Меню

Измерение тока измерительные шунты

Измерение тока STM32 АЦП HAL (шунт, дифференциальный усилитель)

Принцип работы (измерения)

Последовательно с нагрузкой включаем сопротивление малой величины.

Таким образом протекающий ток через R load и R sense будет одинаковый (здесь 690 мА), при этом зная сопротивление резистора-шунта R sense = 0.1 Ом и измерив напряжение на нем (U sense = 0.069 В) можно легко вычислить протекающий через цепь ток:

А теперь испытания на макетной плате, лампа накала в качестве нагрузки R load ( ИСКРА 13,5 В) , низкоомный резистор R sense 3.3 Ом 10 Вт.

Берем вольтметр и измеряем напряжение на резисторе.

Итак, падение на нем U sense = 0.2757 В. Вычисляем ток

Учитывая неточность резистора, всё отлично, почти такой же, как показывает мультиметр ( ламповый блок питания показывает неправильно!).

Выбор шунта

  • малое сопротивление (чтобы уменьшить потери и вносимое влияние)
  • высокая точность сопротивления
  • малый ТКС (чтобы сопротивление мало изменялось при изменении температуры)

Схема

Понятно, что при маленьком значении сопротивления R sense будет падать и маленькое напряжение, а нам его еще и измерять, причем мы хотим получить диапазон от нуля то VCC (в данном случае от 0 В до 3.3 В), чтобы использовать все 12 разрядов внутреннего АЦП STM32.

В общем надо усилить сигнал в N раз. Применяем схему дифференциального (разностного, вычитающего) усилителя на операционном усилителе (питание однополярное).

Таким образом нам удастся усилить маленькое напряжение на R sense , а напряжение на выходе будет определятся соотношениями сопротивления резисторов, при R1 = R3, R2 = R4:

U1 — напряжение на инвертирующем входе;
U1 — напряжение на неинвертирующем входе;
R2=R4 — сопротивление резистора;
R1=R3 — сопротивление резистора;

Выбор операционного усилителя

Нам нужен ОУ с низким напряжением питания (т.к. он будет жить вместе с МК на стабилизаторе 3.3 В), маленьким входным напряжением смещения (input offset voltage) и маленьким (как можно ближе к нулю) выходным напряжением низкого уровня.

LMV321

Смотрим на эту гадость, ну такое.

Проверим в бою. На входе U sense = 100 мВ (падение на шунте):

При R1 = R3 = 1 кОм, R2 = R4 = 10 кОм, допуск резисторов 1% (также отобрал вручную самые точные), таким образом на выходе должно быть Usense*10 = 100 мВ*10 = 1000 мВ = 1 В (выражение выше):

Хорошо, усиление в 10 раз сработало отлично!

Помня про высокое значение выходного напряжения низкого уровня замыкаем шунт (на входе ноль), а на выходе:

Ой, нифига себе, примерно 80 мВ (собственно как и написано в документации). Нам такого не нужно, ведь тогда не удастся измерять малые токи.

Но, выходное напряжение высокого уровня действительно почти равно питающему, то есть чуть ниже 3.3В и по сути будет отличаться на 100 мВ максимум.

LM358

Сравнивая с предыдущим у этого выходное напряжение низкого уровня будет около 5 мВ, вот это уже неплохо.

После замены ОУ на макетке измеряем напряжение на выходе при нуле на входах.

Неплохо, даже ниже обычного, то что нужно!

А теперь проверим выходное напряжение высокого уровня (питание 3.3 В):

И еще раз, но при питании 5 В:

Вот это печально. Выход ниже на более чем вольт по сравнению с напряжением питанием, то есть использовать этот ОУ в схемах с низким U пит не советую, ведь тогда будут полезными (использоваться) не 12 разрядов АЦП, а в данном случае всего чуть более 7-бит!

MCP6002

Приобрел ОУ MCP6002 в SOIC-8 от Micropchip.

Здесь выходное напряжение (Voltage Swing) мин 25 мВ, на деле оказалось около 7 мВ, вот эта микросхема и будет использована!

Не забудь добавить фильтр!

Настоятельно советую отфильтровать измеряемый сигнал перед подачей на АЦП простейший фильтр нижних частот (ФНЧ) в виде последовательно соединённых резистора и конденсатора ( как работает можно глянуть здесь). Также дополнительно советую использовать программный цифровой фильтр среднего скользящего.

