Меню

Измерители преобразователи ток напряжение

ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ

date image2014-02-24
views image2198

facebook icon vkontakte icon twitter icon odnoklasniki icon

Общие сведения. Измерительные преобразователи представ­ляют собой многочисленную группу средств измерений, предна­значенных для выполнения различных измерительных преобразо­ваний. В зависимости от допускаемой погрешности для измери­тельных преобразователей устанавливают соответствующий класс точности.

Ниже рассматриваются преобразовате­ли электрических величин, которые называются масштабные преобразователи.

Масштабные измерительные преобразователи Масштабным называют измерительный преобразователь, предназначенный для изменения величины в заданное число раз. К ним относят шунты, делители напряжения, измерительные усилители, измери­тельные трансформаторы тока и напряжения.

Шунты. Для уменьшения силы тока в определенное число раз применяют шунты. Например, такая задача возникает в том случае, когда диапазон показаний амперметра меньше диапазона изменения измеряемого тока.

Шунт представляет собой резистор, включаемый параллель­но средству измерений. Если сопротив­ление шунта Rш=R/(п—1), где Rсопротивление средства измерений; п=I1/I2 коэффициент шунтирования, то ток I2 в п раз меньше тока I1.

Шунты изготавливают из манганина. В амперметрах для измерения небольших токов (до 30 А) шунты обычно помещают в корпусе прибора, для измерения больших токов (до 7500 А) применяют наружные шунты. Шунты могут быть многопредель­ными, т. е. состоящими из нескольких резисторов, или имеющими несколько отводов, что позволяет изменять коэффициент шунтирования. Классы точности шунтов от 0,02 до 0,5.

Шунты используют в цепях постоянного тока в магни­тоэлектрических приборах Шунты с измерительными механизмами других типов не применяют из-за малой чувстви­тельности этих механизмов, что приводит к существенному увели­чению размеров шунтов и потребляемой ими мощности. Кроме того, при использовании шунтов на переменном токе возникает дополнительная погрешность от изменения частоты, так как с из­менением частоты сопротивления шунта и измерительного меха­низма изменяются неодинаково.

Делители напряжения. Для уменьшения напряжения в опре­деленное число раз применяют делители напряжения, которые в зависимости от рода напряжения могут быть выполнены на элементах, имеющих чисто активное сопротивление, емкостное или индуктивное сопротивление. Делители выполняют из резисторов на основе манганина. Они имеют нормированные коэффициенты деления и классы точности от 0,0005 до 0,01.

Для увеличения верхнего предела измерения средства изме­рений, например предела измерения вольтметра, имеющего внут­реннее сопротивление RV, применяют добавочные резисторы, включаемые последовательно с вольтметром. При этом добавоч­ный резистор и вольтметр образуют делитель напряжения. Добавочные резисторы делают из манганиновой проволоки и используют в цепях постоянного и переменного тока (до 20 кГц). Они бывают встраиваемые внутрь прибора и наруж­ные. Серийно выпускают калиброванные добавочные резисторы, применяемые с любым прибором, имеющим указанный номинальный ток. Классы точности калиброванных добавочных резисторов от 0,01 до 1. Добавочные резисторы применяют для преобразова­ния напряжения до 30 кВ. Номинальный ток добавочных резисто­ров от 0,5 до 30 мА.

Измерительные усилители. Для усиления сигналов постоян­ного и переменного тока, т. е. для расширения пределов измере­ния в сторону малых сигналов, применяют измерительные усили­тели. По диапазону частот усиливаемых сигналов измерительные усилители бывают для постоянного тока и напряжения, низкоча­стотными (20 Гц—200 кГц), высокочастотными (до 250 МГц) и селективными, усиливающими сигналы в узкой полосе частот. Измерительные усилители выполняют с нормированной погреш­ностью коэффициента передачи. Находят применение электрон­ные и фотогальванометрические усилители.

Применение электронных измерительных усилителей позво­ляет измерять сигналы от 0,1 мВ и 0,3 мкА с погрешностью от 0,1 до 1 %. Для усиления токов и напряжений от источников с большим внутренним сопротивлением используют электромет-рические усилители, отлича­ющиеся большим входным сопротивлением (до 10 12 Ом). Серийно выпускаемые измерительные усилители имеют унифицированный номинальный выходной сигнал 10 В или 5 мА.

