Меню

Измерение действующего значения напряжения переменного тока

Измерение действующего значения напряжения переменного тока

Через WebMoney

R785211844650
Z210696637574
E368177590409

Измерение действующего значения напряжения
Автор ARV
15.02.2008 г.

Вольтметры на микроконтроллере — что может быть проще? Это так, если речь идет об измерении на постоянном токе, или определения мгновенных значений переменного. Но измерение действующего значения переменного напряжения, тем более несинусоидальной формы — нетривиальная задача. Однако, и она решаема, причем на достаточно простом и недорогом микроконтроллере семейства AVR.

Данная статья носит скорее характер рассуждений на тему, нежели описание конкретного проекта. Ее назначение — направить мысль в нужное русло, обозначить цели, подводные камни, проложить «лоцию» их обхода. Чтобы каждый желающий мог самостоятельно реализовать изложенный принцип.

Итак, сначала микро-экскурс в теорию. Как известно, действующим значением переменного тока и напряжения называют величину, которая принимается в расчетах выделяющейся теплоты или мощности. Для постоянного тока действующее значение равно амплитудному, среднему и мгновенному, для переменного тока — это все разные величины.

Мгновенное значение переменного напряжения — это абсолютный уровень напряжения в конкретный момент времени, одиночный отсчет. Амплитудное значение — это наибольшее значение синусоиды (или другой кривой для несинусоидальной формы сигнала) за период. Амплитудное значение берется по модулю, т.е. не бывает минусовой и плюсовой амплитуды. Среднее значение, как следует из самого термина, это сумма всех мгновенных значений (отсчетов) за период, деленная на количество отсчетов. Математически — это интеграл мгновенных значений за период. Очевидно, что для синусоидальной формы среднее за период значение будет равно нулю. Если форма кривой напряжения искажена, то среднее значение за период может оказаться ненулевым — тогда оно получает название постоянной составляющей переменного напряжения. Наконец, действующее или эффективное значение напряжения — это величина, численно равная половине интеграла квадрата мгновенных значений напряжения за период. Поэтому его еще называют среднеквадратичным напряжением.

Теперь подумаем, как эта теория поможет нам решить нашу задачу. В МК мы имеем дело с АЦП, которое (в некотором приближении) способно давать нам отдельные отсчеты напряжения, т.е. оно умеет определять мгновенные значения напряжения. Легко понять, что для определения действующего значения нам необходимо проинтегрировать (т.е. просуммировать) квадраты результатов АЦП, взятых через равные промежутки в течение одного периода измеряемого напряжения. Почему я не говорю о необходимости делить сумму квадратов пополам, хотя теория вроде бы этого требует? Да потому, что АЦП дает нам результат в абстрактных числах, оторванных от реальности. Чтобы из этой абстракции получить реальное значение, нам все равно надо умножить их на какой-то размерный коэффициент, в котором может быть учтено то самое деление на 2. Поясню: если «один шаг» АЦП соответствует 0,02В напряжения, то для перевода в реальные вольты нам надо умножить результат АЦП на 0,02. Если же в процессе вычислений нам потом потребуется разделить эти значения на 2, так не проще ли умножать сразу на коэффициент 0,01В?!

Наметим алгоритм нашей программы. В общих чертах он будет таким:

  1. Получить через равные промежутки N отсчетов АЦП в течение одного периода измеряемого напряжения.
  2. Возвести результаты в квадрат и просуммировать.
  3. Извлечь квадратный корень из полученной суммы.
  4. Умножить полученный результат на масштабирующий коэффициент и вывести результат на индикатор.

Чтобы наш вольтметр показывал значение непрерывно, этот алгоритм надо выполнять циклически.

Теперь давайте разбираться с деталями. Прежде всего, определимся с числом отсчетов N. Казалось бы, все просто: чем оно больше, тем точнее результат. И это действительно так, однако не следует забывать о том, что в нашем распоряжении не суперкомпьютер, а всего лишь микроконтроллер AVR, возможности которого весьма ограничены.

