не будет получать адресованные ей данные.

3. Перекрестные наводки между витыми парами на ближнем конце(NEXT– Near End Crosstalk) и на дальнем конце(FEXT– Far End Crosstalk) – результат интерференции электромагнитных сигналов:

· значения NEXT и FEXT зависят от частоты передаваемого сигнала;

· чем больше абсолютноезначение NEXT (FEXT), тем лучше, так как наводки в соседних проводниках будут меньше;

· измеряется в дБ при определённой частоте.

4. Активное сопротивление – сопротивление электрической цепи постоянному току:

· не зависит от частоты и возрастает с увеличением длины кабеля;

· измеряется в Омах на 100 м.

5. Ёмкость – свойство металлических проводников накапливать электрическую энергию:

· является нежелательной величиной и должна быть минимальной;

· высокое значение ёмкости в кабеле приводит к искажению сигнала и ограничивает полосу пропускания линии.

Витая пара

Витая пара (Twisted Pair – TP) – изолированные проводники, попарно свитые между собой минимально необходимое число раз на определенном отрезке длины (рис.2.36,а), что требуется для уменьшения перекрестных наводок между проводниками, и заключённые в изолирующую оболочку.

Витая пара – самый распространенный вид кабеля в телефонии. Скручивание применяется с целью уменьшения излучения и повышения помехозащищенности кабеля.

Несколько витых пар (обычно 4 или 8), заключённые в общую пластиковую оболочку, образуют кабель. Существует несколько категорий неэкранированной витой пары (Unshielded Twisted Pair – UTP), причём чем выше категория кабеля, тем больше его полоса пропускания. Кабели 1-й и 2-й категорий используются для передачи речи и данных на низких скоростях и не включены в стандарты для передачи данных в компьютерных сетях.

Стандарт EIA/TIA-568, разработанный American National Standards Institute (ANSI, США) определяет спецификации для 3-й, 4-й и 5-й категорий UTP и нормирует следующие характеристики:

· переходное затухание на ближнем конце и др.

Например, для кабеля 5-й категории определены следующие характеристики:

· затухание – не более 23,6 дБ на 100 м (0,236 дБ/м) при частоте 100 МГц;

· волновое сопротивление – не более 100 Ом+-15%;

· NEXT – не менее 27 дБ при частоте 100 МГц;

· активное сопротивление – не более 9,4 Ом на 100 м;

· емкость не более 5,6 нФ на 100 м.

Экранированная витая пара – кабель, содержащий одну или несколько пар скрученных медных проводов, заключенных в изолирующую оболочку. Снаружи кабель покрыт экранирующей оплеткой и еще одной изолирующей оболочкой, за счёт чего меньше излучает и лучше защищён от электромагнитных помех, чем неэкранированная витая пара. Применяется в сетях Token Ring.

Экранированная витая пара подразделяется на две разновидности:

· с экранированием каждой пары и общим экраном (Shielded Twisted Pair – STP);

· с одним общим экраном (Foiled Twisted Pair – FTP).

Для высокоскоростных сетей разработаны еще две категории медного кабеля:

· категория 6 – обеспечивает работу на частоте 250 МГц и может быть реализована как экранированный, так и неэкранированный кабель;

· категория 7 – обеспечивает работу на частоте до 600 МГц и использует экранирование каждой пары кабеля и общий экран.

Коаксиальный кабель (от лат. co – совместно и axis – ось) – кабель, в котором проводники представляют собой 2 соосных металлических цилиндра, разделенных диэлектриком. Коаксиальный кабель используется для передачи высокочастотных сигналов (до нескольких ГГц) и характеризуется высокой помехозащищенностью и малым затуханием сигналов. Это обусловлено отсутствием внешнего электромагнитного поля – вся энергия распространяется только внутри кабеля.

Коаксиальный кабель содержит:

1) внутренний проводник диаметром от 0,4 мм до 2,5 мм;

2) диэлектрик, в качестве которого обычно применяется обычный полиэтилен или физически вспененный полиэтилен с низкой плотностью, позволяющий уменьшить коэффициент затухания;

3) внешний проводник, в качестве которого обычно используется фольга;

4) медную оплетку с покрытием из олова;

5) защитную пленку;

6) внешнюю оболочку.

В ранних сетях Ethernet применялись два типа коаксиального кабеля:

· толстый (thick) диаметром около 1 см, для которого, в отличие от тонкого, характерны следующие особенности:

— более надежная защита от внешних помех;

— требует применения специального отвода (прокалывающего разъема и отводящего кабеля) для подключения компьютера или другого устройства;

· тонкий (thin) диаметром около 0,5 см, для которого, в отличие от толстого, характерны следующие особенности:

— передает данные на более короткие расстояния;

— использует более простые соединители.