Для использований общего назначения обычно ставят:

R = 10 — 100 Ом
C = 100 нФ — 1000 нФ

Сборка схемы на макетной плате

Создание проекта в STM32CubeIDE

Новый проект: New -> STM32 Project

Выбор МК: STM32F103C8T6

Имя проекта: Project Name: Current-Measeument-Shunt

Настройки тактирования по умолчанию (ничего не изменено):

Отладчик: SYS -> Debug: Serial Wire

Включение АЦП, Канал 0. Запуск от тригера Таймера 3:
ADC_Regular_ConversionMode: External Trigger Conversion Source

Во вкладке настройки ПДП (DMA):
Add: ADC1
Mode: Circular

Ну и Таймер 3:
TIM3 -> Internal Clock
Prescaler: 800-1
Counter Period: 1000-1
Trigger Event Selection: Update Event

Программирование

Массив из одного элемента для сырого значения с АЦП и вещественная переменная для напряжения, а также вспомогательная переменная:

/* USER CODE BEGIN PV */ /* adc variables */ uint16_t ADC_Raw[1]; float Current; uint8_t sch_adc = 0; /* USER CODE END PV */

Запуск АЦП с ПДП, ну и потом таймер, который будет производить запуск 10 раз/с:

/* USER CODE BEGIN 2 */ HAL_ADCEx_Calibration_Start(&hadc1); HAL_ADC_Start_DMA(&hadc1, (uint32_t*)ADC_Raw, 1); HAL_TIM_Base_Start_IT(&htim3); /* USER CODE END 2 */

В функции обратного вызова переменная устанавливается равной 255, то есть положительное значение:

/* USER CODE BEGIN 4 */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* AdcHandle) < sch_adc = 255; >/* USER CODE END 4 */

В главном цикле проверяется переменная sch_adc, если положительная, то рассчитывается значение тока (здесь в мА):

Испытание (отладка)

При отсутствии тока на выходе ненулевое значение. Его можно обнулять каждый раз при включении (учитывая что вначале нагрузка не должна быть подключена) или записать значение и потом вычитать из измеренного:

Читайте также:  Что такое устройство в физике в источнике тока

Точность неплохая и может быть лучше, потому что напряжение питание чуть ниже 3.3В и шунт-резистор использован неточный.

Особенности разводки платы

На рисунке ниже видно, что входы дифференциального усилителя хитро подключаются непосредственно к Rsense, ведь нам не нужны еще и падения на дорожках и соединениях.

Таким образом дорожки, идущие на вход по красоте ведем из середин, устраняя влияние сопротивлений дополнительных участков меди снимая падение именно с резистора-шунта.

Также здесь стоит обратить внимание на фильтрующий конденсатор 100 нФ, он подключен наиболее близко к ножкам GND-VCC и питание подведено сначала к нему.

Измерения без использования ОУ

В некоторых случаях для измерения малых токов, когда напряжение источника изменяется в широких пределах (и высокое падение на шунте не важно) можно оставить тупо резистор и измерять напряжение непосредственно на нем.

Примером может служить мой тестер проверяльщик светодиодов, здесь нужно было измерять ток (0-100) мА, сначала хотел ставить шунт+ОУ, но из-за ограниченного напряжения питания и ненулевого выхода при нулевом токе схема была оптимизирована и упрощена вместе с решением проблемы измерения малых токов.

Готовые токоизмерительные усилители

Конечно существуют усилители с уже встроенными резисторами R1-R4, причем они имеет почти одинаковые параметры. К тому же мы экономим место на плате. Коэффициент усиления как-правило 20, 30, 50, но есть и такие, где он настраивается.

Самым подходящим я считаю решение INA180 от TI единственный недостаток — это низкая распространенность, ну и цена будет чутка выше.

Источник



Измерительные шунты и добавочные резисторы

Измерительные ш унты

Шунт является простейшим измерительным преобразователем тока в напряжение. Измерительный шунт представляет собой четырехзажимный резистор. Два входных зажима шунта , к которым подводится ток I , называются токовыми, а два выходных зажима, с которых снимается напряжение U, называются потенциальными.