Измерительные трансформаторы переменного тока. Измери­тельные трансформаторы тока и напряжения используют как преобразователи больших переменных токов и напряжений в от­носительно малые токи и напряжения, допустимые для измерений приборами с пределами измерения 5 А и 100 В. Измерительные трансформаторы в цепях высокого напряжения обеспечивают безопасность для персонала, обслуживающего приборы, так как приборы при этом включаются в цепь низкого напряжения.

Измерительные трансформаторы состоят из двух изолирован­ных друг от друга обмоток: первичной и вто­ричной, помещенных на ферромагнитный сердечник.

Первичную обмотку трансформатора тока включают в изме­ряемую цепь последовательно, а трансформаторов напряжения параллельно. Измерительные приборы включают во вторичную обмотку трансформаторов.

По показаниям приборов можно определить значения измеря­емых величин. Для этого необходимо показания приборов умно­жить на коэффициенты трансформации.

Коэффициент трансформации трансформатора тока это отношение тока первичной обмотки к току вторичной обмотки.

Коэффициент трансформации трансформатора напряжения это отношение напряжения первичной обмотки к напряжению вторичной обмотки.

Действительные коэффициенты трансформации зависят от зна­чений токов и напряжений, характера и значения нагрузки вто­ричной цепи, частоты тока, а также от конструкции трансформа­тора и материала сердечника и неизвестны. Поэтому показания приборов умножают не на действительные, а на номинальные коэффициенты трансформации.

Определение измеряемых величин по номинальным коэффи­циентам трансформации приводит к погрешностям. Погрешность токовая трансформаторов тока, погрешность напряжения трансформаторов напряжения и угловая погрешность из-за неточно­сти передачи фазы первичной величины вторичной величине. Угловая погрешность измерительных трансформаторов оказыва­ет влияние на показания ваттметров, счетчиков электрической энергии, фазометров.

Трансформатор тока работает в режиме, близком к режиму короткого замыкания, так как в его вторичную обмотку включаются приборы с малым со­противлением. Полное суммарное сопротивление при­боров и подводящих проводов является нагрузкой трансформато­ра тока.

Размыка­ние вторичной цепи трансформатора тока вызовет значительное увеличениемагнитного потока в магнитопроводе. Размыкание вторичной цепи — аварийный случай, так как возрастание потока в сердечнике приводит к большому увеличению ЭДС (до несколь­ких сотен вольт), что опасно для обслуживающего персонала и может вызвать электрический пробой изоляции вторичной об­мотки. Увеличение потока сопровождается ростом потерь на перемагничивание и вихревые токи, повышением темпе­ратуры сердечника, а следовательно и обмоток, и может служить причиной термического разрушения изоляции.

Для измерительных трансфор­маторов тока переносных установлены классы точности от 0,01 до 0,2. Их изготовляют на номинальную частоту или область номинальных частот от 25 Гц до 10 кГц. Трансформаторы тока выпускают на номинальные значения первичного тока от 0,1 А до 30 кА и на номинальное значение вторичного тока 5 А.

Стационарные трансформаторы тока для частоты 50 Гц дела­ют на номинальные первичные токи от 1 А до 40 кА. Классы точности от 0,2 до 10. Допускаемое значение токовой погрешности, со­ответствующее классу точности, имеет место при значении пер­вичного тока 50 — 120 % номинального. При других значениях первичного тока погрешность увеличивается.

Трансформаторы тока изготовляют на определенную номи­нальную нагрузку, например, для стационарных трансформато­ров от 2,5 до 100 В-А.

Трансформаторы напряжения. Измеритель­ные трансформаторы напряжения работают в режиме, близ­ком к режиму холостого хода, так как во вторичную обмотку включают приборы с относительно большим внутренним со­противлением.

Погрешности напряжения и угловая зависят от нагруз­ки во вторичной цепи трансформатора. Поэтому во вторичную цепь нужно включать такое количество приборов, чтобы потребляе­мая мощность не превышала номинальной мощности трансфор­матора.

Трансформаторы напряжения изготовляют на номинальные первичные напряжения от 220 В до 35 кВ при вто­ричном напряжении 150,100 и 100/Ö3 В для номинальной нагруз­ки от 5 до 25 В-А. Для трехфазных цепей изготовляют трехфазные трансформаторы напряжения.