Основные недостатки коаксиальных кабелей:

Читайте также:  Проводник с током находится между полюсами постоянного магнита см рисунок укажите направление силы

· сложность прокладки, а также добавления и отключения станций;

· высокая удельная стоимость.

Волоконно-оптические линии связи (ВОЛС). Оптическое волокно. Волоконно-оптический кабель. Оптические компоненты. Особенности ВОЛС. Применение ВОЛС в ЛВС. Способы сращивания оптических волокон. Перспективы ВОЛС.

Источник

Кабельные линии электропередачи

Кабельная линия (КЛ) — линия для передачи электроэнергии, состоящая из одно­го или нескольких параллельных кабелей, выполненная каким-либо способом прокладки (рис. 1.29). Кабельные линии прокладывают там, где строительство ВЛ невозможно из-за стесненной территории, неприемлемо по условиям техники безопасности, нецелесооб­разно по экономическим, архитектурно-планировочным показателям и другими требо­ваниям. Наибольшее применение КЛ нашли при передаче и распределении ЭЭ на про­мышленных предприятиях и в городах (системы внутреннего электроснабжения) при передаче ЭЭ через большие водные пространства

Достоинства и преимущества кабельных линий по сравнению с воздушными: неподверженность атмосферным воз­действиям, скрытность трассы и недоступность для посторонних лиц, меньшая повреж­даемость, компактность линии и возможность широкого развития электроснабжения по­требителей городских и промышленных районов. Однако КЛ значительно дороже воздушных того же напряжения (в среднем в 2-3 раза для линий 6-35 кВ и в 5-6 раз для линий 110 кВ и выше), сложнее при сооружении и эксплуатации.

Рис. 1.29. Способы прокладки кабелей и кабельные сооружения: а — земляная траншея; б-_коллектора;в-туннель; г—канал; д — эстакада; е — блок

В состав КЛ входят: кабель, оборудования для соединения и секционирования участков кабеля и присоединения концов кабелей к аппаратуре и шинам РУ (кабельная арматура – главным образом различные муфты), строитель­ные конструкции, элементы крепления, а также аппаратуры подпитки маслом или газом (для масло- и газонаполненных кабелей).

Классификация кабельных линий в основном соответствует классификации входящих в нее кабелей. Основными признаками являются:

— число токоведущих элементов;

— характер пропитки и способ увеличения электрической прочности бумажной изоляции;

(Данные признаки охватывают лишь кабели, работающие в условиях естественного охлаждения. Имеются кабели с форсированным охлаждением водой или маслом, а также криогенные кабели.)

Кабель — готовое заводское изделие, состоящее из изолированных токо-проводящих жил, заключенных в защитную герметичную оболочку и броню, пре­дохраняющие их от влаги, кислот и механических повреждений. Силовые кабели имеют от одной до четырех алюминиевых или медных жил сечением 1,5—2000 мм 2 . Жилы сечением до 16 мм 2 — однопроволочные, свыше — многопроволоч­ные. По форме сечения жилы круглые, сегментные или секторные.

Кабели напряжением до 1 кВ выполняются, как правило, четырехжильными, напряжением 6—35 кВ — трехжильными, а напряжением 110—220 кВ — одножильными.

Защитные оболочки делаются из свинца, алюминия, резины и полихлорви­нила. В кабелях напряжением 35 кВ каждая жила дополнительно заключается в свинцовую оболочку, что создает более равномерное электрическое поле и улуч­шает отвод тепла. Выравнивание электрического поля у кабелей с пластмассовой изоляцией и оболочкой достигается экранированием каждой жилы полупроводя­щей бумагой.

В кабелях на напряжение 1—35 кВ для повышения электрической прочно­сти между изолированными жилами и оболочкой прокладывается слой поясной изоляции.

Броня кабеля, выполненная из стальных лент или стальных оцинкованных проволок, защищается от коррозии наружным покровом из кабельной пряжи, пропитанной битумом и покрытой меловым составом.

В кабелях напряжением 110кВ и выше для повышения электрической прочности бумажной изоляции их наполняют газом или маслом под избыточным давлением (газонаполненные и маслонаполненные кабели).

