Меню

Источник входящего переменного тока

Особенности источников тока

Время на чтение:

Существует несколько видов источников тока, различающиеся по природе происхождения энергии. Каждый из этих видов имеет свои индивидуальные особенности, в частности, принципы выработки электрической энергии, а также ее преобразование. Определить, какой тип элемента применяется, можно с помощью графического обозначения.

Что такое источники тока

Источники тока – это элементы электрической цепи, который поддерживают энергию с заданными параметрами. При этом, энергоснабжение цепи не зависит от характеристик элементов, входящих в её состав, в частности, сопротивления.

Прибор для выработки тока

Различают идеальные и реальные устройства для выработки тока:

  • Идеальные определяются только благодаря гипотезам и теоретическим выкладкам. Так, учёные нередко определяют ряд условий, при которых ток имеет максимальные значения, приближенные к идеалу. То есть, осуществляется имитация идеального источника.
  • Реальные условия поддерживают заданные параметры выходного тока и напряжения. Любой прибор обеспечивает свою работу, при условии, что это позволяют сделать его технические характеристики.

Важно! Таким образом, максимальное значение тока и напряжения дают возможность определить, какой именно вариант источника будет использован в цепи – идеальный или реальный.

Виды источников

Существует несколько видов устройств для выработки тока, каждый из которых имеет свои основные показатели, характеристики и особенности, приведённые в следующей таблице:

Вид источника Характеристики источника тока
Механический Специальное устройство (генератор) обеспечивает трансформацию механической энергии в электрическую. В настоящее время большое количество тока производится именно с помощью механических источников.
Тепловой В основу работы агрегатов заложен принцип переработки тепловой энергии в электрическую. Такое преобразование происходит благодаря разности температур контактирующих между собой полупроводников. В настоящее время разработаны источники тока, тепловая энергия в которых вырабатывается благодаря распаду радиоактивных элементов.
Химический Химические варианты можно условно разделить на 3 группы – гальванические, аккумуляторы и тепловые.

· Гальванический элемент работает посредством взаимодействия 2-х разных металлов, помещенных в электролит.

· Аккумуляторы – устройства, которые можно несколько раз заряжать и разряжать. Существует несколько видов аккумуляторов с различными типами элементов, входящих в их состав.

Важно! Каждый вид имеет свои преимущества и недостатки, которые определяются принципом использования, а также исходными показателями вырабатываемой энергии.

Механические источники

Механические агрегаты являются самыми простыми по принципу их использования и обустройства. Характеристика таких генераторов очень проста для понимания. В специальных устройствах вырабатывается энергия, которая впоследствии преобразуется в электричество. Такие приборы используются на тепловых электростанциях и гидроэлектростанциях.

Механический

Тепловые источники

Тепловые варианты источников обеспечивают уникальный принцип работы. Энергия вырабатывается благодаря образованию термопары, которая. Это означает, что на концах проводников обеспечивается расчётная разность температур, элементы взаимодействуют между собой, создавая электрическое поле.

Тепловой

Обратите внимание! Радиоактивные термопары используют в космической промышленности. Эффективность такого использования возможна благодаря долгому сроку службы и эффективным показателям вырабатываемой мощности.

В результате подобного движения заряженных частиц от горячей части проводника к холодной возникает электроток. При этом, чем больше разница температур, тем выше показатель результативной энергии. На практике термопары нередко входят в состав измерительных приборов.

Световые источники

Световые устройства ля выработки электроэнергии считаются самыми экологичными, эффективными и относительно дешевыми. Специальная панель из полупроводников поглощает световые частицы, которые при таком взаимодействии выдают определенное напряжение.

Световой

При этом, световые панели имеют небольшой показатель КПД – 15 %. Панели такого типа нашли широкое применение – от бытовых приборов до инновационных разработок в космической отрасли.

Важно! Световые источники начали использоваться вместо литиевых батарей из-за высокой стоимости последних. Несмотря на то, что многие объекты промышленности требуют значительного переоснащения для перехода на световые источники, конечная экономия возникает уже на первичных этапах эксплуатации.

Химические источники

В данную группу входит 3 основных устройства, отличающиеся строением и принципом работы:

  • Гальванический элемент – это вариант для выработки электроэнергии, который может быть использован один раз. То есть, после полной разрядки, повторное накопление заряда на внутреннем веществе невозможно. В состав таких приборов входят солевые, литиевые или щелочные батарейки.
  • Аккумуляторы – подразделяются на несколько типов: свинцово-кислотные, литий-ионные, никель-кадмиевые.
  • Тепловые элементы – используются в космической и инновационной промышленности для производства кратковременного тока с высокими показателями. Практическое применение агрегатов основано на потребностях в резервных источниках питания.