ЭЛЕКТРОМЕХАНИЧЕСКИЕ ПРИБОРЫ С ПРЕОБРАЗОВАТЕЛЯМИ

Общие сведения. Высокая чувствительность, точность и ма­лое потребление энергии выгодно отличают магнитоэлектриче­ские приборы от других электромеханических приборов. Ввиду этого стремятся использовать магнитоэлектрические приборы для измерений на переменном токе. Эта задача решается путем преобразования переменного тока в постоянный с последующим его измерением с помощью магнитоэлектрического измерительно­го механизма.

Читайте также:  Сопротивление твердого проводника прохождению электрического тока

В качестве преобразователей переменного тока в постоянный используют выпрямительные и термоэлектрические преобразова­тели. а также преобразователи на электронных элементах – элек­тронных лампах, транзисторах, интегральных микросхемах. В соответствии с этим различают выпрямительные, тер­моэлектрические и электронные приборы. Ниже рассматриваются выпрямительные и термоэлектрические прибо­ры.

Выпрямительные приборы представляют собой со­единение выпрямительного преобразователя и магнитоэлектриче­ского измерительного механизма с отсчетным устройством.

В выпрямительных преобразователях ис­пользуют полупроводниковые диоды. Недостатком полупроводниковых диодов как выпрямитель­ных преобразователей является нелинейность вольт-амперной характеристики, нестабильность этой характеристики во времени и зависимость ее от температуры и частоты.

В выпрямительных приборах используют одно- и двухполупериодные схемы выпрямления. При использовании однополупериодного выпрямления через измерительный механизм проходит только одна полуволна переменного тока, а обратная пропускается через диод и резистор.

При использовании двухполупериодного выпрямления выпрямленный ток проходит через измерительный механизм в обе половины периода, чувствительность этих схем выше, чем однополупериодных. Наиболее распространена двухполупериодная схема выпрямления — мостовая.

Отклонение подвижной части выпрямительных приборов пропорционально среднему измеряемому току.

При измерениях в цепях переменного тока обычно нужно знать действующий ток (напряжение). Выпрямительный прибор может быть градуи­рован в действующих значениях тока (напряжения) только для заданной формы кривой (для синусоиды коэффициент формы Кф=1,11). Если же форма кривой измеряемого тока (напряжения) отлична от задан­ной, в показаниях прибора появляется погрешность.

Если коэффициент формы известен, то действующий ток несинусоидальной формы, измеренный прибором, градуирован­ным по синусоидальному току, может быть определен как показание прибора, умноженное на отношение коэффициентов форм измеряемого тока и синусоидального.

Зависимость коэффициента выпрямления диодов от темпера­туры, приложенного напряжения и частоты протекающего тока, а также влияние формы кривой измеряемого тока приводит к зна­чительным погрешностям выпрямительных амперметров и вольт­метров. Снижение погрешностей обычно производится путем включения дополнительных элементов в цепи приборов.

Сочетание магнитоэлектрического измерительного механиз­ма, схемы выпрямления, шунта или добавочного резистора обра­зует выпрямительный амперметр или вольтметр.

Выпускаемые в настоящее время выпрямительные приборы могут практически применяться только для измерения синусои­дальных токов и напряжений из-за большого влияния формы кривой.

Выпрямительные приборы в большинстве случаев выполняют многопредельными и комбинированными. Этими приборами пу­тем переключении элементов прибора можно измерять как постоянные, так и переменные токи и напря­жения, а также измерять сопротивления по схеме омметра. Верхний предел измерений для выпрямительных при­боров, выпускаемых отечественной промышленностью, составля­ет: тока — от 3 мА до 10 А, напряжения — от 75 мВ до 600 В (предел 75 мВ — только для постоянного напряжения), сопротивления — от 0,5 кОм до 5 МОм.

Основные достоинства выпрямительных приборов — высо­кая чувствительность, малое потребление мощности от измеря­емой цепи, возможность работы на повышенных частотах. Выпря­мительными приборами можно поль­зоваться для измерения токов и напряжений до частот 5000—10000 Гц, в приборах с частотной компенсацией рабочий диапазон частот расширяется до 50 кГц. Точность выпрямитель­ных приборов относительно невысока — класс точности обычно 1,5; 2,5.