Кабельные линии высокого напряжения

Кабельные линии с вязкой пропиткой при напряжениях свыше 35 кВ не применяются. Это связано с тем, что в изоляции готового кабеля всегда остаются воздушные включения. Их наличие существенно снижает электрическую прочность изоляции. Воздушные включения, в зависимости от места их нахождения, подвергаются ионизации со всеми вытекающими отсюда последствиями, либо их отрицательная роль проявляется в связи с протеканием тепловых процессов. Кабель периодически подвергается нагреванию и охлаждению в связи с изменением передаваемой мощности. Увеличение и снижение объема кабеля приводит к увеличению воздушных включений, миграции их к токопроводящей жиле и последующему пробою.

Устранить указанные явления можно двумя способами:

— исключить воздушные включения;

— повысить давление в воздушных (газовых) включениях.

Первый способ используется в маслонаполненных кабелях (МНК) низкого давления, имеющих каналы для масла внутри жилы, второй – в МНК высокого давления, прокладываемых в стальных трубопроводах.

Маслонаполненные кабели низкого давления.

МНК низкого давления (до 0,05 МПа ) выпускают одножильными, Они серийно изготавливаются на напряжение 110, 150 и 220 кВ и имеют медные жилы сечением 120-800 в свинцовых или алюминиевых оболочках.

В зависимости от условий прокладки – в земле (в траншеях), когда кабель не подвергается растягивающим условиям и защищен от механических повреждений; или под водой, в болотистой местности и там, где он подвергается растягивающим усилиям, — применяются различные тины маслонаполненного кабеля.

Маслонаполненные кабели высокого давления.

Маслонаполненные кабели (МНК) высокого давления изготовляются на напряжение 110, 220, 330, 380 и 500 Кв.

Жилы такого кабеля выпускают:

а) во временной свинцовой оболочке, предохраняющей изоляцию от увлажнения и повреждения при транспортировке и удаляемой при монтаже;

б) без оболочки. В этом случае жилы кабеля доставляются на трассу в герметичном контейнере, заполненном маслом.

При монтаже изолированные и экранированные медные жилы сечением 120-700 с наложенными на них полукруглыми проволоками скольжения затягиваются в стальные трубы. При = 500 кВ наружный диаметр трубы составляет 273 мм при толщине стенки 10 мм.

Для таких кабельных линий давление масла составляет 1,08 – 1,57 МПа. За счет высокого давления повышается электрическая прочность. Трубы являются хорошей защитой от механических повреждений.

Трубопроводы сваривают из отрезков длиной по 12 м. Компенсация изменения объема масла при изменении температуры и поддержание давления масла в трубопроводе осуществляется автоматически подпитывающим устройством, которое располагается на одном конце линии ( при небольших длинах) или на обоих(при больших длинах).

Существуют также маслонаполненные кабели среднего давления, кабели с полимерными материалами в качестве изоляции и т.д.

В марке, обозначении кабеля указываются сведения о его конструкции, номинальное напряжение, количество и сечение жил. У четырехжильных кабелей напряжением до 1 кВ сечение четвертой («нулевой») жилы меньше, чем фазной. Например кабель ВПГ-1— 3×35+1×25 — кабель с тремя медными жилами сече­нием по 35 мм 2 и четвертой сечением 25 мм», полиэтиленовой (П) изоляцией на 1 кВ оболочкой из полихлорвинила (В), небронированный, без наружного покрова (Г)’_ для прокладки внутри помещений, в каналах, туннелях, при отсутствии ме­ханических воздействий на кабель; кабель АОСБ-35—3×70 — кабель с тремя алюминиевыми (А) жилами по 70 мм 2 , с изоляцией на 35 кВ, с отдельно освинцо­ванными (О) жилами, в свинцовой (С) оболочке, бронированный (Б) стальными лентами, с наружным защитным покровом — для прокладки в земляной траншее;

ОСБ-35__3x70 — такой же кабель, но с медными жилами.

Конструкции некоторых кабелей представлены на рис. 1.30. На рис. 1.30, а, б даны силовые кабели напряжением до 10 кВ.

Четырехжильный кабель напряжением 380 В (см. рис. 1.30, а) содержит элементы: 1 — токопроводящие фазные жилы; 2 — бумажная фазная и поясная изоляция; 3 — защитная оболочка; 4 — стальная броня; 5 — защитный покров; 6 — бумажный наполнитель; 7 — нулевая жила.

Трехжилъный кабель с бумажной изоляцией напряжением 10 кВ (рис. 1.30, б) содержит элементы: 1 — токоведущие жилы; 2 — фазная изоляция; 3 — общая поясная изоляция; 4 — защитная оболочка; 5 — подушка под броней; 6 — сталь­ная броня; 7 — защитный покров; 8 — заполнитель.

