Меню

Измерение тока в обмотке асинхронного двигателя

Наладка асинхронных двигателей

Наладка асинхронных двигателейНаладку асинхронных двигателей выполняют в следующем объеме:

• проверка механической части;

• измерение сопротивления изоляции обмоток относительно корпуса и между обмотками;

• измерение сопротивлений обмоток постоянному току;

• испытание обмоток повышенным напряжением промышленной частоты;

Внешний осмотр асинхронного двигателя начинают со щитка.

На щитке должны быть следующие данные:

• наименование или товарный знак завода-изготовителя,

• тип и заводской номер,

• номинальные данные (мощность, напряжение, сила тока, частота вращения, схема соединения обмотки, коэффициент полезного действия, коэффициент мощности),

• масса и ГОСТ на двигатель.

Ознакомление со щитком двигателя в начале работы является обязательным. Затем проверяют состояние внешней поверхности двигателя, его подшипниковых узлов, выходного конца вала, вентилятора и состояние клеммных выводов.

Если трехфазный двигатель не имеет составных и секционированных обмоток на статоре, то выводы обозначают в соответствии с табл. 1, а при наличии таких обмоток — выводы обозначают теми же буквами, что и простые обмотки, но с дополнительными цифрами впереди прописных букв. Для многоскоростных асинхронных двигателей впереди букв ставят цифры, указывающие на число полюсов данной секции.

Обозначение выводов асинхронных двигателей

Маркировка щитков многоскоростных двигателей и способы их включения на разные скорости

Примечание: клеммы с нумерацией П — подключены к сети, С – свободны, З – закорочены

Маркировку щитков многоскоростных двигателей и способы их включения на разные скорости можно объяснить с помощью табл. 2.

При внешнем осмотре асинхронного двигателя особое внимание надо обращать на состояние коробки выводов и выводные концы, в которых очень часто встречаются различные нарушения изоляции, при этом измеряют расстояние между токоведущими частями и корпусом. Оно должно быть достаточно велико, чтобы не происходило перекрытия по поверхности. Не менее важной является величина выбега вала в осевом направлении, которая по нормам не должна превышать 2 мм (по 1 мм в одну сторону) для двигателей до 40 кВт.

Большое значение имеет величина воздушного зазора, так как оказывает существенное влияние на характеристики асинхронных двигателей, поэтому после ремонтов или в случае неудовлетворительной работы двигателя измеряют воздушный зазор в четырех диаметрально противоположных точках. Зазоры должны быть одинаковы по всей окружности и не должны отличаться в любой из этих четырех точек более, чем на 10% от среднего значения.

К асинхронным двигателям целого ряда станков, таких как резьбошлифовальные и зубошлифовальные, предъявляют особые требования с точки зрения биения и вибраций. На биение вала и вибрации электрических машин большое влияние оказывает точность обработки и состояние вращающихся частей машины. Особенно велики биения и вибрации при прогнутом вале двигателя.

Биение — отклонение от заданного (правильного) взаимного расположения поверхностей вращающихся или колеблющихся деталей типа тел вращения. Различают радиальные и торцовые биения.

Для всех машин биения нежелательны, так как при этом нарушается нормальная работа подшипниковых узлов и машины в целом. Величину биения измеряют с помощью часового индикатора, который позволяет измерять биения от 0,01 мм до 10 мм. При измерении биения вала наконечник индикатора упирают в вал, вращающийся с небольшой скоростью. По отклонению стрелки часового индикатора судят о величине биения, которая не должна превышать значений, указанных в технических условиях на станок или двигатель.

Изоляция электрической машины является важным показателем, так как от ее состояния зависит долговечность и надежность машины. Согласно ГОСТ сопротивление изоляции обмоток в МОм электрических машин должно быть не меньше

где U н— номинальное напряжение обмотки, В; P н — номинальная мощность машины, кВт.

Сопротивление изоляции измеряют перед пробным пуском двигателя, а затем в процессе эксплуатации периодически, кроме того, контролируют после длительных перерывов в работе и после каждого аварийного отключения привода.

Наладка асинхронных двигателейСопротивление изоляции обмоток относительно корпуса и между обмотками измеряют при холодных обмотках и в нагретом состоянии, при температуре обмоток, равной температуре номинального режима, непосредственно перед проверкой электрической прочности изоляции обмоток.

Если в двигателе выведены начало и конец каждой фазы, то сопротивление изоляции измеряют отдельно для каждой фазы относительно корпуса и между обмотками. У многоскоростных двигателей сопротивление изоляции проверяют для каждой обмотки в отдельности.

Для измерения сопротивления изоляции электродвигателей напряжением до 1000 В применяют мегомметры на 500 и 1000 В.

Измерение проводят следующим образом, зажим мегомметра «Экран» присоединяют к корпусу машины, а второй зажим гибким проводом с надежной изоляцией присоединяют к выводу обмотки. Концы проводников должны быть заделаны в ручки из изоляционного материала с металлическим штырем, заостренным на конце, для обеспечения надежного контакта.