Источник



Все виды преобразователей напряжения

Преобразователи напряжения широко используются как в быту, так и на производстве. Для производства и промышленности чаще всего изготавливаются по индивидуальному заказу, ведь там нужен мощный преобразователь и не всегда с напряжением стандартной величины. Стандартные величины выходных и входных параметров применяются зачастую в бытовых условиях. То есть преобразователь напряжения — это электронное устройство, которое предназначено для изменения вида электроэнергии, её величины или же частоты.

По своей функциональности они делятся на:

  1. Понижающие;
  2. Повышающие;
  3. Бестрансформаторные;
  4. Инверторные;
  5. Регулируемые с настройкой частоты и величины выходного переменного напряжения;
  6. Регулируемые с настройкой величины постоянного выходного напряжения.

Некоторые из них могут выполняться в специальном герметичном исполнении, такие типы устройств используются для влажных помещений, или же, вообще, для установки под водой.

Итак, что же из себя представляет каждый вид.

Высоковольтный преобразователь напряжения

Схема 1

Такое электронное устройство, которое предназначено для получения переменного или постоянного высокого напряжения (до нескольких тысяч вольт). Например, такие устройства применяются для получения высоковольтной энергии на кинескопы телевизоров, а также для лабораторных исследований и проверки электрооборудования напряжением, повышенным в несколько раз. Кабеля или же силовые цепи масляных выключателей, рассчитанных на напряжение 6 кВ, испытывают напряжением 30 кВ и выше, правда, такая величина напряжения не обладает высокой мощностью, и при пробое сразу же отключается. Эти преобразователи довольно компактны ведь их приходится переносить персоналу от одной подстанции к другой, чаще всего вручную. Нужно заметить, что все лабораторные блоки питания и преобразователи обладаю почти эталонным, точным напряжением.

Более простые высоковольтные преобразователи применяются для запуска люминесцентных ламп. Сильно повысить импульс до нужного можно за счёт стартера и дросселя, которые могут иметь электронную или же электромеханическую основу.

Промышленные установки, выполняющие преобразование более низкого напряжения в высокое, имеют множество защит и выполняются на повышающих трансформаторах (ПТН). Вот одна из таких схем дающая на выходе от 8 до 16 тысяч Вольт, при этом для его работы необходимо всего около 50 В.

Из-за того, что в обмотках трансформаторов вырабатывается и протекает довольно высокое напряжение, то и к изоляции этих обмоток, а также к её качеству предъявляются высокие требования. Для того чтобы устранить возможность появления коронирующих разрядов, детали высоковольтного выпрямителя должны быть припаяны к плате аккуратно, без заусенцев и острых углов, после чего залиты с обеих сторон эпоксидной смолой или слоем парафина толщиной 2…3 мм, обеспечивающим изоляцию друг от друга. Иногда данные электронные системы и устройства называют повышающий преобразователь напряжения.

Следующая схема представляет собой линейный резонансный преобразователь напряжения, который работает в режиме повышения. Он основан на разделении функций повышения U и его чёткой стабилизации в абсолютно разных каскадах.

При этом некоторые инверторные блоки можно заставить работать с минимальными потерями на силовых ключах, а также на выпрямленном мосте, где появляется высоковольтное напряжение.

Преобразователь напряжения для дома

С преобразователями напряжения для дома обычный человек сталкивается очень часто, ведь во многих устройствах есть блок питания. Чаще всего это понижающие преобразователи, имеющие гальваническую развязку. Например, зарядные устройства мобильных телефонов и ноутбуков, персональные стационарные компьютеры, радиоприёмники, стереосистемы, различные медиапроигрыватели и этот перечень можно продолжать очень долго, так как их разнообразие и применения в быту в последнее время очень широко.

Беперебойник

Бесперебойные блоки питания оснащены накопителями энергии в виде аккумуляторов. Такие устройства применяются также для поддержания работоспособности системы отопления, во время неожиданного отключения электроэнергии. Иногда преобразователи для дома могут быть выполнены по инверторной схеме, то есть подключив его к источнику постоянного тока (аккумулятору), работающего за счёт химической реакции можно получить на выходе обычное переменное напряжение, величина которого будет 220 Вольт. Особенностью данных схем является возможность получить на выходе чистый синусоидальный сигнал.