Трехжилъный кабель напряжением 35 кВ изображен на рис. 1.30, в. В него входят: 1 — круглые токопроводящие жилы; 2 — полупроводящие экраны; 3 — фазная изоляция; 4 — свинцовая оболочка; 5 — подушка; 6 — заполнитель из ка­бельной пряжи; 7 — стальная броня; 8 — защитный покров.

На рис. 1.30, г представлен маслонаполненный кабель среднего и высокого давления напряжением 110—220 кВ. Давление масла предотвращает появление воздуха и его ионизацию, устраняя одну из основных причин пробоя изоляции. Три однофазных кабеля помещены в стальную трубу 4, заполненную маслом 2 под избыточным давлением. Токоведущая жила 6состоит из медных круглых проволок и покрыта бумажной изоляцией 1 с вязкой пропиткой; поверх изоляции наложен экран 3 в виде медной перфорированной ленты и бронзовых проволок, предохраняющих изоляцию от механических повреждений при протягивании ка­беля в трубе. Снаружи стальная труба защищена покровом 5 [22].

Широко распространены кабели в полихлорвиниловой изоляции, произво­димые трех-, четырех- и пятижильными (1.30, е) или одножильными (рис. 1.30, д). Более подробные данные о различных типах и марках кабелей, областях их применения приведены в.

Кабели изготавливаются отрезками ограниченной длины в зависимости от напряжения и сечения. При прокладке отрезки соединяют посредством соедини­тельных муфт, герметизирующих места соединения. При этом концы жил кабелей освобождают от изоляции и заделывают в соединительные зажимы.

При прокладке в земле кабелей 0,38—10 кВ для защиты от коррозии и механи­ческих повреждений место соединения заключается в защитный чугунный разъемный кожух. Для кабелей 35 кВ используются также стальные или стеклопластиковые кожухи.

Надежность работы всей кабельной линии во многом определяется надежностью ее арматуры, т. е муфт различного типа и назначения.

Кабельные муфты высокого напряжения классифицируются по трем основным признакам.

Читайте также:  Электрический ток причины поражения бжд

По назначению муфты делятся на три основные группы –концевые, соединительные и стопорные, причем среди концевых выделяют открытые муфты и кабельные вводы в трансформаторы и высоковольтные аппараты, а среди соединительных – собственно соединительные, ответвительные и соединительно — разветвительные муфты.

По виду электрической изоляции муфты делятся на две группы: со слоистойи монолитной изоляцией. Слоистая изоляция выполняется путем намотки лент из кабельной бумаги, синтетической пленки или их композиций и заполняется той или иной средой (маслом, газом) под избыточным давлением или без него. Монолитная изоляция образуется методом экструзии или спекания изолирующих материалов в подогреваемых пресс-формах.

По роду тока различают муфты для кабелей переменного, постоянного и импульсного тока. Муфты кабелей переменного тока могут выполняться однофазными и трехфазными.

Конструкция муфт силовых кабелей высокого напряжения в первую очередь определяется типом кабеля, для которого они предназначены.

На концах кабелей применяют концевые муфты или концевые заделки.

Рис. 1.30. Силовые кабели: а — четырехжильный напряжением 380 В;

б— трсхжильный с бумажной изоляцией напряжением 10 кВ; в — трехжильный напряжением 35 кВ; г — маслонаполненный высокого давления; д — одножильный с пластмассовой изоляцией

На рис. 1.31а, показано соединение трехжильного низковольтного кабеля 2 в чугунной муфте 1. Концы кабеля фиксированы фарфоровой распоркой 3 и соединены зажимом 4. Муфты кабелей до 10 кВ с бумажной изоляцией заполняются битуминоз­ными составами, кабели 20—35 кВ — маслонаполненными [8]. Для кабелей с пласт­массовой изоляцией применяют соединительные муфты из термоусаживаемых изоля­ционных трубок, число которых соответствует числу фаз, и одной термоусаживаемой трубки для нулевой жилы, усаживаемых в герметизированную муфту (рис. 1.31, б) .

Рис. 1.31. Соединительные муфты для трех- и четырехжильных кабелей напряже— нием до 1 кВ: а — чугунная; б— из термоусаживаемых изоляционных трубок

На рис. 1.32, а приведена мастиконаполненая трехфазная муфта наружной установки с фарфоровыми изоляторами для кабелей напряжением 10 кВ. Для трехжильных кабелей с пластмассовой изоляцией применяется концевая муфта, представленная на рис. 1.32, б. Она состоит из термоусаживаемой перчатки 1, стойкой к воздейст­вию окружающей среды, и полупроводящих термоусаживаемых трубок 2, с по­мощью которых на конце трехжильного кабеля создаются три одножильных ка­беля. На отдельные жилы надеваются изоляционные термоусаживаемые трубки 3. На них монтируется нужное количество термоусаживаемых изоляторов 4.