Ручку мегомметра вращают с частотой, примерно равной 2 об/с. Двигатели небольшой мощности имеют небольшую емкость, поэтому стрелка прибора устанавливается в положение, соответствующее сопротивлению изоляции обмотки машины.

Для новых машин сопротивление изоляции, как показала практика, колеблется при температуре 20° С в пределах от 5 до 100 МОм. К двигателям малоответственных приводов небольшой мощности и напряжением до 1000 В «Правила устройств электроустановок» не предъявляют конкретных требований к величине R. Из практики известны случаи, когда двигатели, имеющие сопротивления менее 0,5 МОм, вводились в работу, их сопротивление изоляции повышалось и в дальнейшем они работали безотказно.

Снижение сопротивления изоляции в процессе эксплуатации вызывается поверхностной влажностью, загрязнением поверхности изоляции токопроводящей пылью, проникновением в толщу изоляции влаги, химическим разложением изоляции. Для уточнения причин снижении сопротивления изоляции необходимо произвести измерение с помощью двойного моста, например Р-316, при двух направлениях тока в контролируемой цепи. При разных результатах замеров наиболее вероятная причина — проникновение влаги в толщу изоляции.

Конкретно вопрос о включении асинхронного двигателя в работу должен решаться только после проведения испытания обмоток повышенным напряжением. Включение двигателя, имеющего малое значение сопротивления изоляции, без испытания повышенным напряжением допускается только в исключительных случаях, когда решается вопрос, что выгоднее: подвергнуть опасности двигатель или допустить простой дорогостоящего оборудования.

В процессе эксплуатации двигателя возможны повреждения изоляции, приводящие к снижению ее электрической прочности ниже допустимых норм . Согласно ГОСТ испытание электрической прочности изоляции обмоток по отношению к корпусу и между собой производят при отключенном от сети двигателе в течение 1 мин испытательным напряжением, величина которого должна быть не менее величины, приведенной в табл. 3.

Номинальное и испытательное напряжения

Повышенное напряжение подают на одну из фаз, а остальные фазы присоединяют к корпусу двигателя. Если обмотки соединены внутри двигателя в звезду или треугольник, то испытание изоляции между обмоткой и корпусом проводят одновременно для всей обмотки. При выполнении испытаний напряжение нельзя прикладывать мгновенно. Испытание начинают с 1/3 испытательного напряжения, затем постепенно поднимают напряжение до испытательного, причем время подъема от половинного до полного испытательного напряжения должно составлять не менее 10 с.

Полное напряжение выдерживают в течение 1 мин, после чего его плавно снижают до 1/3Uисп и отключают испытательную установку. Результаты испытания считают удовлетворительными, если во время испытания не происходило пробоя изоляции или перекрытий по поверхности изоляции, при этом по приборам не наблюдались резкие толчки, свидетельствующие о частичных повреждениях изоляции.

Если при испытании произошел пробой, находят ею место и ремонтируют обмотку. Место пробоя можно найти путем повторного приложения напряжения с последующим наблюдением за появлением искр, дыма или легким потрескиванием при искрении, невидимом снаружи.

Измерение сопротивления обмоток постоянному току , которое проводят для уточнения технических данных элементов схемы, дает возможность в некоторых случаях определить наличие короткозамкнутых витков. Температура обмоток при измерении не должна отличаться от окружающей более чем на 5° С.

Измерения выполняют с помощью одинарного или двойного моста, по методу амперметра—вольтметра или методом микроомметра. Величины сопротивлений не должны отличаться от средней более чем на 20%.

Согласно ГОСТ при измерении сопротивления обмоток каждое сопротивление должно быть измерено 3 раза. При измерении сопротивления обмотки по методу амперметра—вольтметра каждое сопротивление должно быть измерено при трех различных значениях тока. За действительную величину сопротивления принимают среднее арифметическое из трех измерений.

Метод амперметра—вольтметра (рис. 1) применяют в тех случаях, когда не требуется большой точности измерения. Измерение методом амперметра—вольтметра основано на законе Ома:

где R х— измеряемое сопротивление, Ом; U — показание вольтметра, В; I — показание амперметра, А.

Точность измерения при этом методе определяется суммарной погрешностью приборов. Так, если класс точности амперметра 0,5%, а вольтметра — 1%, то суммарная погрешность составит 1,5%.

Для того чтобы метод амперметра—вольтметра давал более точные результаты, необходимо соблюдать следующие условия:

1. точность измерения в значительной степени зависит от надежности контактов, поэтому перед измерением рекомендуется контакты пропаять;

2. источником постоянного тока должна служить сеть или хорошо заряженная батарея напряжением 4—6 В, для того чтобы избежать влияния падения напряжения на источнике;

3. отсчет по приборам должен производиться одновременно.

Измерение сопротивления с помощью мостов применяется главным образом в тех случаях, когда необходимо получить большую точность измерения. Точность мостовых методов достигает 0,001%. Пределы измерений мостов колеблются от 10-5 до 106 Ом.

Микроомметром измеряют при большом числе замеров, например переходных сопротивлений контактов, межкатушечных соединений.