Прежде всего, есть ограничение на скорость работы АЦП. Atmel рекомендует использовать АЦП при работе от тактовой частоты не более 200 кГц, иначе будет увеличиваться погрешность результатов. Один цикл измерений АЦП длится (в установившемся режиме) 13 тактов, т.е. при любых ухищрениях мы не сможем использовать АЦП чаще, чем 15384 раза в секунду, если хотим получать все 10 бит результата верно. Прикинем, что же мы получаем в результате. Длительность периода сетевого напряжение 20 мс. При вышеобозначенной частоте семплов за один период мы просто не успеем получить более 307 отсчетов. Конечно, если немного пожертвовать точностью, можно увеличить скорость АЦП и соответственно, число отсчетов за период.

Другое важное ограничение — это быстродействие математических операций. Возведение в квадрат — процедура очень затратная по числу тактов работы микроконтроллера, и если выполнять интегрирование «на лету», т.е. по мере поступления результатов из АЦП, частота семплирования в 15К будет недостижима даже в теории. Выход один — быстро накапливать нужное количество данных в массиве, а потом неторопясь их обрабатывать. И тут мы наталкиваемся на третье ограничние — объем ОЗУ. Теоретически максимальное количество отсчетов из 307-и 10-битовых чисел потребует для хранения 614 байт ОЗУ, что уже больше всей имеющейся памяти во многих МК, а для, например, Atmega8 составляет больше половины. А ведь для работы нам еще нужно место под стек, под другие промежуточные переменные. Так что число отсчетов N=307 можно считать абсолютно максимальным для всех МК с объемом ОЗУ 1К и менее.

Для заполнения массива отсчетов используем прерывание по завершению цикла АЦП. То есть определим переменную-индекс, указывающую на очередной элемент нашего массива, а в обработчике этого прерывания будем сохранять по этому индексу результат АЦП в массиве и увеличивать индекс. Так как по нашим расчетам с момента первого семпла и до последнего (307-го) должно пройти 20 миллисекунд, можно считать, что задача получения мгновенных значений напряжения за период нами решена. Однако, надо же контролировать выход индекса за пределы допустимого значения, т.е. делать проверку — не больше ли 307-и семплов мы сделали? Естественно, нужно быть уверенным, что время всех дополнительных расчетов не увеличит периодичность поступления семплов, иначе не миновать больших ошибок.

Предположим, мы наконец-то получили наш массив отсчетов, и теперь необходимо провести его обработку. Вы себе представляете возведение в квадрат на ассемблере? А извлечение квадратного корня? Конечно, все решаемо, но гораздо проще применить встроенные функции языка Си square и sqrt. Отсюда 2 неизбежных вывода: программу мы делаем на Си и все предыдущие рассуждения требуют корректировки. Этот ошарашивающий вывод следует понимать так: Си — язык высокого уровня, и потому существенно более медленный, чем ассемблер. Значит, процедуры обработки прерываний могут потребовать больше времени, чем мы рассчитывали, т.е. нарушить стройные расчеты количества и частоты семплов. Значит, надо обязательно проконтролировать время исполнения критических участков нашей программы (например, в той же AVR Studio), и, если окажется, что период семплирования существенно больше расчетного, провести корректировку всех расчетов — от количества семплов до частоты АЦП. Но забудем на время об этом.

Итак, замеры и расчеты позади. Остается организовать вывод результатов. Тут, как говорится, простор широк: от семисегментных индикатров с динамической индикацией до LCD символьных дисплеев или передачи результатов по UART в компьютер. Только помните, что динамическая индикация так же работает по прерываниям, т.е. может исказить временные интервалы получения семплов.