Рис. 1.32. Концевые муфты для трехжильных кабелей напряжением 10 кВ:а — наружной установки с фарфоровыми изоляторами; б — наружной установки с пластмассовой изоляцией; в — внутренней установки с сухой разделкой

Для кабелей 10 кВ и ниже с пластмассовой изоляцией во внутренних поме­щениях применяют сухую разделку (рис. 1.32, е). Разделанные концы кабеля с изоляцией 3 обматывают липкой полихлорвиниловой лентой 5 и лакируют; концы кабеля герметизируют кабельной массой 7 и изоляционной перчаткой 1, перекры­вающей оболочку кабеля 2, концы перчатки и жилы дополнительно уплотняют и обматывают полихлорвиниловой лентой 4, 5, последнюю для предотвращения от­ставания и разматывания фиксируют бандажами из шпагата 6.

Способ прокладки кабелей определяется условиями трассы линии. Кабели про­кладываются в земляных траншеях, блоках, туннелях, кабельных туннелях, коллекто­рах, по кабельным эстакадам, а так же по перекрытиям зданий (рис. 1.29).

Наиболее часто на территории городов, промышленных предприятиях ка­бели прокладывают в земляных траншеях. Для предотвращения по­вреждений из-за прогибов на дне траншеи создают мягкую подушку из слоя про­сеянной земли или песка. При прокладке в одной траншее нескольких кабелей до 10 кВ расстояние по горизонтали между ними должно быть не менее 0,1 м, между кабелями 20—35 кВ — 0,25 м. Кабель засыпают небольшим слоем такого же грунта и закрывают кирпичом или бетонными плитами для защиты от механиче­ских повреждений. После этого кабельную траншею засыпают землей. В местах перехода через дороги и на вводах в здания кабель прокладывают в асбестоцементных или иных трубах. Это защищает кабель от вибраций и обеспечивает воз­можность ремонта без вскрытия полотна дороги. Прокладка в траншеях — наи­менее затратный способ кабельной канализации ЭЭ.

В местах прокладки большого количества кабелей агрессивный грунт и блуждаю­щие токи ограничивают возможность их прокладки в земле. Поэтому наряду с другими подземными коммуникациями используют специальные сооружения: коллекторы, тунне­ли, каналы, блоки и эстакады.

Коллектор (рис. 1.29, б) служит для совместного размеще­ния в нем разных подземных коммуникаций: кабельных силовых линий и связи, водопро­вода по городским магистралям и на территории крупных предприятий.

При большом числе параллельно прокладываемых кабелей, например, от здания мощной электростанции применяют прокладку в туннелях

(рис. 1.29, в). При этом улучшаются условия экс­плуатации, снижается площадь поверхности земли, необходимая для прокладки кабелей. Однако стоимость туннелей весьма велика. Туннель предназначен только для прокладки кабельных линий. Его сооружают под землей из сборного железобетона или канализаци­онных труб большого диаметра, емкость туннеля — от 20 до 50 кабелей.

При меньшем числе кабелей применяют кабельные каналы (рис. 1.29, г), за­крытые землей или выходящие на уровень поверхности земли.

Кабельные эстака­ды и галереи (рис. 1.29, д) используют для надземной прокладки кабелей. Этот вид кабельных сооружений широко применяют там, где непосредственно про­кладка силовых кабелей в земле является опасной из-за оползней, обвалов, вечной мерзлоты и т. п. В кабельных каналах, туннелях, коллекторах и по эстакадам ка­бели прокладываются по кабельным кронштейнам.

В крупных городах и на больших предприятиях кабели иногда проклады­ваются в блоках (рис. 1.29, е), представляющих асбестоцементные трубы, стыки, которые заделаны бетоном. Однако в них кабели плохо охлаждаются, что снижает их пропускную способность. Поэтому прокладывать кабели в блоках следует лишь при невозможности прокладки их в траншеях.

В зданиях, по стенам и перекрытиям большие потоки кабелей укладывают в металлические лотки и короба. Одиночные кабели могут прокладываться открыто по стенам и перекрытиям или скрыто: в трубах, в пустотелых плитах и других строительных частях зданий.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Кабельные линии связи

    Bot 07.03.2021 406 0 28.03.2021 1 1 0

Кабельные линии связи

  • Содержание статьи
    • Вступление
    • Важнейшие характеристики:
    • Коаксиальные кабели
    • Кабели на основе витой пары
    • Волоконно-оптические линии связи
      • Окна прозрачности оптоволокна
    • Добавить комментарий

Вступление

В данной статье мы устройство кабельных линий связи используемых в вычислительных сетях.