Важно! Химико-тепловые устройства требуют первоначального нагрева до 500–600 °С, чтобы активизировать твердый электролит.

В каждой сфере промышленности используется собственный вариант с конкретными параметрами. В бытовых условиях применяются, в основном, батарейки; в производственной – аккумуляторы.

Обозначение источников тока

Чтобы при выборе не возникало вопроса относительно того, какой тип источника тока представлен, используются специальные обозначения. В физике существуют точные графические изображения, которые позволяют идентифицировать тип применяемого источника:

Обозначения

На каждой схеме условных обозначений можно увидеть следующие параметры:

  • Общее обозначение источника тока и движущей силы ЭДС;
  • Графическое изображение без ЭДС;
  • Химический тип;
  • Батарея;
  • Постоянное напряжение;
  • Переменное напряжение;
  • Генератор.

Благодаря графическим идентификаторам на схеме электрической цепи всегда можно определить, какой именно тип используется в конкретной ситуации, и как правильно его обозначать. Существуют также международные обозначения, которые встречаются немного реже, обычно при реализации интернациональных проектов.

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства.

Конструкция

Конструкция элемента влияет на принцип его работы. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:

  • Самый простой бытовой аккумулятор включает в себя металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины, на которых накапливаются катоды и аноды.

Аккумулятор

  • Обычная бытовая батарейка с входящим в её состав сухим элементом имеет металлический корпус, в который помещен стержень-накопитель катодов. Всё прочее пространство заполнено солевым электролитом.

Батарейка

  • Генератор переменного тока – это устройство, состоящее из трещоток или металлической рамки.

Механический принцип устройства

  • Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно, конструкция подключена к измерительному прибору, типа амперметра. Источник тепла – это пламя или внешний электрический импульс.

Тепловое устройство

Важно! Подобная конструкция помогает точно понять, как образуется энергия, которая впоследствии преобразуется в ток. Каждый вариант строения обычно заключен в специальный корпус из диэлектрического материала.

Условия работы источников тока

Любой источник тока работает при определенных условиях. В отсутствие химической реакции внутри элементов не смогут образовываться заряженные частицы. Если будет отсутствовать анод и катод, то движения частиц не возникнет даже при наличии реакции.

В аккумуляторах происходит похожий процесс, но толчком для возникновения химической реакции является замыкание во внешней электрической цепи. Заряженные элементы начинают двигаться от анода к катоду и наоборот, создавая постоянный поток.

Идеальный и реальный

Световые типы не могут работать без наличия источника света. КПД зависит от типа используемого диэлектрического элемента. Дополнительно необходимо иметь в наличии приспособление ля преобразования полученной энергии.

Тепловой вариант не будет работать, если в его основу входит 1 тип металла. Если будет отсутствовать источник тепла, то ни о каком возникновение движущихся частиц не может быть и речи.

Источники

Для выработки электрической энергии требуется выбрать источник тока, соответствующий потребностям в конкретной сфере применения. Существует несколько вариантов таких приспособлений, каждый из которых имеет определенное строение, принцип работы и индивидуальные технические показатели.

Источник



Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Чем отличаются и где используются постоянный и переменный ток

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Чем отличаются и где используются постоянный и переменный ток

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Чем отличаются и где используются постоянный и переменный ток

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Чем отличаются и где используются постоянный и переменный ток

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Чем отличаются и где используются постоянный и переменный ток

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Чем отличаются и где используются постоянный и переменный ток

Как устроен генератор переменного тока — назначение и принцип действия

Что такое активная и реактивная мощность переменного электрического тока?

Чем отличаются и где используются постоянный и переменный ток

Что такое частотный преобразователь, основные виды и какой принцип работы

Чем отличаются и где используются постоянный и переменный ток

Что такое конденсатор, виды конденсаторов и их применение

Чем отличаются и где используются постоянный и переменный ток

Как условно обозначаются элементы на электрических схемах?

Чем отличаются и где используются постоянный и переменный ток

Что такое варистор, основные технические параметры, для чего используется

Источник

Схема источника переменного тока

В идеальных условиях источник тока генерирует ток, не зависящий от напряжения. Однако, в реальности добиться этого очень сложно. При подключении большой нагрузки значения обоих показателей неизбежно проседают.