Надеюсь, принцип понятен. Теперь несколько слов о не затронутых проблемах. Прежде всего, все наши размышления относились к измерению сетевого напряжения, т.е. напряжения с частотой 50 Гц. При других частотах, наша программа будет давать результат с погрешностью. Величина этой погрешности будет минимальна, если в 20 мс будет укладываться целое число периодов напряжения (для симметричных форм сигнала — полупериодов). Если число целых периодов (полупериодов) будет не целое, погрешность будет максимальна, причем характер показаний вольтметра будет иметь вид «биений». Так как напрасно ожидать высокой точности от численного интегрирования при числе семплов за период менее нескольких десятков, то верхнее значение частоты для измеряемого напряжения в реальности будет не больше 200 Гц. Короче говоря, мы все-таки сделаем прибор только на 50 Гц. Хотя на 25 он будет работать совсем не плохо. Разумеется, прибор покажет верное значение для любой формы переменного напряжения 50 Гц, а так же для постоянного тока.

Схема для протеуса

В подтверждение всех изложенных выкладок (и для их проверки) привожу конкретный пример реализации вольтметра. Я не собирал реальную схему, ограничился проектом в протеусе. Однако полученные при моделировании результаты полностью подтвердили изложенное и позволяют утверждать, что реальная схема с минимальными доработками (источник питания и защитные цепи) будет работать. Предлагаемая прошивка для МК полностью работоспособна — дорабатывайте схему, делайте печатную плату и пользуйтесь. Однако, я делал ее по-своему, т.е. чуть-чуть иначе, чем только что рассказал. Самое главное, что в моей программе не так — это число семплов в массиве: у меня их 256. Из-за этого мне пришлось отказаться от «естественной» частоты семплов и привязать их к таймеру, это в свою очередь потребовало поднять рабочую частоту АЦП до 250 кГц (при тактовой частоте МК в 8 мГц). Кстати, получить 250 кГц для АЦП от встроенного RC-генератора меги гораздо проще, чем 200, так что не исключаю, что при написании собственной программы вы тоже будете вынуждены пойти по моему пути.

Проект для Proteus 7.1 Pro SP2 и файл прошивки можно скачать в файловом архиве. В проекте штрих-пунктиром обведена часть, которая собственно вольтметр. А левее — это источник тестового сигнала. Входной мост и делитель напряжения должны быть с запасом рассчитаны на входное напряжение, лучше выбирать 1000-вольтовые диоды, они-то уж точно выдержат. Делитель лучше сделать именно как показано на схеме — из трех резисторов, т.к. один резистор соответствующего номинала может не выдержать высоких напряжений. Еще лучше взять больше резисторов, кстати, проще будет и коэффициент деления подобрать. На схеме не показаны многие нюансы, например, защитный стабили-трон на входе АЦП, но это именно нюансы. Моя прошивка обеспечивает измерение напряжений до 710В, при этом погрешность не более 2В для синусоидальной формы напряжения. Для других форм напряжения погрешность может увеличиться, но не сильно. Думаю, в 5% точно уложится. Для простого прибора со шкалой 10-700В неплохо, не так ли? Прошивка имеет особенность: если на вход подано напряжение с амплитудным значением более 1000В (примерно), прибор покажет символ «Е» — перегрузка. Это произойдет даже если действующее значение будет существенно меньше 700В.

Источник



Измерение напряжения переменного тока

Под переменным напряжением понимается периодически изменяющееся напряжение, основными параметрами его являются период (или частота как величина, обратная периоду), амплитуда Um и мгновенное значение сигнала U(t).

Кроме амплитудного и мгновенного значений периодического сигнала часто используют:

1. Среднее значение (7.1)

2. Средневыпрямленное значение (7.2)

3. Действующее значение (7.3)

Зная форму сигнала, можно вычислить соотношения между амплитудным, действующим и средневыпрямленным значениями:

– коэффициент формы;

– коэффициент амплитуды.

Сигнал Вид сигнала Коэффициент формы Коэффициент амплитуды
синус 1,11 1,42
меандр 1,00 1,00
треугольный 1,154 1,73

Комбинированные вольтметры отображают действующее значение измеряемой величины. Переход от мгновенного значения к действующему может быть реализован тремя способами: определение средневыпрямленного значения и умножение его на коэффициент формы; определение амплитудного значения и деление его на коэффициент амплитуды; расчет действующего значения по формуле (7.2). Соответственно, существуют три типа входных детекторов измерительных приборов переменного тока: детекторы средневыпрямленного значения, амплитудного значения, действующего (среднеквадратичного) значения.