Схема измерения сопротивления обмоток постоянному току по методу амперметра—вольтметра

Рис. 1. Схема измерения сопротивления обмоток постоянному току по методу амперметра—вольтметра

Схема измерении сопротивления обмотки статора асинхронного двигателя, соединенной в звезду (а) и в треугольник (б)

Рис. 2. Схема измерении сопротивления обмотки статора асинхронного двигателя, соединенной в звезду (а) и в треугольник (б)

Измерения проводят быстро, так как отсутствует необходимость в регулировке прибора. Сопротивление обмотки постоянному току для двигателей до 10 КВт измеряют не ранее, чем через 5 ч по окончании его работы, а для двигателей более 10 кВт — не менее чем через 8 ч при неподвижном роторе. Если у статора двигателя выведены все шесть концов обмоток, то измерение проводят на обмотке каждой фазы отдельно.

Читайте также:  Функции источников сварочного тока для ручной дуговой сварки плавящимися покрытыми электродами

При внутреннем соединении обмоток в звезду попарно измеряют сопротивление двух последовательно соединенных фаз (рис. 2, а). При этом сопротивление каждой фазы

При внутреннем соединении в треугольник измеряют сопротивление между каждой парой выводных концов линейных зажимов (рис. 2, б). Считая, что сопротивления всех фаз равны, определяют сопротивление каждой фазы:

Для многоскоростных двигателей аналогичные измерения проводят для каждой обмотки или для каждой секции.

Проверка правильности включения обмоток машин переменного тока. Иногда, особенно после ремонтов водные концы асинхронного двигателя оказываются непромаркированными, возникает необходимость определения начал и концов обмоток. Наиболее распространены два способа определения.

По первому способу сначала определяют попарно концы обмоток отдельных фаз. Затем собирают схему согласно рис. 3, а. «Плюс» источника присоединяют к началу одной из фаз, «минус» — к концу.

Условно принимают C1, С2, С3 за начало фаз 1, 2, 3, а С4, С 5 , С 6 — за концы 4, 5, 6. В момент включения тока в обмотках других фаз (2—3) индуктируется электродвижущая сила с полярностью «минус» на началах С2 и C3 и «плюс» на концах С5 и С6. В момент отключения тока в фазе 1 полярность на концах фаз 2 и 3 противоположна полярности при их включении.

После маркировки фазы 1 источник постоянного тока присоединяют к фазе 3, если при этом стрелка милливольтметра или гальванометра отклоняется в ту же сторону, то все концы обмоток замаркированы правильно.

Для определения начал и концов по второму способу соединяют обмотки двигателя в звезду или треугольник (рис. 3, б), а на фазу 2 подают однофазное пониженное напряжение. В этом случае между концами C1 и С2, а также С2 н С3 возникает напряжение, несколько большее подведенного, а между концами C1 и С3 напряжение оказывается равным нулю. Если концы фаз 1 и 3 включены неправильно, то напряжение между концами С1 и С2, С2 и С3 будет меньше подведенного. После взаимного определения маркировки первых двух фаз аналогично определяют третью.

Первоначальное включение асинхронного двигателя. Для выяснения полной исправности двигателя испытывают его в режиме холостого хода и под нагрузкой. Предварительно вновь проверяют состояние механических частей, наполнение смазкой подшипников.

Легкость хода двигателя проверяют путем проворачивания вала вручную, при этом не должно быть слышно треска, скрежета и тому подобных звуков, свидетельствующих о соприкосновении ротора и статора, а также вентилятора и кожуха, затем проверяют правильность направления вращения, для этого двигатель включают кратковременно.

Продолжительность первого включения 1—2 с. Одновременно наблюдают величину пускового тока. Кратковременный пуск двигателя целесообразно повторить 2—3 раза, постепенно увеличивая продолжительность включения, после чего двигатель можно включить на более длительный период. За время работы двигателя на холостом ходу наладчик должен убедиться в хорошем состоянии ходовых частей: отсутствии вибраций, толчков тока, отсутствии нагрева подшипников.

При удовлетворительных результатах пробных пусков двигатель включают совместно с механической частью или подвергают испытанию на специальном стенде. Время проверки работы двигателя колеблется от 5 до 8 ч, при этом контролируют температуру основных узлов и обмоток машины, коэффициент мощности, состояние смазки подшипников узлов.

Источник



Проверка электродвигателей разного вида с помощью мультиметра

Повседневная жизнь человека неразрывно связана с электродвигателями различной конфигурации, на работе которых основано действие различных приборов и оборудования. Таким оборудованием мы пользуемся постоянно и достаточно часто возникают различные неполадки в их работе, что зачастую связано с неисправностью электродвигателя. Для того, чтобы привести прибор в работоспособное состояние нужно знать, каким образом прозвонить электродвигатель. Об этом будет рассказано в данной статье.

Проверка электродвигателей разного вида с помощью мультиметра

Какие электродвигатели можно проверить мультиметром

Если двигатель не имеет очевидных внешних повреждений, то есть вероятность того, что произошел внутренний обрыв цепи или произошло короткое замыкание. Но не все электродвигатели можно просто проверить на эти дефекты мультиметром.