К потенциальным зажимам шунта обычно присоединяют измерительный механизм измерительного прибора.

Измерительные шунты и добавочные резисторы

Измерительный ш унт характеризуется номинальным значением входного тока I ном и номинальным значением выходного напряжения U ном . Их отношение определяет номинальное сопротивление шунта :

R ш= U ном / I ном

Ш унты применяются для расширения пределов измерения измерительных механизмов по току, при этом большую часть измеряемого тока пропускают через шунт, а меньшую — через измерительный механизм. Шунты имеют небольшое сопротивление и применяются, главным образом, в цепях постоянного тока с магнитоэлектрическими измерительными механизмами.

Рис. 1. Схема соединения измерительного механизма с шунтом

На рис. 1 приведена схема включения магнитоэлектрического механизма измерительного прибора с шунтом R ш. Ток I и протекающий через измерительный механизм, связан с измеряемым током I зависимостью

I и = I (R ш / R ш + R и),

где R и — сопротивление измерительного механизма.

Если необходимо, чтобы ток I и был в n раз меньше тока I , то сопротивление шунта должно быть:

где n = I / I и — коэффициент шунтирования.

Шунты изготовляют из манганина. Если шунт рассчитан на небольшой ток (до 30 А), то его обычно встраивают в корпус прибора (внутренние шунты). Для измерения больших токов используют приборы с наружными шунтами В этом случае мощность, рассеиваемая в шунте, не нагревает прибор.

На рис. 2 показан наружный шунт на 2000 А Он имеет массивные наконечники из меди, которые служат для отвода тепла от манганиновых пластин, впаянных между ними. Зажимы шунта А и Б — токовые.

Рис 2 Наружный шунт

Измерительный механизм присоединяют к потенциальным зажимам В и Г, между которыми и заключено сопротивление шунта. При таком включении измерительного механизма устраняются погрешности от контактных сопротивлений.

Наружный шунтНаружные шунты обычно выполняются калиброванными, т е. рассчитываются на определенные токи и падения напряжения. Калиброванные шунты должны иметь номинальное падение напряжения 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.

Для переносных магнитоэлектрических приборов на токи до 30 А внутренние шунты изготовляют на несколько пределов измерения.

На рис. 3, а, б показаны схемы многопредельных шунтов. Многопредельный шунт состоит из нескольких резисторов, которые можно переключать в зависимости от предела измерения рычажным переключателем (рис. 3, а) или путем переноса провода с одного зажима на другой (рис. 3, б).

При работе шунтов с измерительными приборами на переменном токе возникает дополнительная погрешность от изменения частоты, так как сопротивления шунта и измерительного механизма поразному зависят от частоты.

Рис.3. Схемы многопредельных измерительных шунтов: a — шунта с рычажным переключателем, б — шунта с отдельными выводами

Шунты разделяются на классы точности 0,02; 0,05; 0,1; 0,2 и 0,5. Число, определяющее класс точности, обозначает допустимое отклонение сопротивления шунта в процентах его номинального значения.

измерительный шунт

Добавочные резисторы являются измерительными преобразователями напряжения в ток, а на значение тока непосредственно реагируют измерительные механизмы вольтметров.

Добавочные резисторы служат для расширения пределов измерения по напряжению вольтметров различных систем и других приборов, имеющих параллельные цепи, подключаемые к источнику напряжения. Сюда относятся, например, ваттметры, счетчики энергии, фазометры и т. д.

Добавочный резистор включают последовательно с измерительным механизмом (рис. 4). Ток I и в цепи, состоящий из измерительного механизма с сопротивлением Rи и добавочного резистора с сопротивлением Rд, составит:

где U — измеряемое напряжение.

Если вольтметр имеет предел измерения Uном и сопротивление измерительного механизма Rи и при помощи добавочного резистора Rд надо расширить предел измерения в n раз, то, учитывая постоянство тока I и, протекающего через измерительный механизм вольтметра, можно записать:

U ном / R и = n U ном / (Rи + Rд)

Рис 4. Схема соединения измерительного механизма с добавочным резистором

Читайте также:  Неразветвленная цепь переменного тока реферат

Добавочные резисторы изготовляются обычно из изолированной манганиновой проволоки, намотанной на пластины или каркасы из изоляционного материала. Они применяются в цепях постоянного и переменного тока.