Наиболее часто на практике используют синусоидальные сигналы, поэтому в приборах с детекторами средневыпрямленного значения и амплитудного значения производится соответственно умножение и деление на коэффициенты формы и амплитуды для синусоидального сигнала. Таким образом, при измерении сигналов формы, отличной от синусоидальной, будет возникать методическая погрешность.

2. Принцип действия вольтметров с детектором
средневыпрямленного значения

Напряжение переменного тока может быть измерено вольтметрами электромагнитной, электро- и ферродинамической или электростатической систем. Но наиболее широко в измерительной практике используются вольтметры, имеющие измерительный механизм магнитоэлектрической системы и преобразователь измеряемого параметра переменного напряжения в постоянный ток. Измерительные механизмы магнитоэлектрической системы реагируют на среднее значение тока, протекающего по рамке. Поэтому, если пропускать через рамку ток с нулевым средним значением (например, синусоиду, меандр и т.п.), то подвижная система отклоняться не будет. Для измерения переменных токов и напряжений необходимо сигнал предварительно преобразовать в постоянный ток или напряжение. Основные типы таких преобразователей приведены в [2].

Рис. 7.1. Выпрямительные вольтметры

В выпрямительных вольтметрах обычно применяют схемы одно- или двухполупериодного выпрямления (см. рис. 7.1).

Недостатком простейшей схемы (рис. 7.1а) является малая чувствительность, большое обратное напряжение, приложенное к диоду, и, кроме того, несимметричность нагрузки для источника сигнала в разные полуволны сигнала. В схеме на рис. 7.1б использованы два диода, что позволяет выровнять (R=Rр) токи полуволн и защитить диод Д1 от пробоя. Часто используют схемы двухполупериодного выпрямления (рис. 7.1в).

Во всех этих схемах измерительный механизм реагирует на средневыпрямленный ток, т.е. отклонение стрелки пропорционально средневыпрямленному напряжению Uсв измеряемого сигнала

.

В большинстве же технических приложений необходимо знать действующее (среднеквадратическое) значение U. Конечно, если измерено Uсв, то U можно найти, используя коэффициент формы. Например, для синусоидального сигнала U=1,11×Uсв. Для удобства применения прибора это домножение на коэффициент 1,11 производится при градуировке:

;

;

.

В результате таким вольтметром удобно пользоваться при измерении синусоидальных сигналов. Если же коэффициент формы измеряемого сигнала отличается от 1,11, то возникает так называемая погрешность формы кривой.

(7.4)

Например, для меандра (Кф= 1,00):

,

т.е. методическая погрешность за счет отклонения формы кривой от синусоиды может существенно (в несколько раз) превышать инструментальную, определяемую классом точности прибора. Если известен коэффициент формы измеряемого сигнала, то можно вычислить измеряемое действующее значение Uх по формуле

(7.5)

где Uп — показание вольтметра выпрямительной системы.

Таким образом, при измерении напряжения переменного тока выпрямительным вольтметром следует учитывать две методические погрешности (за счет входного сопротивления и за счет формы кривой) и инструментальную погрешность самого вольтметра.

3. Принцип действия вольтметров с детектором
амплитудного значения

Вольтамперные характеристики реальных диодов имеют нулевую зону (отсутствие тока в прямом направлении) до 0,3-0,7 В. Поэтому выпрямительные вольтметры нельзя использовать при измерении малых напряжений. Необходимо предварительное усиление входного сигнала, что осуществляется в электронных вольтметрах. На рис. 7.2 приведены схемы электронных вольтметров с линейными детекторами на операционных усилителях.

а б

Рис. 7.2. Схемы электронных вольтметров.