Одной из очень важных характеристик, применяемых в быту преобразователей, является стабильная величины сигнала на выходе устройства, независимо от того сколько вольт подаётся на его вход. Эта функциональная особенность блоков питания связана с тем, что для стабильной и продолжительной работы микросхем и других полупроводниковых устройств необходимо чётко нормированное напряжение, да ещё и без пульсаций.

Основными критериями выбора преобразователя для дома или квартиры являются:

  1. Мощность;
  2. Величина входного и выходного напряжения;
  3. Возможность стабилизации и её пределы;
  4. Величина тока на нагрузке;
  5. Минимизация нагрева, то есть лучше чтобы преобразователь работал в режиме с запасом по мощности;
  6. Вентиляция устройства, может быть естественная или принудительная;
  7. Хорошая шумоизоляция;
  8. Наличие защит от перегрузок и перегрева.
Читайте также:  Чему равен выход по току

Выбор преобразователя напряжения дело не простое, ведь от правильно выбранного преобразователя зависит и работа питаемого устройства.

Бестрансформаторные преобразователи напряжения

Схема 3

В последнее время они стали очень популярны, так как на их изготовление, а в частности, производство трансформаторов, нужно тратить немалые средства, ведь обмотка их выполняется из цветного металла, цена на который постоянно растёт. Основное преимущество таких преобразователей это, конечно же, цена. Среди отрицательных сторон есть одно существенно отличающее его от трансформаторных блоков питания и преобразователей. В результате пробоя одного или нескольких полупроводниковых приборов, вся выходная энергия может попасть на клеммы потребителя, а это обязательно выведет его из строя. Вот простейший преобразователь переменного напряжения в постоянное. Роль регулирующего элемента играет тиристор.

Проще обстоят дела с преобразователями, в которых отсутствуют трансформаторы, но работающие на основе и в режиме повышающего напряжение аппарата. Здесь даже при выходе одного элемента или нескольких на нагрузке не появится опасной губительной энергии.

Преобразователи постоянного напряжения

Преобразователь переменного напряжения в постоянное является самым часто используемым видом устройства этого типа. В быту это всевозможные блоки питания, а на производстве и в промышленности это питающие устройства:

  • Всех полупроводниковых схем;
  • Обмоток возбуждения синхронных двигателей и двигателей постоянного тока;
  • Катушек соленоидов масляных выключателей;
  • Оперативных цепей и цепей отключения там, где катушки требуют постоянного тока.

Тиристорный преобразователь напряжения — это наиболее часто применяемый для этих целей аппарат. Особенностью этих устройств является полное, а не частичное, преобразование переменного напряжения в постоянное без всякого рода пульсаций. Мощный преобразователь напряжения такого типа обязательно должен включать в себя радиаторы и вентиляторы для охлаждения, так как все электронные детали могут работать долго и безаварийно, только при рабочих температурах.

Регулируемый преобразователь напряжения

Регулируемый преобразотель

Эти устройства направлены на работу как в режиме повышения напряжения, так и в режиме понижения. Чаще всего это всё-таки аппараты, выполняющие плавную регулировку величины выходного сигнала, который ниже входного. То есть на вход подаётся 220 Вольт, а на выходе получаем регулируемую постоянную величину, допустим, от 2 до 30 вольт. Такие приборы с очень тонкой регулировкой применяются для проверки стрелочных и цифровых приборов в лабораториях. Очень удобно когда они оснащены цифровым индикатором. Нужно признать, что каждый радиолюбитель брал за основу своих первых работ именно этот вид, так как питание для определённой аппаратуры может быть разное по величине, а этот источник питания получался весьма универсальным. Как сделать качественный и работающий долгое время преобразователь, вот основная проблема юных радиолюбителей.

Инверторный преобразователь напряжения

инверторный преобразователь

Данный тип преобразователей положен в основу инновационных компактных сварочных устройств. Получая для питания переменное напряжение 220 Вольт аппарат выпрямляет его, после чего снова делает его переменным, но уже с частотой несколько десятков тысяч Гц. Это даёт возможность значительно снизить габариты сварочного трансформатора, установленного на выходе.