многопредельный добавочный резисторДобавочные резисторы, предназначенные для работы на переменном токе, имеют бифилярную обмотку для получения безреактивного сопротивления.

При применении добавочных резисторов не только расширяются пределы измерения вольтметров, но и уменьшается их температурная погрешность.

В переносных приборах добавочные резисторы изготовляются секционными на несколько пределов измерения (рис. 5).

Рис. 5. Схема многопредельного вольтметра

Добавочные резисторы бывают внутренние и наружные. Последние выполняются в виде отдельных блоков и подразделяются на индивидуальные и калиброванные. Индивидуальный резистор применяется только с тем прибором, который с ним градуировался. Калиброванный резистор может применяться с любым прибором, номинальный ток которого равен номинальному току добавочного резистора.

добавочные резисторы

Калиброванные добавочные резисторы делятся на классы точности 0,01; 0,02; 0,05; 0,1; 0,2; 0,5 и 1,0. Они выполняются на номинальные токи от 0,5 до 30 мА.

Добавочные резисторы применяются для преобразования напряжений до 30 кВ.

Источник

Измерительные Шунты

Ø Электрический измерительный шунт является простейшим измеритель­ным преобразователем тока в напряжение и предназнача­ются для решения следующих задач:

· В электромеханических приборах — для измерения токов, величина ко­торых превышает максимальное значение, допустимое для дан­ного прибора — расширения пределов измерения прибора по току

· В цифровых измерительных приборах – для согласования входного сопротивления прибора с сопротивлением нагрузки или источника сигнала.

Шунты являются неотъемлемой частью всех цифровых измерительных приборов и многих электромеханических, прежде всего магнитоэлектрической системы. Он представляет собой прецизионный измерительный элемент (рези­стор) с достаточно малым и точно известным значением внутреннего сопротив­ления Rш , который включается в разрыв токовой цепи параллельно токоизмери­тельному прибору – амперметру (Рис. 2.26). Падение напряжения на участке цепи будет равно:

При Rвн >> Rш падение напряже­ния на шунте будет зависеть только от измеряемого тока в цепи I и сопротив­ления шунта Rш : Uш = I·Rш

Измерительный шунт характери­зуется номинальным значением вход­ного тока Iном и номинальным значе­нием падения напряжения на Uном. Их отношение определяет номинальное со­противление шунта

Тогда ток через входное сопротивление измерительного прибора равен:

где I – измеряемый ток, Rвн– внутреннее сопротивление измерительного меха­низма прибора (амперметра).

Для расчета сопротивления шунта вводится коэффициент шунтирования, равный отношению величины полного тока к величине тока, протекающего че­рез измерительный прибор n = I/Iпр. Тогда для получения величины тока через измерительный механизм в n раз меньше величины тока в основной цепи, со­противление шунта должно выбираться из условия:

Измерительные шунты (рис. 2.27) используются для измерений токов вплоть до 5000- 10000 А. Шунты для измерения токов до 30 А обычно встраиваются в из­мерительный прибор (внутренние шунты). Шунты на большие токи выполня­ются в виде отдельных устройств (внешние шунты).

Для шунтов предусмотрен следующий ряд номинальных напряжений — 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ

Измерительные шунты изготавливаются из манганина (сплав меди мар­ганца и цинка, отличающийся высокой термостабильностью и очень малой термоЭДС) по следующим классам точности – 0,02; 0,05; 0,1; 0,2; 0,5

Для переносных и щитовых приборов изготавливают многопредельные шунты, которые переключаются в ручном или автоматическом режимах..

С практической точки зрения шунты имеют рад недостатков, которые су­щественно ограничивают возможности из применения. Основными из этих не­достатков являются:

· Шунты имеют собственную емкость и индуктивность, пусть и очень небольшую, что искажает частотные характеристики измерительной цепи.

· На сопротивлении шунта выделяется электрическая мощность, что при­водит к их нагреву и изменению характеристик, особенно на больших токах.

· Переходное сопротивление контактов, с помощью которых шунт вклю­чается в цепь, может оказывать серьезное влияние на измерения, особенно при малом сопротивлении шунта.