При измерении высокочастотных напряжений часто используются электронные вольтметры с амплитудными детекторами. На рис. 7.3 приведена схема вольтметра, состоящего из:

— измерительного механизма магнитоэлектрической системы (ИМ);

— усилителя постоянного тока (УПТ);

— делителей во входных цепях;

— пробника, представляющего собой амплитудный детектор с закрытым входом.

Его выходной сигнал определяется амплитудой переменной составляющей входного сигнала.

В комбинированных вольтметрах шкала градуируется так, чтобы сразу определить среднеквадратическое (действующее) значение.

; ; ,

где КУПТ – коэффициент, зависящий от характеристик усилителя постоянного тока.

Рис. 7.3. Функциональная схема вольтметра В7-15

Градуировку комбинированных электронных вольтметров осуществляют для синусоидального входного сигнала

Если коэффициент амплитуды отличается от КА=1,41, то возникает методическая погрешность:

(7.6)

Например, если входной сигнал имеет форму меандра (КА=1,00), то относительная методическая погрешность:

Знак минус свидетельствует о том, что показания вольтметра меньше, чем действующее значение входного сигнала. Если известен коэффициент амплитуды входного сигнала, то действующее значение равно:

, (7.7)

где Uп — показание электронного вольтметра.

Только в случае, если градуировка шкалы совпадает с типом детектора, приборы показывают тот параметр сигнала, для которого проведена градуировка шкалы.

Учитывая большое входное активное сопротивление электронных вольтметров на промышленных частотах (до 1 кГц), часто можно пренебречь методической погрешностью за счет потребления энергии от входного сигнала и общая погрешность измерения напряжения имеет две составляющие: методическую погрешность формы кривой и инструментальную погрешность самого электронного вольтметра.

Отличительной характеристикой вакуумных диодов, часто используемых в амплитудных детекторах электронных вольтметров (см. рис. 7.3), является отсутствие нулевой зоны, и даже наличие небольшого тока через диод при нулевом входном сигнале. Нестабильность этого нулевого тока диода требует проведения перед измерением электронным вольтметром дополнительной операции «установки нуля переменного напряжения», во время которой подстраивается величина специального компенсирующего сигнала. Таким образом, при измерении электронным вольтметром напряжения переменного тока необходимо произвести две регулировки: балансировку УПТ и компенсацию нулевого тока вакуумного диода.

Современные электронные и цифровые вольтметры обычно построены по схеме широкополосный усилитель — преобразователь средневыпрямленного значения — измерительный механизм. Кроме того, как отдельный конструктивный элемент имеется амплитудный детектор с закрытым входом (пробник). Пробник подключается в случае измерения высокочастотных сигналов к входу вольтметра, работающего в этом случае в режиме измерения постоянного напряжения, поступающего с выхода пробника. Для сохранения градуировки шкалы в пробнике предусмотрен делитель (К=1), так что выходной сигнал пробника равен действующему значению при синусоидальном измеряемом напряжении.

В цифровых вольтметрах также предусматривается два варианта измерения напряжения переменного тока: при подключения сигнала к клеммам используется линейный детектор (см. рис. 7.2), а для измерения высокочастотных сигналов к приборам прилагается пробник (амплитудный детектор). В некоторых вольтметрах применяются квадратичные детекторы, выходной сигнал которых пропорционален действующему значению измеряемого напряжения и погрешность формы кривой отсутствует.

Источник

Как измерять напряжение?

Тусклый свет от приборов освещения или отказ стиральной машины выполнять свои функциональные обязанности свидетельствует о возможном падении питающего напряжения ниже нормы. В таких случаях необходимо произвести измерение напряжения, что позволит определить его соответствие заданному номиналу электрической сети.

Такая же процедура производится при ремонте электронных приборов, где измеряется падение напряжения на радиодеталях и отдельных участках цепи. Данная процедура выполняется довольно легко, но без понимания физики процесса и особенностей проведения замеров, человек рискует не только повредить дорогостоящее оборудование, но и получить электротравму, поэтому далее мы рассмотрим основные принципы измерения.