Также инверторный способ применяется для питания отопительных котлов от аккумуляторных батарей в случае неожиданного отключения электроэнергии. За счёт этого система продолжает работать и получает 220 вольт переменного напряжения из 12 Вольт постоянного. Мощный повышающий аппарат такого назначения должен эксплуатироваться от батареи большой ёмкости, от этого зависит как долго он будет снабжать котёл электроэнергией. То есть емкость при этом играет ключевую роль.

Высокочастотный преобразователь напряжения

За счёт применения повышающих преобразователей появляется возможность уменьшения габаритов всех электронных и электромагнитных элементов, из которых состоят схемы, а это значит снижается и стоимость трансформаторов, катушек, конденсаторов и т. д. Правда, это может вызывать высокочастотные радиопомехи, которые влияют на работу других электронных систем, да и обычных радиоприёмников, поэтому нужно надёжно экранировать их корпуса. Расчет преобразователя и его помех должен производиться высококвалифицированным персоналом.

Что такое преобразователь сопротивления в напряжение?
Это особый вид, который используется только при производстве и изготовлении измерительных приборов, в частности, омметров. Ведь основа омметра, то есть прибора измеряющего сопротивление, выполнена в измерении падения U и преобразовании его в стрелочные или цифровые показатели. Обычно измерения производятся относительно постоянного тока. Измерительный преобразователь — техническое средство, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации, а также передачи. Он входит в состав какого-либо измерительного прибора.

Преобразователь тока в напряжение

В большинстве случаев все электронные схемы нужны для обработки сигналов, представленных в виде напряжения. Однако иногда приходится иметь дело с сигналом в виде тока. Такие сигналы возникают, например, на выходе фоторезистора или фотодиода. Тогда желательно при первой же возможности преобразовать токовый сигнал в напряжение. Преобразователи напряжения в ток применяются в случае, когда ток в нагрузке должен быть пропорционален входному U и не зависеть от R нагрузки. В частности, при постоянном входном U ток в нагрузке также будет постоянным, поэтому такие преобразователи иногда условно называют стабилизаторами тока.

Ремонт преобразователя напряжения

Ремонт этих устройств для преобразования одного вида напряжения в другой, лучше производить в сервисных центрах, где персонал имеет высокую квалификацию и впоследствии предоставит гарантии выполненных работ. Чаще всего любые современные качественные преобразователи состоят из нескольких сотен электронных деталей и если нет явных сгоревших элементов, то найти поломку и устранить её будет очень сложно. Некоторые же китайские недорогие устройства данного типа, вообще, в принципе лишены возможности их ремонта, чего нельзя сказать об отечественных производителях. Да может они немного громоздкие и не компактные, но зато подлежат ремонту, так как многие из их деталей можно заменить на аналогичные.

Источник

Измерительные преобразователи

Многофункциональные измерительные преобразователи

Измерительный преобразователь переменного тока, напряжения

Преобразователи с питанием от токовой петли

Измерительный преобразователь постоянного тока, напряжения

Измерительный преобразователь мощности

Измерительный преобразователь температуры

Измерительный преобразователь импульсов в напряжение (частоты, оборотов)

Измерительные преобразователи — приборы с заданными характеристиками, служащие для преобразования измеряемой величины: переменного или постоянного напряжения, тока, а также частоты, температуры в нормированную аналоговую величину (обычно 0. 5мА, 0/4. 20мА, 0. 10В). Измерительный преобразователь применяется для обработки, дальнейших преобразований, индикации и передачи.

измерительные преобразователи измерительные преобразователиизмерительные преобразователи


Измерительные преобразователи
выгодное решение по цене и качеству.

Вы можете заказать измерительный преобразователь с различной конфигурацией.

  • По выходу: с нормированной величиной DC 0. 5мА, 0/4. 20мА, 0. 10В.
  • По входу: переменное напряжение или ток, постоянное напряжение или ток, частота, резистивный датчик температуры.
  • По дополнительному выходу: RS-485 (Modbus RTU), с дискретным выходом — электромеханическое реле или транзистор с ОК (для сигнализации выхода измеряемой величины за установленный предел).
  • По питанию: с универсальным питанием от источника питания постоянного или переменного напряжения или от токовой петли.
  • По количеству измеряемых фаз: с однофазным или трехфазным исполнением.

Электрические измерительные преобразователи поставляется со склада и под заказ. Для получения консультаций по вопросам выбора и поставки приборов обратитесь, пожалуйста, к нашим специалистам по телефону или просто нажмите кнопку ЗАКАЗАТЬ.