Например, может возникнуть сложности в диагностике электродвигателей постоянного тока, так как их обмотка имеет практически нулевое сопротивление и его можно проверить только косвенным методом по специальной схеме: одновременно снимают показания с амперметра и вольтметра с вычислением результирующего значения сопротивления по закону Ома.

Таким образом проверяют все сопротивления обмоток якоря и замеряют значения между пластинами коллектора. Если сопротивления обмоток якоря различаются, то имеется неполадки, так как в исправной машине эти значения одинаковые. Разность в значениях сопротивления между соседними пластинами коллектора должна быть не больше 10%, тогда двигатель будет считаться исправным (но если в конструкции предусмотрена уравнительная обмотка, то это значение может достигать до 30%).

Электрические машины переменного тока разделяют на:

  • синхронные: имеющие обмотки статора, расположенные под одинаковым углом смещения между собой, что позволяет двигаться с частотой, синхронной скорости вращения приложенной силы;
  • асинхронные с короткозамкнутым ротором (одно- или трехфазные);
  • асинхронные с фазным ротором, имеющие трехфазную обмотку;
  • коллекторные.

Все эти типы двигателей доступны для диагностики с помощью измерительных приборов, в том числе с помощью мультиметров. В целом, двигатели переменного тока достаточно надежные машины и неисправности в них возникают достаточно редко, но все же такое случается.

Какие неисправности в электродвигателе позволяет выявить мультиметр

Достаточно часто для проверки электродвигателей переменного тока используется мультиметр – многофункциональный электронный измерительный прибор. Он имеется в наличии практически у каждого домашнего мастера и позволяет выявить некоторые виды неисправностей в электрических приборах, в том числе и в электродвигателях.

Проверка электродвигателей разного вида с помощью мультиметра

Самыми распространенными неисправностями, которые возникают в электрических машинах такого типа являются:

  • обрыв обмотки (ротора или статора);
  • короткое замыкание;
  • межвитковое замыкание.

Рассмотрим каждую из этих проблем подробнее и разберем методы выявления таких неисправностей.

Проверка на обрыв или целостность обмотки

Обрыв обмотки достаточно распространенное явление при обнаружении неправильной работы электродвигателя. Обрыв в обмотке может случиться как в статоре, так и в роторе.

Если была оборвана одна фаза в обмотке, соединенной по схеме «звезда» – то ток в ней будет отсутствовать, а в других фазах значения тока будет завышено, двигатель при этом работать не будет. Также может быть обрыв параллельной ветви фазы, что приведет к перегреву исправной ветви фазы.

Проверка электродвигателей разного вида с помощью мультиметра

Если была оборвана одна фаза обмотки (между двумя проводниками), соединенной по схеме «треугольник» — то ток в двух других проводниках будет значительно меньше, чем в третьем проводнике.

Если возник обрыв в обмотке ротора, то будут происходить колебания тока с частотой, равной частоте скольжения и колебания напряжения, при этом проявится гудение и обороты двигателя будут снижены, также возникнет вибрация.

Эти причины указывают на неисправность, но выявить саму неисправность можно при помощи прозвонки и измерения сопротивления каждой обмотки электродвигателя.

В двигателях, рассчитанных на переменное напряжение 220 В, прозваниваются пусковая и рабочая обмотки. Значение сопротивления пусковой обмотки должно быть больше, чем рабочей в 1,5 раза.

В электродвигателях на 380 В, которые подключаются по схемам «звезда» или «треугольник» всю схему необходимо разобрать и проверить каждую обмотку по отдельности. Сопротивление каждой из обмоток такого электродвигателя должно быть одинаковым (с отклонением не более пяти процентов). Но при обрыве дисплей мультиметра будет показывать высокое значение сопротивления, которое стремится к бесконечности.

Также обмотки двигателя можно проверить с помощью функции мультиметра «прозвонка» . Такой способ позволяет быстро выявить обрыв в цепи, так как при этом будет отсутствовать звуковой сигнал, в исправной цепи мультиметр будет издавать звук, а также возможна и световая индикация.

Проверка на короткое замыкание

Также распространенной неисправностью в электродвигателях является короткое замыкание на корпус. Для выявления этой неисправности (или её отсутствия) совершают следующие действия:

  • устанавливаются значения измерения сопротивления мультиметром на максимум;
  • щупы соединяют между собой для проверки исправности измерительного прибора;
  • один щуп соединяют с корпусом электродвигателя;
  • второй щуп присоединяют поочередно к выводам каждой фазы;

Проверка электродвигателей разного вида с помощью мультиметра

Результатом таких действий при исправном двигателе будет высокое сопротивление (несколько сотен или тысяч мегаом). «Прозвонкой» мультиметра проверить пробой на корпус даже удобнее: нужно осуществить в режиме прозвонки все те же действия, описанные выше и наличие звукового сигнала будет означать нарушение в целостности изоляции обмоток и короткое замыкание на корпус. К слову сказать, данная неисправность не только негативно влияет на работу самого оборудования, но и является опасной для жизни и здоровья человека при отсутствии специальных защитных устройств.