Используемые приборы

В каждом доме прибор учета электроэнергии находится в состоянии постоянного измерения переменного напряжения, но крайне редко эти данные где-либо отображаются. Некоторые из них подключаются напрямую, другие через измерительные трансформаторы.

В практических целях для измерения уровня напряжения могут применяться:

  • Вольтметры;
  • Мультиметры
  • Осциллографы.

Вольтметр представляют собой устройство для проверки разности потенциалов. На практике могут встречаться как цифровые, так и аналоговые вольтметры, на которых измеряемое напряжение отображается на дисплее или посредством отклонения стрелки на циферблате соответственно.

Важными параметрами при выборе как электронного, так и стрелочного вольтметра являются единицы измерений (мВ, В, кВ), рабочий диапазон и класс точности. Однако сфера их применения ограничена и применяется, чаще всего, для лабораторных исследований, поскольку в бытовых и производственных нуждах содержать один прибор для измерения одной электрической величины нецелесообразно.

Мультиметр или цифровой тестер является более универсальным прибором, который может работать с несколькими параметрами: электрическим током, сопротивлением, частотой, температурой, напряжением и т.д. Для измерения напряжения мультиметр переключается в режим вольтметра, щупы подключаются к соответствующим разъемам. Конструктивно встречаются и цифровые и аналоговые модели, в некоторых из них можно переключать диапазон измерений, выбирать род тока, в других мультиметрах все эти величины могут подбираться автоматически.

Осциллограф – это довольно сложный прибор для измерения разности потенциалов, так как в нем на цифровом или аналоговом дисплее выводится кривая измеряемой величины. При этом можно растянуть или сократить диапазон частот, чтобы рассмотреть форму импульсных напряжений, длительность импульсов, нарастание и провалы в кривой функции. Поэтому осциллограф для измерения напряжения применяется в электрических цепях и приборах высокой точности, при изготовлении и проверке радиодеталей и т.д. Мало кто держит дома осциллограф из-за высокой стоимости и сложности выполнения операций.

Измерение напряжения в сети

Чтобы правильно выполнить измерение напряжения необходимо четко представлять принцип и объект исследования. Поэтому следует отметить, что напряжение представляет собой такую электрическую величину, которая показывает разность заряда между двумя электрическими точками. К примеру, если в одной точке заряд составит +35 В, а в другой +310 В, то разница между этими точками составит 310 – 35 = 275 В, это и будет напряжение. Соответственно измерение напряжения может производиться только относительно чего-то, поэтому используются сразу две точки.

Схема измерения напряжения

Рис. 1. Схема измерения напряжения

Если говорить о падении напряжения на каком-либо объекте или участке цепи, то измерение напряжения проводиться относительно концов прибора или цепи, точек подключения и т.д. При этом важно учитывать, что цифровой вольтметр или мультиметр в режиме измерения считается бесконечным сопротивлением или разрывом в цепи.

Падение напряжения возможно только при условии протекания тока, поэтому подключение вольтметров последовательно с измеряемым объектом недопустимо, так как через него перестанет протекать ток. Аналоговый или электронный вольтметр должен подключаться только параллельно по отношению к измеряемому сигналу.

С практической точки зрения следует заметить, что аналоговые модели измерительных приборов имеют входное сопротивление равное 10 – 20 кОм, а современные мультиметры могут похвастаться 1МОм. Так как через сопротивление на входе в измерительное устройство может протекать ток утечки, этот делитель напряжения будет обуславливать снижение точности измерений. Поэтому чем ближе сопротивление на входе к бесконечности, тем более точный прибор вы используете.

Важно отметить, что замеры производятся под напряжением, из-за чего присутствует угроза поражения электротоком. Поэтому важно соблюдать элементарные меры предосторожности. Далее рассмотрим порядок выполнения измерения для постоянного и переменного напряжения.