Наиболее часто в компьютерных сетях применяются кабельные соединения, выступающее в качестве среды электрических или оптических сигналов между компьютерами и другими сетевыми устройствами. При этом используются следующие типы кабеля:

  • коаксиальный кабель (coaxial cable);
  • витая пара (twisted pair);
  • волоконно-оптический или оптоволоконный кабель (fiber optic).

Кабель — это изделие, состоящее из проводников, слоев экрана и изоляции. В некоторых случаях в состав кабеля входят разъемы, с помощью которых кабели присоединяются к оборудованию.

Важнейшие характеристики:

  • Коэффициент затухания, дБ/км — зависит от свойств материалов проводников и изоляционного материала. Наилучшими свойствами (малым сопротивлением) обладают медь и серебро. Коэффициент затухания зависит также от геометрических размеров проводников.
  • Скорость распространения, км/мс — с ростом частоты скорость распространения увеличивается, приближаясь к скорости света в вакууме 300 км/мс. Данный параметр зависит также от свойств диэлектрика, применяемого в кабеле.
  • Перекрестные наводки на ближнем конце (Near End Cross Talk, NEXT);
  • Волновое сопротивление (импеданс) (Ом) — сопротивление, которое встречает электромагнитная волна при распространении вдоль однородной линии без отражения, т.е. при условии, что на процесс передачи не влияют несогласованности на концах линии. Волновое сопротивление симметричного кабеля зависит от удельных значений емкости и индуктивности кабеля.
  • Активное сопротивление — это сопротивление постоянному току в электрической цепи. В отличие от импеданса активное сопротивление не зависит от частоты и возрастает с увеличением длины кабеля.
  • Емкость — это свойство металлических проводников накапливать энергию. Два электрических проводника в кабеле, разделенные диэлектриком, представляют собой конденсатор, способный накапливать заряд. Емкость является нежелательной величиной, поэтому следует стремиться к тому, чтобы она была как можно меньше (иногда применяют термин «паразитная емкость»).Высокое значение емкости в кабеле приводит к искажению сигнала и ограничивает полосу пропускания линии.
  • Электрический шум -это нежелательное переменное напряжение в проводнике. Электрический шум бывает двух типов: фоновый и импульсный. Электрический шум можно также разделить на низко-, средне- и высокочастотный. Источниками фонового электрического шума в диапазоне до 150 кГц являются линии электропередачи, телефоны и лампы дневного света; в диапазоне от 150 кГц до 20 МГц -компьютеры, принтеры, ксероксы; в диапазоне от 20 МГц до 1 ГГц — телевизионные и радиопередатчики, микроволновые печи. Основными источниками импульсного электрического шума являются моторы, переключатели и сварочные агрегаты. Электрический шум измеряется в милливольтах.
  • Диаметр или площадь сечения проводника.

Коаксиальные кабели

Еще пятнадцать-двадцать лет назад при создании сетей в основном применялся именно коаксиальный кабель, состоящее из передающего сигнала медной или алюминиевой жилы, слоя изоляции, экранирующей оплетки из медных проводов или алюминиевой фольги и защитной внешней обмотки.

Для передачи сигнала в коаксиальном кабеле использовалась центральная жила, тогда как оплетка заземлялась, выступая в роли «электрического нуля».

Кабели делятся по шкале Radio Guide. Наиболее распространённые категории кабеля:

  • RG-8 и RG-11 — «Толстый Ethernet» (Thicknet), 50 Ом. Стандарт 10BASE5;
  • RG-58 — «Тонкий Ethernet» (Thinnet), 50 Ом. Стандарт 10BASE2:
  • RG-58/U — сплошной центральный проводник,
  • RG-58A/U — многожильный центральный проводник,
  • RG-58C/U — военный кабель;
  • RG-59 — телевизионный кабель (Broadband/Cable Television), 75 Ом. Российский аналог РК-75-х-х («радиочастотный кабель»);
  • RG-6 — телевизионный кабель (Broadband/Cable Television), 75 Ом. Кабель категории RG-6 имеет несколько разновидностей, которые характеризуют его тип и материал исполнения. Российский аналог РК-75-х-х;
  • RG-62 — ARCNet, 93 Ом
Читайте также:  План урока по физике получение переменного электрического тока 9 класс

Тонкий коаксиальный кабель – гибкий, диаметром около 0,5см, позволяет передавать данные без затухания на расстояния до 185м (в реальных сетях даже до 300м).