Источник

Преобразователь тока в напряжение на ОУ

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

В радиотехнике часто возникает необходимость в преобразователях. Многие источники сигнала имеют токовый выход. К таким источникам относятся ЦАПы, фоторезисторы, фототранзисторы и др… Для последующих манипуляций с сигналом необходимо преобразовывать его в напряжение. Рассмотрим проверенный временем преобразователь тока в напряжение на ОУ с разными источниками сигнала.

  1. Преобразователь тока в напряжение
  2. Схема преобразователя ток-напряжение на ОУ
  3. Преобразователь для заземленного источника
  4. Преобразователь тока в напряжение для незаземленного источника
  5. Заключение

Преобразователь тока в напряжение

Преобразователь тока в напряжение (или сокращенно I-U преобразователь) — это схемное решение, позволяющее преобразовывать выходной токовый сигнал источника в напряжение.

Так же его называют усилитель — преобразователь сопротивления. Такое название в технической литературе было дано за то, что простейший преобразователь тока в напряжение — это резистор.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Вся магия преобразования происходит по закону дедушки Ома. Ток iвх протекая через резистор R вызывает на нем падение напряжение Uвых. Величина этого напряжения прямо пропорциональна произведению сопротивления резистора и входного тока. Пожалуй формулой все звучит даже проще:

Основной недостаток использования одного резистора состоит в его ненулевом сопротивлении. Это обстоятельство становится серьезной проблемой, когда источник не в состоянии обеспечить необходимый уровень напряжения на резисторе. Результатом буду просадки напряжения на выходе.

Еще больше сопротивление сказывается на работе преобразователя, если у источника тока малый выходной рабочий диапазон. К таким источникам относится, например, фотодиод. Его выходной ток составляет единицы мкА.

В случае же ЦАПа, особенно высококачественного, использование резистора для преобразования предпочтительнее. Почему и зачем читайте в статье Резистор для ЦАП с токовым выходом. Это обусловлено некоторыми фазовыми проблемами схем, которые будут рассмотрены. К счастью для нас, источникам вроде фотодиода фазовые искажения безразличны.

Схема преобразователя ток-напряжение на ОУ

Схема преобразователя тока в напряжение, совсем не нова, но проверенна и безотказна. В общем виде она выглядит следующим образом:

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Ток сигнала iвх втекает в инвертирующий вход. Поскольку входной ток идеального ОУ равен нулю, то весь входящий ток поступает на резистор R цепи обратной связи. Этот ток создает на резисторе падение напряжения по закону все того же Ома.

Как результат ОУ будет стараться поддерживать на сопротивлении нагрузки RН напряжение, пропорциональное величине входного тока. Коэффициент усиления схемы в, таком случае, имеет размерность сопротивления. Что еще раз объясняет советское название усилитель-преобразователь сопротивления:

Преобразователь для заземленного источника

Рассмотрим несколько схем преобразователя тока в напряжение на ОУ, подходящие для любого случая. Начнем со схемы преобразователя для фотодиода.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Направление протекания тока показано стрелкой, и для данного случая величина выходного напряжения составит:

Знак минус появляется из-за выбранного направления протекания тока фотодиода. (Указано стрелкой на схеме выше)

На этой схеме так же показан дополнительный резистор в 1 МОм, с неинвертирующего(+) входа ОУ на землю. Схема останется работоспособной и без этого резистора, а вход операционного усилителя в таком случае заземляется напрямую.

Однако имея резистор в 1 МОм в цепи обратной связи, на каждый 1 мкА входного тока на выходе будет создан 1 Вольт напряжения. При таком коэффициенте усиления (миллион раз) резистор желателен из-за неидеальности операционных усилителей.

Преобразователь тока в напряжение используют и с источниками сигнала, подключенными к шине питания. Такая схема часто применяется с элементами вроде фототранзисторов. Фототранзистор потребляет (пропускает) ток, под действием внешнего источника света, положительной шины питания.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Преобразователь тока в напряжение для незаземленного источника

Такой преобразователь отличается наличием второго токочувствительного резистора в цепи прохождения сигнального тока, который заземлен. Схема симметричного преобразователя ток-напряжение это подобие дифференциального усилителя.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

В следствии падения напряжения так же и на заземленном резисторе, потенциал входа ОУ падает ниже потенциала земли, а на выходе устанавливается напряжение:

Симметричный преобразователь тока в напряжение — пример операционной схемы, которой необходим незаземленный (плавающий) источник сигнала. Таким источником может послужить все тот же фотодиод. При этом фотодиод может быть вынесен за пределы платы. Для еще большей минимизации помех, желательно использовать экранированный кабель, экран которого должен быть соединен с землей.