Постоянного тока

Измерение постоянного напряжения

Рис. 2. Измерение напряжения постоянного тока

Для цепи постоянного тока расмотрим порядок измерения напряжения при помощи цифрового мультиметра. Для этого:

  1. Переведите переключатель мультиметра в положение для постоянного напряжения. На панели обозначается латинской буквой V со значком « = », знаками «+ и – », также может обозначаться аббревиатурой DC.
  2. Выберете нужный предел измерения, который будет максимально приближен к предполагаемому номиналу, но выше измеряемого.
  3. Установите щупы в соответствующие разъемы – черный к выводу COM, красный к выводу V.
  4. Приложите щупы мультиметра сразу к двум точкам – красный к плюсу, черный к минусу. Если вы заранее не знаете положение потенциалов, и показание прибора имеет отрицательное значение, нужно просто поменять полярность подключения.

На дисплее вы увидите показания вольтметра, если значение слишком малое, переключите ручку на меньший предел измерений. Прикладывая щупы, создавайте хорошее усилие, чтобы избежать большого переходного сопротивления, иначе они внесут ощутимую погрешность измерений.

Переменного тока

Измерение переменного напряжения

Рис. 3. Измерение переменного напряжения

В цепи переменного тока бытовой цепи важно учитывать ее опасность из-за номинала в 220/380 В. Поэтому при невозможности подключения мультиметра непосредственно в процессе эксплуатации, его присоединение должно выполняться при отключенном напряжении при помощи «крокодилов».

В остальном процесс измерения идентичен:

    Переключите ручку мультиметра в положение для измерения переменного напряжения. На панели оно обозначается как V со значком «

» или аббревиатурой AC.

  • Установите ручкой деление на нужный предел по принципу ближайшего большего потенциала относительно измеряемого номинала.
  • Выполните подключение щупов к соответствующим выводам: черный к выводу COM, красный к выводу V.
  • Подключите измерительный прибор к нужному устройству, заметьте, что полярность щупов здесь значения не имеет.
  • На дисплее у вас отобразится действующее значение разности потенциалов, именно оно и является основным для всех расчетов. Но, помимо этого существует и амплитудное значение, которое больше действующего на √2 раз или 1,41 раза.

    Реальные примеры измерения напряжения

    Наиболее простым примером измерения напряжения в бытовых условиях является пальчиковая батарейка. В ней вам необходимо приложить черный щуп к выводу «– », а красный к выводу « + », позицию переключателя установить на 2 В постоянного напряжения.

    Пример измерения напряжения на батарейке

    Рис. 4. Пример измерения напряжения на батарейке

    Если показания для батарейки 1,5 В будут в пределах от 1,6 до 1,2 В, то такой источник питания считается пригодным для всего оборудования, в случае снижения значений до 1 – 0,7 В, от батарейки будут запускаться импульсные устройства, к примеру, часы. Если вольтметр покажет 0,6 В и менее, разряд достиг критического значения.

    При измерении разности потенциалов в бытовой сети, вам следует коснуться щупами контактов розетки. Так как изолированная часть щупа имеет ограничительное кольцо, за которым расположен длинный стержень, вы можете безопасно проникнуть в розетку, не рискуя прикоснуться к токоведущим элементам. Допустимыми считаются отклонения от номинала на 10%, то есть от 198 до 142 В.

    Также можно замерить разность потенциалов на выходе автомобильного аккумулятора или на другом элементе цепи электрической проводки. Для этого черный щуп мультиметра устанавливается на «– » клемму аккумулятора, а красный на « + » клемму.

    Если аккумулятор заряжен, то показания вольтметра должны находиться в пределах от 12 до 14 В, но встречаются модели и с большим разбросом. Такое измерение позволяет диагностировать различные причины неполадок.

    Видео по теме

    Источник

    Измерение действующих значений переменных токов и напряжений

    Ранее было отмечено, что электромагнитные, электродинамические, ферродинамические и электростатические измерительные механизмы могут быть использованы для измерений действующих значений переменного тока и напряжения, и указаны верхние пределы токов и напряжений, непосредственно измеряемых этими механизмами.