Для подключения кабеля к сетевым устройствам применялись специальные разъемы типа BNC.

На концах отрезков кабеля монтировались простые BNC-коннекторы. Сращивание этих отрезков производили с помощью BNC I-коннекторов, а для соединения с сетевыми адаптерами и устройствами использовались BNCT-коннекторы.

Чтобы отраженный сигнал поглощался на концах кабеля, там устанавливали BNC-терминаторы, один из которых обязательно заземлялся.

Широкое распространение сетей, построенных на основе коаксиального кабеля, было вызвано двумя обстоятельствами: дешевизной (особенно для сетей на тонком коаксиальном кабеле) – расходы на кабель и коннекторы были минимальными, а больше для небольших сетей ничего и не требовалось, и простотой – достаточно было проложить магистральный кабель, установить на его концах терминаторы и подключить к нему все компьютеры, — и сеть готова.

Кабели на основе витой пары

Витая пара (twisted pair) — вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой.

Цели скручивания проводников:

  • повышения связи проводников одной пары (электромагнитная помеха одинаково влияет на оба провода пары);
  • уменьшения электромагнитных помех от внешних источников;
  • уменьшения взаимных наводок при передаче дифференциальных сигналов.

Виды кабелей на основе витой пары:

  • незащищенная витая пара (UTP — Unshielded twisted pair) — отсутствует защитный экран вокруг отдельной пары;
  • фольгированная витая пара (FTP — Foiled twisted pair) — также известна как F/UTP, присутствует один общий внешний экран в виде фольги;
  • защищенная витая пара (STP — Shielded twisted pair) — присутствует защита в виде экрана для каждой пары и общий внешний экран в виде сетки;
  • фольгированная экранированная витая пара (S/FTP — Screened Foiled twisted pair) — внешний экран из медной оплетки и каждая пара в фольгированной оплетке;
  • незащищенная экранированная витая пара (SF/UTP — Screened Foiled Unshielded twisted pair) — двойной внешний экран из медной оплетки и фольги, каждая витая пара без защиты.

Категории кабелей на основе витой пары

Благодаря своей дешевизне, легкости в установке и универсальности может использоваться в большинстве сетевых технологий, не экранированная витая пара сейчас является самым распространенным типом кабеля, используемым при построении локальных сетей. Экранированная витая пара, несмотря на большую помехозащищенность, не получила широкого распространения из-за сложностей установке – требуется заботиться о заземлении, да и кабель по сравнению с не экранированной витой парой более жесткий.

Витая пара подключается к компьютеру и другим устройствам с помощью восьмиконтактного разъема 8P8C (8 Position 8 Contact). Этот коннектор похож на применяемых в телефонных линиях (коннектор RJ-11), только немного больше него и называется RJ-45.

Заделка кабеля «витая пара» в коннектор 8P8C выполняется в соответствии со стандартами EIA/TIA568A и 568B.


Заделка кабеля «витая пара» в коннектор 8P8C выполняется с помощью специального обжимного инструмента – кримпера.

Заметим, что кабели, применяемые для подключения компьютеров к концентраторам и коммутаторам, обжимаются с двух сторон одинаково, т.е. по одному и тому же стандарту. При этом получается так называемый прямой кабель. Однако для непосредственного соединения сетевых адаптеров компьютеров используется перекрестный кабель (“кросс-кабель”).

Волоконно-оптические линии связи

Волоконно-оптические линии связи (ВОЛС) имеют ряд существенных преимуществ по сравнению с линиями связи на основе металлических кабелей:

  • большая пропускная способность;
  • малое затухание;
  • малые масса и габариты;
  • высокая помехозащищенность;
  • надежная техника безопасности;
  • практически отсутствующие взаимные влияния;
  • малая стоимость из-за отсутствия в конструкции цветных металлов.

В ВОЛС применяют электромагнитные волны оптического диапазона. Напомним, что видимое оптическое излучение лежит в диапазоне длин волн 380. 760 нм. Практическое применение в ВОЛС получил инфракрасный диапазон, т.е. излучение с длиной волны более 760 нм. В оптическом волноводе может одновременно существовать несколько типов волн (мод). В зависимости от модовых характеристик оптическое волокно делится на два вида:

Волоконно-оптический кабель состоит из центрального проводника света (сердцевины) — стеклянного волокна, окруженного другим слоем стекла — оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки

В качестве источников излучения света в волоконно-оптических кабелях применяются:

  • светодиоды;
  • полупроводниковые лазеры.