Поэтому область применения шунтов ограничивается в основном посто­янными токами до 1000 А и использованием совместно только с магнитоэлек­трическими, электронными и цифровыми приборами, входное сопротивление которых достаточно велико.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Расчет измерительного шунта миллиамперметра

Шунт для амперметра

Шунт (англ. Shunt) — электрическое или магнитное ответвление, которое включают параллельно основного контура цепи. Параллельное подключение одного звена электрической цепи к другому с целью понижения общего электрического сопротивления называется процессом шунтирования. Это нашло широкое применение в схемотехнике.

Шунты измерительных приборов

Измерительный шунт — сопротивление, параллельно подключенное к зажимам измерительного амперметра (параллельно его внутреннему электрическому сопротивлению). Это позволяет прибору расширить измерительный диапазон по току при снижении его чувствительности и разрешающей способности.

Амперметр своими руками

Измерительные шунты производят из манганина. В зависимости от конструктивного исполнения бывают:

  • внутренними;
  • наружными (внешними).

Расчет шунта для амперметра постоянного тока

Для определения небольших значений тока (не более 30 А) шунт чаще всего находится внутри корпуса прибора. В случае измерения внушительных значений тока во избежание чрезмерного нагрева корпуса шунт имеет наружную конфигурацию исполнения.

В портативных магнитоэлектрических устройствах, рассчитанных на силу тока не более 30 ампер, внутренние шунты рассчитаны на несколько граничных значений измеряемой величины.

Многопредельный шунт устроен в виде ряда резисторов, которые возможно коммутировать в соответствии с пределом измерения, рычажным тумблером либо путем перемещения провода с одной клемы на другую.

У внешних резисторов, как правило, присутствует калибровка, с расчётом на распространенные значения тока и напряжения. Такие шунтирующие сопротивления имеют ряд номинальных значений напряжения: 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.

Читайте также:  Найдите силу тока в каждом из одинаковых резисторов сопротивлением 60 ом если напряжение источника

Расчет шунта амперметра

При использовании элементов шунтирования в измерениях величин переменного тока наблюдается добавочная погрешность, связанная с преобразованием частоты, поскольку сопротивления измерительного механизма и шунтирующего устройства находятся в различных зависимостях от частоты.

Шунтирующие звенья классифицируются согласно точности: 0,02, 0,05, 0,1, 0,2, и 0,5. Цифровые значения, отвечающие каждому классу, указывают на допустимую величину расхождения сопротивления с его номиналом, выраженную в процентах.

Эксплуатационные требования, выдвигаемые к элементам шунтирования: низкие потери напряжения в области шунта, во избежание перегрева оборудования; стабильное значение сопротивления, обеспечивающие точность измерения; стойкость к коррозии и к воздействиям окружающей среды.

Контроль величины постоянного тока имеет широкий диапазон применения, в том числе:

Во многих промышленных отраслях применение шунтирующих резисторов зарекомендовало себя как надежный, точный и долговременный способ для беспрерывного измерения тока постоянной величины.

Расчет и изготовление шунта

Амперметр M367 имеет максимальный предел измерения тока 150 А. Очевидно, что при определении таких величин силы тока задействовано внешнее шунтирующее сопротивление. Освобожденный от влияния шунтирующего элемента прибор приобретает свойства миллиамперметра с максимальным показанием силы тока 30 мА.

Следовательно, варьируя разными значениями сопротивления електр. звена, можно добиться любой области измерения. Чтобы подтвердить это на практике, можно создать шунт для амперметра своими руками.

Основные понятия и формулы

Значение суммарной величины тока I распределяется между шунтирующим резистором (Rш, Iш) и изм. прибором (Rа, Iа) и находится в обратно пропорциональной зависимости сопротивлению этих участков.

Электросопротивление ответвления измерительной цепи: Rш=RаIа / (I-Iа).

Для умножения масштаба измерения в n раз следует принять значение: Rш=(n-1) / Rа, при этом показатель n=I/Iа — коэффициент шунтирования.

Расчет шунтирующего звена

Как подключить амперметр к зарядному устройству

Для расчета шунта микроамперметра можно воспользоваться данными об измерительной головке прибора: сопротивление рамки (Rрам), величина тока, которая соответствует максимальному отклонению индикаторной стрелки (Iинд) и наибольшее значение прогнозируемой шкалы измерения тока (Imax). Максимальным измеряемым током примем значение 30 мА. Значение Iинд определяется экспериментальным путем. Для этого последовательно включается в электрическую цепь переменный резистор R, шкала индикатор и измерительный тестер.