    Расширение пределов измерений перечисленных измерительных механизмов по току осуществляется с помощью измерительных трансформаторов тока, так как падение напряжения в этих механизмах в несколько раз больше, чем в магнитоэлектрических, поэтому шунты получились бы громоздкими и дорогими.

    Расширение пределов измерения по напряжению может быть достигнуто как с помощью добавочных сопротивлений, так и путем использования измерительных трансформаторов напряжения. Последние главным образом применяются при необходимости изоляции прибора от сети высокого напряжения. Расширение пределов измерения электростатических измерительных механизмов производится с помощью добавочных конденсаторов.

    Электромагнитные приборы в основном применяются в качестве щитовых приборов класса 1,5, а также лабораторных многопредельных приборов класса 0,5.

    Электродинамические амперметры и вольтметры являются наиболее точными приборами на переменном токе. Они выпускаются только в качестве лабораторных приборов классов 0,1; 0,2 и 0,5.

    Электромагнитные, электродинамические и ферродинамические приборы обычно градуируются (и поверяются) либо на переменном токе промышленной частоты, либо на постоянном токе. При измерении на повышенных частотах эти приборы имеют значительную погрешность, обусловленную в основном индуктивностью катушек. Для работы на высоких частотах указанные приборы не могут быть использованы.

    На практике электростатические вольтметры могут применяться на любых частотах, за исключением малых (до 30. 40Гц), так как при малых частотах полное сопротивление Z измерительного механизма и добавочного конденсатора зависит от сопротивления изоляции, шунтирующего емкостное сопротивление,

    Для измерения действующих значений переменных токов и напряжений также могут быть использованы термоэлектрические приборы. Схемы цепи термоэлектрических приборов представлены на (рис. 5.3). Термоэлектрический прибор представляет собой магнитоэлектрический измерительный механизм Г (см. рис. 5.3 а, с единичной термопарой) в сочетании с термопарой 1, служащей для измерения температуры t проволоки (терморезистора) 2, через которую протекает измеряемый переменный ток I.

    Угол отклонения α магнитоэлектрического измерительного механизма пропорционален термо-ЭДС:

    α = SiIГ = Si = kET,

    где Siчувствительность гальванометра к току; IГток термопары гальванометра; ET — термо-ЭДС; RГсопротивление измерительного механизма; RTсопротивление термопары; kкоэффициент пропорциональности.

    Термо-ЭДС при постоянстве температуры свободных концов термопары является функцией температуры рабочего конца термопары:

    ET = f1(t).

    Температура t будет функцией теплоты, выделяемой измеряемым током I, которая, в свою очередь, пропорциональна квадрату тока:

    t = f2(I 2 ).

    Следовательно, угол отклонения α = f(I 2 ), является функцией действующего значения переменного токаI.

    Характеристика шкалы не будет строго квадратичной, так как температура t терморезистора определяется тепловым равновесием проволоки, т.е. потерями выделяемой теплоты, зависящими от многих факторов. Если измеряемый ток мал, то мало и значение термо-ЭДС. В этом случае можно использовать батарею из нескольких термопар (см. рис. 5.3 б). Однако непосредственный контакт рабочих концов термопар с терморезистором невозможен, так как термопары оказались бы замкнутыми накоротко. В связи с этим рабочие концы термопар обычно изолируются от терморезисторов каплей стекла.

    Терморезистор часто называют нагревателем, а сочетание нагревателя с термопарой — термопреобразователем. Терморезистор (нагреватель) обычно выполняется из константана или сплава платины с родием. В качестве термопары чаще всего применяется термопара хромелькопель.

    Индуктивность терморезистора очень незначительна, поэтому основное применение термоэлектрические приборы получили для измерения токов высокой частоты (в мегагерцах — МГц).

    Источник

    Читайте также:  Ток является вектором или нет

    Приборы счетчики инструменты © 2021
    Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.