Заключение

Рассмотренные схемы используются повсеместно. Они прекрасно подходят для токовых источников с плавным изменением сигнала. Для ЦАПов же предпочтительнее использование резистора. О том, чем это лучше, и как правильно согласовать резистор со следующим каскадом читайте в статье Резистор для ЦАП с токовым выходом .

Материал подготовлен исключительно для сайта AudioGeek.ru

AliExpress RU&CIS

Привет! В этом окошке авторы блогов любят мериться крутостью биографий. Мне же будет гораздо приятнее услышать критику статей и блога в комментариях. Обычный человек, который любит музыку, копание в железе, электронике и софте, особенно когда эти вещи пересекаются и составляют целое, отсюда и название — АудиоГик. Материалы этого сайта — личный опыт, который, надеюсь, пригодится и Вам. Приятно, что прочитали 🙂

Здравствуйте, Андрей!
Спасибо за полезную информацию!
Хочу воспользоваться Вашим советом, однако меня гложет одно сомнение. Насколько правильно использовать преобразователь ток-напряжения (ТИ) для трансформатора тока (ТТ)? ТТ требуется обязательно сопротивление нагрузки. В теории ТИ обладает нулевым входным сопротивлением. Или я заблуждаюсь? Не корите строго в схемотехнике я не силен. 🙂

Здравствуйте Владимир!
Честно говоря с трансформаторами тока не работал, но слегка по-гуглил.
Во первых — у Вас переменный или постоянный ток?
Во вторых да, преобразователь ток-напряжение в идеале имеет нулевое входное сопротивление. Для преобразования можете воспользоваться резистором, а уже с него снимать напряжение тем же неинвертирующим усилителем на ОУ, такое было показано в статье Резистор для ЦАП с токовым выходом.
Если у вас переменный ток, то для измерений требуется его сначала выпрямить, для этого можно воспользоваться активным выпрямителем.

Андрей, спасибо за ответ!
Я перечитал, и взял на вооружение все Ваши подходящие мне статьи.
Кроме того просмотрел, И Хоровица с нашим дорогим Хиллом :), и Титце с Шенком тоже, и Достала, который Иржи, а также Пейна. Складывается впечатление, что противоречий нет. Но и уверенности тоже нет. Сказывается отсутствие знаний в теории цепей и практической схемотехнике. Видно надо макетировать и пробовать. Как говорят теоретики — практика критерий истины. 🙂
Ток конечно же переменный.
Изначально я так и хотел, нагрузить вторичку сопротивлением (ТТ требует обязательную нагрузку), но потом наткнулся на статью, где утверждалось, что все современные измерители с ТТ используют преобразователи ток-напряжение, ну и загорелся!
Еще раз спасибо!

Андрей! Доброе время суток! Хочу сказать пару слов по теме — схема с n-p-n фототранзистором (Ik=1…2.ma, Vcc= +/- 12V) вполне работоспособна. Эксперименты по её применению в ИК-датчике показали следующее:
частотный диапазон 0-3,0 кГц ( выше просто не проверял, т.к. не надо)
неравномерность АЧХ в полосе 20 Гц-3,0 кГц — менее 0,5 дБ
коэфф. нелинейных искажений — менее 3% (может и меньше, надо уточнить с генератором тестового сигнала, а я проверял на вибростенде, у которого своих искажений хватает)
амплитуда — 3,0 В и более.
ИМС ОУ проверялись разные — от LM358 до малошумящих
Тема интересная.
Удачи

Здравствуйте! спасибо за столь подробный комментарий!
Рад что у Вас получились интересные результаты. Вообще схемку я позаимствовал У Хоровиц и Хилла. Сам когда-то ее собирал) Правда так глубоко не копал ее характеристики, ибо не требовалось)
Извиняюсь, что так долго отвечал, готовился к защите магистерской диссертации)

Источник