Проверка на межвитковое замыкание

Ещё одним видов неисправностей является межвитковое замыкание – короткое замыкание между разными витками одной катушки двигателя. При такой неполадке мотор будет гудеть и заметно снизится его мощность.

Выявить такую неисправность можно несколькими способами. Например, можно воспользоваться токовыми клещами или мультиметром.

При диагностике с помощью токовых клещей измеряют значения тока каждой из фаз обмотки статора и если значение тока в одной из них будет завышено, то там и находится замыкание.

Источник

Как проверить состояние обмотки электрического двигателя

Как проверить состояние обмотки электрического двигателяНа первый взгляд обмотка представляет кусок проволоки смотанной определенным образом и в ней нечему особо ломаться. Но у нее есть особенности:

строгий подбор однородного материала по всей длине;

точная калибровка формы и поперечного сечения;

нанесение в заводских условиях слоя лака, обладающего высокими изоляционными свойствами;

прочные контактные соединения.

Если в каком-либо месте провода нарушена любое из этих требований, то изменяются условия для прохождения электрического тока и двигатель начинает работать с пониженной мощностью или вообще останавливается.

Чтобы проверить одну обмотку трехфазного двигателя необходимо отключить ее от других цепей. Во всех электродвигателях они могут собираться по одной из двух схем:

Читайте также:  Требования по применению мер защиты от поражения электрическим током

Концы обмоток обычно выводятся на клеммные колодки и маркируются буквами «Н» (начало) и «К» (конец). Иногда отдельные соединения могут быть спрятаны внутри корпуса, а для выводов используются другие способы обозначения, например, цифрами.

Виды соединений обмоток трехфазных электродвигателей

У трехфазного двигателя на статоре используются обмотки с одинаковыми электрическими характеристиками, обладающими равными сопротивлениями. Если при замере омметром они показывают разные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Визуально оценить качество обмоток не представляется возможным из-за ограниченного допуска к ним. На практике проверяют их электрические характеристики, учитывая, что все неисправности обмоток проявляются:

обрывом, когда нарушается целостность провода и исключается прохождение электрического тока по нему;

коротким замыканием, возникающем при нарушении слоя изоляции между входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается между одним или несколькими близкорасположенными витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электрическое сопротивление и не создавая ими определенной работы;

пробоем изоляции между обмоткой и корпусом статора или ротора.

Виды неисправностей обмоток электродвигателей

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Прибор покажет большое сопротивление — ∞, которое учитывает образованный разрывом участок воздушного пространства.

Проверка обмотки на возникновение короткого замыкания

Двигатель, внутри электрической схемы которого возникло короткое замыкание, отключается защитами от сети питания. Но, даже при быстром выводе из работы таким способом место возникновения КЗ хорошо видно визуально за счет последствий воздействия высоких температур с ярко выраженным нагаром или следами оплавления металлов.

При электрических способах определения сопротивления обмотки омметром получается очень маленькая величина, сильно приближенная к нулю. Ведь из замера исключается практически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это наиболее скрытая и сложно определяемая неисправность. Для ее выявления можно воспользоваться несколькими методиками.

Способ омметра

Прибор работает на постоянном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков создает значительно большую индуктивную составляющую.

При замыкании одного витка, а их общее количество может быть несколько сотен, изменение активного сопротивления заметить очень сложно. Ведь оно меняется в пределах нескольких процентов от общей величины, а подчас и меньше.

Можно попробовать точно откалибровать прибор и внимательно измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в этом случае не всегда будет видна.

Более точные результаты позволяет получить мостовой метод измерения активного сопротивления, но это, как правило, лабораторный способ, недоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании изменяется соотношение токов в обмотках, проявляется излишний нагрев статора. У исправного двигателя токи одинаковы. Поэтому прямое их измерение в действующей схеме под нагрузкой наиболее точно отражает реальную картину технического состояния.

Измерения переменным током

Определить полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда возможно. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы двигателя можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток позволит токоограничивающий резистор или реостат соответствующего номинала.

Способ измерения сопротивления обмотки переменным током

При выполнении замера обмотка находится внутри магнитопровода, а ротор или статор могут быть извлечены. Баланса электромагнитных потоков, на условие которого проектируется двигатель, не будет. Поэтому используется пониженное напряжение и контролируются величины токов, которые не должны превышать номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его останется сравнить с характеристиками других обмоток.

Эта же схема позволяет снять вольтамперные характеристики обмоток. Просто надо выполнить замеры на разных токах и записать их в табличной форме или построить графики. Если при сравнении с аналогичными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Способ основан на создании вращающегося электромагнитного поля исправными обмотками. Для этого на них подается трехфазное симметричное напряжение, но обязательно пониженной величины. С этой целью обычно применяют три одинаковых понижающих трансформатора, работающих в каждой фазе схемы питания.

Проверка обмоток статора

Для ограничения токовых нагрузок на обмотки эксперимент проводят кратковременно.

Небольшой стальной шарик от шарикоподшипника вводят во вращающееся магнитное поле статора сразу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превышать ток в обмотках больше номинальной величины и следует учитывать, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это затруднит правильность сборки.