В зависимости от распределения показателя преломления и от величины диаметра сердечника различают:

  • многомодовое волокно со ступенчатым изменением показателя преломления. В ступенчатом оптоволокне могут возбуждаться и распространяться до тысячи мод с различным распределением по сечению и длине оптоволокна. Моды имеют различные оптические пути и, следовательно, различные времена распространения по оптоволокну, что приводит к уширению импульса света по мере его прохождения по оптоволокну. Это явление называется межмодовой дисперсией и оно непосредственно влияет на скорость передачи информации по оптоволокну.
  • многомодовое волокно с плавным изменением показателя преломления. Отличается от ступенчатого тем, что показатель преломления сердцевины плавно возрастает от края к центру. Это приводит к явлению рефракции в сердцевине, благодаря чему снижается влияние межмодовой дисперсии на искажение оптического импульса. Профиль показателя преломления градиентного волокна может быть параболическим, треугольным, ломаным и т.д.
  • одномодовое волокно. В этом оптоволокне существует и распространяется только одна мода (точнее две вырожденные моды с ортогональными поляризациями), поэтому в нем отсутствует межмодовая дисперсия, что позволяет передавать сигналы на расстояние до 50 км со скоростью до 2,5Гбит/с и выше без регенерации.


Для подключения оптического кабеля используются специальные коннекторы. Коннекторы SC и ST сегодня считаются устаревшими, поэтому в новом оборудовании чаще всего применяются разъемы для коннекторов FC.

ST и SC коннекторы имеют самую простую конструкцию, могут использоваться как в магистральных сетях, так и в патч кордах. В них используется механизм соединения «push-pull». К сожалению, их простата отрицательно сказывается на надежности.

FC-коннектор имеет более высокую надежность, так как имеет керамический наконечник и накидную гайку для фиксации разъема на оптическом порту. Это дает возможность использовать его не только в магистральных сетях, но даже в условиях высокой подвижности.

Монтаж коннекторов (заделка оптоволоконного кабеля в коннектор) довольно сложен и требует специального оборудования. Правда, в последнее время появились наборы, позволяющие заделывать такие коннекторы и в домашних условиях. Однако их использование требует точности и терпения, поскольку производится путем вклейки оптического волокна в наконечник с последующей сушкой тонкой шлифовкой.

По сравнению с электрическими кабелями оптоволокно обеспечивает непревзойденные параметры помехозащищенности и защиты передаваемого сигнала от перехвата. Кроме того, при его использовании данные удается передавать на существенно большие расстояния, да и теоретически возможные скорости передачи в оптоволокне намного выше.

Окна прозрачности оптоволокна

Окно прозрачности — диапазон длин волн оптического излучения, в котором имеет место меньшее, по сравнению с другими диапазонами, затухание излучения в среде, в частности — в оптическом волокне. Стандартное ступенчатое оптическое волокно SMF имеет три окна прозрачности: 850 нм, 1310 нм и 1550 нм. К настоящему времени разработаны четвёртое (1580 нм) и пятое (1400 нм) окна прозрачности, а так же оптические волокна, имеющие относительно хорошую прозрачность во всём ближнем инфракрасном диапазоне.

Первоначально, в 70-х годах, системы волоконно-оптической связи использовали первое окно прозрачности, поскольку выпускаемые в то время GaAs-лазеры работали на длине волны 850 нм. В настоящее время этот диапазон из-за большого затухания используется только в локальных сетях.

В 80-х годах были разработаны лазеры на тройных и четверных гетероструктурах, способные работать на длине волны 1310 нм и второе окно прозрачности стало использоваться для дальней связи. Преимуществом данного диапазона явилась нулевая дисперсия на данной длине волны, что существенно уменьшало искажение оптических импульсов.

Третье окно прозрачности было освоено в начале 90-х годов. Преимуществом третьего окна является не только минимум потерь, но и тот факт, что на длину волны 1550 нм приходится рабочий диапазон волоконно-оптических эрбиевых усилители (EDFA). Данный тип усилителей, имея способность усиливать все частоты рабочей области, предопределил использование третьего окна прозрачности для систем со спектральным уплотнением (WDM).

Четвёртое окно прозрачности простирается до длины волны 1620 нм, увеличивая рабочий диапазон систем WDM.

Пятое окно прозрачности появилось в результате тщательной очистки оптического волокна от посторонних примесей. Таким образом, было получено оптическое волокно AllWave, имеющее малые потери во всей области от 1280 нм до 1650 нм.

Источник