Перемещая ходунок резистора R, следует добиться максимального показания стрелки на шкале индикатора и зафиксировать показания Iинд на тестере. Вследствие опыта известны величины Iинд = 0.0004 А и Rрам=1кОм (также измеряется тестером), этого достаточно для дальнейшего расчета сопротивления шунта микроамперметра (индикатора) по формуле:

Rш=Rрам * Iинд / Imax; получаем Rш=13,3 Ом.

Длина проводника

Выбрав материал для изготовления и зная величину его удельного сопротивления, необходимо рассчитать длину токовой части шунта.

Согласно соотношению: Rш=p*J/S,

где: p-удельное сопротивление, J-длина, S- площадь поперечного сечения проводника, подбираются геометрические параметры медного провода (p=0.0175 Ом*мм2 /м).

Величину площади можно рассчитать из формулы, вооружившись предполагаемым значением диаметра:

Тогда искомая величина будет равна:

При диаметре проводника d= 0.1 мм, подставив значения получается длина:

Расчет шунта для амперметра постоянного тока определил такие выходные данные:

максимальный ток измерения — 30 мА;

материал проводника — медная жила 0.1 мм в диаметре длиною 0,45 м.

Для удобства и упрощения расчетов относительно шкал измерительных приборов используют онлайн-калькулятор.

Амперметр для зарядного устройства

Шунт для амперметра своими руками

Нелишним будет знать, как сделать из вольтметра амперметр и применить его в процессе контролирования силы тока при зарядке аккумуляторных батарей.

Необходимый стрелочный вольтметр проверяется на способность стрелки полностью отклонятся вдоль измерительной шкалы. Следует убедиться в отсутствии добавочных сопротивлений или внутреннего шунта.

До этого был рассмотрен расчетный метод подбора шунтирующего резистора, в этом случае самодельный амперметр получается сугубо практическим путем, с помощью добавочного изм. прибора или тестера с пределом измерения до 8 А.

Соединяется в простую схему зарядный выпрямитель, дополнительный образцовый амперметр, проводник для будущего шунта и заряжаемая аккумуляторная батарея.

Как рассчитать шунт для амперметра

Для изготовления шунта для амперметра 10А своими руками на концах неизолированного толстого медного проводника длиною до 80 см выгибаются кольцеобразные дуги под крепеж болтом. После чего подсоединяется последовательно с образцовым изм. прибором в электрическую цепь выпрямитель — аккумулятор.

Один из концов стрелочного вольтметра основательно соединяется с шунтом, а другим, как щупом, проводится по медному проводу. Подается питание через выпрямитель и устанавливается по образцовому амперметру сила тока в цепи 5А.

Начиная от места крепления, щупом от вольтметра следует вести по проводу, пока на обоих приборах не установятся одинаковые значения тока. Согласно величине сопротивления рамки используемого стрелочного вольтметра определяется нужная длина провода шунтирования величиною до метра.

Проводник шунта возможно смотать в виде спирали либо как-то еще. Витки легонько растянуть с целью избежать прикосновений между ними или изолировать хлорвиниловой трубкой по всей длине спирали шунта.

Вариант предварительного определения длины провода для последующей замены изолированным проводником тоже вполне приемлем и практичен, но требует внимательности и тщательности в операциях замены шунта, повторяя все этапы по нескольку раз. Связано это с точностью показаний амперметра.

Расчет шунта для амперметра

Соединительные провода от вольтметра должны быть обязательно припаяны непосредственно к шунтирующей спирали, иначе прибор будет иметь погрешности в показаниях.

Провода соединяющие шунт и изм. прибор выбирают произвольной длины, поэтому шунтирующий элемент возможно поместить в любой части корпуса выпрямителя.

Шкала амперметра для измерения величины постоянного тока равномерная, этим нужно руководствоваться при ее выборе. Букву V правильно заменить на А, а цифровые значения подогнать из расчета максимального тока в 10 А.

Originally posted 2018-04-18 12:28:37.

Источник