На практике для поиска полярности используются 2 способа:

1. с помощью маломощного источника постоянного тока и чувствительного амперметра, показывающего направление тока;

2. методом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На внешней поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых надо определить.

С помощью омметра вызванивают и помечают вывода, относящиеся к каждой обмотке, например, цифрами 1, 2, 3. Затем произвольно маркируют на любой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой посередине шкалы, способной указывать направление тока.

Минус батарейки жестко подключают к концу выбранной обмотки, а плюсом кратковременно прикасаются к ее началу и сразу разрывают цепь.

Проверка полярности обмоток статора батарейкой

При подаче импульса тока в первую обмотку он за счет электромагнитной индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. Причем, если полярность обмоток угадана правильно, то стрелка амперметра отклонится вправо при начале импульса и отойдет влево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто перепутана. Останется только промаркировать выводы второй обмотки.

Очередная третья обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Здесь тоже вначале вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Затем произвольно маркируют концы первой выбранной обмотки для подключения к понижающему трансформатору напряжения, например, на 12 вольт.

Проверка полярности обмоток статора трансформатором и вольтметром

Две оставшиеся обмотки случайным образом скручивают в одной точке двумя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в остальные обмотки с такой же величиной, поскольку у них равное число витков.

За счет последовательного подключения второй и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. В нашем случае при совпадении направления обмоток эта величина будет составлять 24 вольта, а при разной полярности — 0.

Останется промаркировать все концы и выполнить контрольный замер.

В статье дан общий порядок действий при проверке технического состояния какого-то произвольного двигателя без конкретных технических характеристик. Они в каждом индивидуальном случае могут меняться. Смотрите их в документации на ваше оборудование.

Источник

Как проверить электродвигатель мультиметром: проверка ротора и статора на межвитковое замыкание, прозвонка асинхронного и трехфазного двигателя

Типы электродвигателей

Наиболее распространённые электродвигатели это;

Асинхронный трехфазный двигатель

Асинхронный трехфазный двигатель с короткозамкнутым ротором

– асинхронный трехфазный двигатель с короткозамкнутым ротором. Три обмотки двигателя уложены в пазы статора;
– асинхронный однофазный двигатель с короткозамкнутым ротором. В основном его применение находит в бытовой электротехнике в пылесосах, стиральных машинах, вытяжках, вентиляторах, кондиционерах;
– коллекторные двигатели постоянного тока установлены в электрооборудовании автомобиля (вентиляторы, стеклоподъемники, насосы);
– коллекторный двигатель переменного тока находит применение в электрических инструментах. К таким инструментам относятся электродрели, болгарки, перфораторы, мясорубки;
– асинхронный двигатель с фазным ротором имеет довольно мощный пусковой момент. Поэтому такие двигатели устанавливаются в приводах подъемников, кранах, лифтах.

Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте

Любой движок состоит из стационарно закрепленного корпуса — статора и вращающегося в нем ротора, который еще называют якорь.

Устройство однофазного электродвигателя

Его круговое движение создается за счет воздействия на него вращающегося магнитного поля статора, формируемого протеканием электрических токов по статорным обмоткам.

Когда обмотки исправны, то по ним текут номинальные расчетные токи, создающие магнитные потоки оптимальной величины.

Если сопротивление прводов или их изоляция нарушена, то создаются токи утечек, коротких замыканий и другие повреждения, влияющие на работу электродвигателя.

Между статором и ротором выполнен минимально возможный зазор. Его могут нарушить:

  • разбитые подшипники;
  • попавшие внутрь механические частицы;
  • неправильная сборка и другие причины.

Когда происходит задевание вращающихся частей о неподвижный корпус, то создается их разрушение и дополнительные механические нагрузки. Все это требует тщательного осмотра, анализа состояния внутренних частей до начала электрических проверок.

Довольно часто не квалифицированный разбор является дополнительной причиной поломок. Пользуйтесь специальным инструментом и съемниками, исключающими повреждения граней валов.

Съемник подшипников электродвигателя

После разборки сразу во время осмотра проверяют люфты, свободный ход подшипников, их чистоту и смазку, правильность посадочных мест.

Кроме этого у коллекторного электродвигателя могут быть сильно изношены пластины или щетки.

Коллекторные пластины

Все это необходимо проверять до подачи рабочего напряжения.

Особенности конструкций, влияющие на технологию поиска дефектов

Обычно производитель электрические характеристики указывает на табличке, прикрепленной на корпусе. Этим сведениям стоит верить.

Характеристики асинхронного двигателя

Однако часто во время ремонта или перемотки конструкция статора изменяется, а табличка остается прежняя. Этот вариант следует тоже учитывать.

Читайте также:  Применение электрического тока схема

Для бытовой сети 220 вольт могут использоваться двигатели:

  • коллекторные с щеточным механизмом;
  • асинхронные однофазные;
  • синхронные и асинхронные трехфазные.

В схемах 380 вольт работают трехфазные синхронные и асинхронные электродвигатели.

Все они отличаются по конструкции, но, в силу работы по общим законам электротехники, позволяют использовать одинаковые методики проверок, заключающиеся в замерах электрических характеристик косвенными и прямыми методами.

Как прозвонить: условия

Прежде чем проверить электродвигатель на неисправность, необходимо убедиться в том, что шнур и вилка прибора абсолютно исправны. Обычно об отсутствии нарушения подачи электрического тока в устройство, можно судить по светящейся контрольной лампе.

Убедившись в том, что электрический ток поступает к электродвигателю, необходимо осуществить демонтаж его из корпуса устройства, при этом сам прибор должен быть полностью обесточен, во время выполнения данной операции.

Проверка якоря и статора электродвигателя производится мультиметром. Последовательность измерений зависит от модели электрического агрегата, при этом, прежде чем прозвонить электродвигатель, следует убедиться в исправности измерительного прибора.

Наиболее частой «поломкой» мультиметров является уменьшение заряда батареи, в этом случае можно получить искажённые результаты замеров сопротивления.

Ещё одним важным условием для того чтобы прозвонить электрический агрегат правильно, является полное приостановление каких-либо других дел и полностью посвятить время на выполнение диагностических работ, иначе можно легко пропустить какой-либо участок обмотки электродвигателя, в котором и может быть причина неполадок.

Прозвонка асинхронного двигателя

Данный вид электродвигателя довольно часто используется в бытовых устройствах работающих от сети 220 В. После демонтажа агрегата из прибора и визуального осмотра, при котором не будут обнаружено короткое замыкание, диагностика осуществляется в такой последовательности:

  1. Произвести замеры сопротивления между выводами двигателя.
    Данная операция может быть осуществлена мультиметром, который должен быть переведён в режим измерения сопротивления до 100 Ом. Исправный асинхронный двигатель должен иметь между одним крайним и средним выводом подключаемой обмотки сопротивление около 30 — 50 Ом, а между другим крайним и средним контактом — 15 — 20 Ом. Данные измерения указывают на полную исправность пусковой и основной обмотки агрегата.
  2. Провести диагностику утечки тока на «массу».
    Чтобы прозвонить агрегат на утечки электрического тока, необходимо перевести режим работы мультиметра в положение измерения сопротивления до 2 000 кОм и поочерёдным соединением каждой клеммы с корпусом электродвигателя определить наличие или отсутствие повреждения изоляции. Во всех случаях, на дисплее мультиметра не должно отображаться каких-либо показаний. Если для измерения утечки используется аналоговый прибор, то стрелка не должна отклоняться в процессе проведения диагностических манипуляций.

Если в процессе измерений были выявлены отклонения от нормы, то агрегат необходимо разобрать для более детальных исследований. Наиболее распространённой поломкой асинхронных электродвигателей является межвитковое замыкание.

При такой неисправности, прибор перегревается и не развивает полной мощности, а если эксплуатацию устройства не прекратить, то можно полностью вывести из строя электрический агрегат.

Чтобы прозвонить межвитковые замыкания, мультиметр переводится в режим измерения сопротивления до 100 Ом.

Необходимо прозвонить каждый контур статора, и сравнить полученные результаты. Если величина сопротивление в одном из них будет существенно отличаться, то таким образом можно с уверенностью диагностировать межвитковое замыкание обмотки асинхронного электродвигателя.

Как прозвонить коллекторный двигатель

Коллекторный агрегат также можно прозвонить мультиметром. Данный тип электродвигателей используется в цепи постоянного тока.

Коллекторные двигатели переменного тока встречаются реже, например в различных электроинструментах. Наиболее качественно прозванивать такие изделия можно в том случае, если полностью разобрать электрический двигатель.

Проверить якорь электродвигателя, а также прозвонить обмотку статора можно будет с помощью мультиметра, который должен быть переведён в режим измерения сопротивления до 200 Ом.

Наиболее часто статор коллекторного агрегата состоит из двух независимых обмоток, которые и требуется прозвонить мультиметром для определения их исправности.

Точное значение данного показателя, можно узнать в документации к электродвигателю, но о работоспособности обмотки можно судить в том случае, если прибор покажет небольшое значение сопротивления.

В мощных двигателях постоянного тока электрооборудования автомобиля, значение сопротивления статора будет настолько малым, что его отличие от короткозамкнутого проводника, может составлять десятые доли Ома. Менее мощные устройства имеют сопротивление обмотки статора в пределах 5 — 30 Ом.

Для того чтобы прозвонить мультиметром обмотки статора коллекторного электродвигателя, необходимо соединить щупы измерительного прибора с выводами данных обмоток. Если в процессе диагностических мероприятий будет выявлено отсутствие сопротивления даже в одном контуре, дальнейшая эксплуатация агрегата не осуществляется.

Ротор коллекторного электродвигателя состоит из значительно большего количества обмоток, но проверка якоря не займёт много времени.

Для того чтобы прозвонить эту деталь, необходимо включить мультиметр в режим измерения сопротивления до 200 Ом и расположить щупы мультиметра на коллекторе таким образом, чтобы они находились на максимальном удалении друг от друга.

Таким образом щупы займут место щёток двигателя и одну из нескольких обмоток якоря можно будет прозвонить. Если мультиметр покажет какое-либо значение, то не снимая щупов измерительного устройства с коллектора, следует провернуть слегка ротор, до момента соединения следующей обмотки со щупами устройства.

Таким образом проверить обмотку можно без особых усилий. Если мультиметр покажет примерно одинаковое значение сопротивления каждого контура, то это будет означать, что якорь устройства абсолютно исправен.

Для того чтобы правильно прозвонить данный тип двигателя, необходимо осуществить проверку возможной утечки электрического тока на «массу».

Это нарушение может привести не только к выходу из строя электродвигателя, но и к увеличению вероятности получения электротравмы. Проверить якорь и статор коллекторного двигателя на пробой не составит большого труда, для этого необходимо включить режим измерения сопротивления до 2 000 кОм. Для проверки статора достаточно подключить одну клемму к корпусу, а вторую к одной из обмоток.


Чтобы прозвонить эту часть электродвигателя правильно, во время выполнения данной операции запрещается прикасаться руками к металлической части щупов мультиметра, или к корпусу статора и проводки измеряемого контура.

Если не придерживаться этого правила, то можно получить ложноположительные результаты, так как через тело человека будет проходить достаточный электрический потенциал. В этом случае мультиметр покажет сопротивление человека, а не «пробой» между корпусом статора и обмоткой.

Аналогичным образом измеряется и возможная утечка электротока на корпус якоря электродвигателя.

Чтобы прозвонить отсутствие «пробоя» на массу устройства, необходимо поочерёдно присоединять щупы мультиметра к корпусу и различным обмоткам ротора электромотора.

Для того чтобы прозвонить различные типы электродвигателей с помощью мультиметра, необходимо приобрести мультиметр, который имеет режим измерения сопротивления.

Сверхточность, при осуществлении подобных действий, не требуется, поэтому можно с успехом использовать дешёвые китайские устройства. Прежде чем прозвонить обмотки двигателя мультиметром, необходимо убедиться в его исправности.

Следует также иметь в виду, что неисправность электродвигателя может иметь различные признаки. Даже в том случае если электрический прибор находится в рабочем состоянии, но обороты двигателя не достигают максимального значения, следует незамедлительно прозвонить возможные повреждения обмоток.

После того как будет произведены все диагностические мероприятия, и электродвигатель будет отремонтирован, производится испытание устройства прежде чем устанавливать его в бытовой прибор или инструмент.

При осуществлении любых электромонтажных или диагностических работ, необходимо полностью отсоединить прибор от сети 220 В. или трёхфазного тока.

Как прозвонить двигатель мультиметром

Одна из частых неисправностей электродвигателя – отсутствие вращения. Причину поломки можно определить следующим образом. Прежде всего с помощью мультиметра (в режиме вольтметра) проверяется подача питающего напряжения. Если питание подается, проблема заключается в электрической неисправности самого двигателя, соответственно, необходимо проверить целостность подключения и прозвонить обмотки. В большинстве случаев для этого используется обычный мультиметр.

Немного о коллекторных электродвигателях

Строение коллекторного электродвигателя

  • Обычное для домашнего хозяйства напряжение это 220в. От 220в питается большая часть бытовой техники, потому она проектируется именно под эти особенности,
  • Подавляющее большинство коллекторных электродвигателей, которые присутствуют дома это не асинхронный, а синхронный агрегат,
  • В отличие от асинхронного движка, синхронные устройства имеют неподвижную обмотку статора и обмотку на валу, то есть якорь. На них через щеточно графитное устройство или коллектор подается напряжение 220в.

Такие электродвигатели можно встретить в следующих устройствах:

  • Стиральные машины,
  • Электрические инструменты,
  • Детские игрушки,
  • Пылесосы и пр.

Особенности неисправностей

Если моторчик электроинструмента начал плохо работать или полностью вышел из строя, многие отправляют на свалку не только коллекторный электродвигатель, но и весь прибор. Делать этого не стоит.

Обычная проверка, выполненная своими руками, позволяет проверить узел, оценить его текущее состояние. Что самое интересное, в большинстве случаев устройство можно вернуть в рабочее состояние, потратив на это минимум усилий и средств.

Важная заметка о проверке:

  • Прежде чем начнется проверка и тщательный ремон, не поленитесь посмотреть на состояние идущего на 220в кабеля. Не редко проверка шнура показывает, что в нем произошел обрыв. Из-за этого коллекторный электродвигатель не функционирует,
  • Другая возможная проблема это выход из строя кнопок, отвечающих за управление и включение. Они также могут потерять контакт, сломаться механическим образом. Их проверка даст ответ на этот вопрос,
  • Проверка пуско-регулировочного устройства также не повредит в случае его наличия,
  • Источник на 220 В. А в каком состоянии находится розетка на 220 Вольт? Не исключайте ситуацию, когда напряжение в 220 Вольт попросту не идет на ваш электромотор и весь электроинструмент. Банально советовать убедиться в наличии света в доме. А вот проверить состояние розетки на 220 Вольт стоит. Для этого подключите прибор к другому источнику 220 Вольт. Если все в порядке, переходим к наиболее распространенным поломкам коллекторного электромотора.

Источник