Поэтому, когда речь идет о реальных источниках тока, то имеются ввиду схемы, которые могут обеспечивать силу тока в заданном диапазоне для определенных нагрузок.
Наибольшее применение источники тока (не путать с источниками напряжения) нашли в схемах для питания аналоговых приборов, операционных и дифференциальных усилителей, измерительных мостов и т.п., ну и, конечно же, для зарядки аккумуляторов.
Источник переменного тока – это генераторные установки, в основе которых лежит двигатель. Вращение вала и перемещение катушек в постоянном магнитном поле создают эффект изменения не только силы тока, но и направления его действия.

Рис.1. Генератор переменного тока

График изменения тока в зависимости от времени.

Рис. 2. рафик изменения тока в зависимости от времени

Это классическая синусоида.

В составе радиосхем переменный ток чаще всего преобразуется в постоянный.
Однако, если мы говорим об источнике тока уже в составе радиосхем, то задача создания переменной ЭДС заметно усложняется без генераторных установок.

Типовой источник тока (постоянного) состоит из элементов, обозначенных на функциональной схеме ниже.

Рис. 3. Функциональная схема

  • Источник питания (в данном случае постоянного напряжения);
  • Датчик тока;
  • Регулирующий элемент (в простейшем варианте может быть реализован транзистором, к которому нагрузка подключается в эмиттерную цепь);
  • Цепь обратной связи.

В качестве простого примера.

Рис. 4. Схема источника тока

Стоит отметить, что переменный ток применяется в схемах крайне редко, в основном вся радиоаппаратура строится на источниках постоянного тока или напряжения.

Варианты схем источников переменного тока

Однако, в отдельных случаях может потребоваться источник именно переменного тока.
Наиболее часто используемая схема в цепях с малыми напряжениями выглядит следующим образом.

Рис. 5. Схема источника переменного тока с малыми напряжениями

В основе лежит все та же схема с регулятором напряжения и цепью обратной связи, управляющей операционными усилителями, обозначенная в начале.

Здесь ток в нагрузке может протекать как в одном, так и в противоположном направлении.

На выходе обеспечивается ток от -10 мА до +10 мА, при условии подачи напряжения +10 и -10 В.

Уменьшения погрешности на выходе можно добиться за счет подбора резисторов R1-R6, допуск номинала которых не превышает 1%.

Операционный усилитель можно использовать практически любой. Но наилучший вариант для слаботочных схем – ОУ с малыми напряжения смещения и входными токами.

К транзисторам VT1 и VT2 тоже особых требований нет. Подойдут даже маломощные, работающие с напряжением на коллекторе до 30 В и силой тока 20-150 мА.

Источники бесперебойного питания часто путают с источниками переменного тока, так как они предназначены для фактической замены основного источника питания. Однако, на практике эти устройства выдают не переменный ток, а переменное напряжение.

Принцип работы ИБП:

1. Преобразование сетевого тока из переменного в постоянный;

2. Зарядка аккумулятора постоянным током;

3. При отключении основного источника питания выходная цепь получает питание от аккумулятора (химический источник постоянного тока);

4. Постоянный ток аккумулятора преобразуется в переменное напряжение и отдается потребителям.

Типовая схема инвертора (преобразователя) напряжения из постоянных 12 В в переменные 230 В выглядит следующим образом.

Рис. 6. Типовая схема инвертора

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник

Источники питания переменного тока. Постоянный и переменный ток

Напряжение, этим термином обозначают разность электрических потенциалов между двумя точками электрической цепи. Некоторые неправильно полагают, что напряжение — это что-то такое, что движется в цепи. Но это не так. Напряжение — это та сила, под действием которой в электрической цепи движутся электрические заряды, т.е. протекает электрический ток. Напряжение можно сравнить с ударом клюшки по шайбе. Полёт шайбы сравним с протеканием тока, но удар клюшки — это потенциальная сила, вызвавшая движение шайбы. Ток и напряжение взаимосвязаны, так как важна не только разность потенциалов сама по себе, а важен и электрический ток, обусловленный этой разностью потенциалов. Поэтому при описании работы электрических цепей ток и напряжение, как правило, фигурируют вместе.

Можно выделить две группы источников электрической энергии: источники напряжения и источники тока. Напряжение между выходными полюсами источника напряжения не зависит или слабо зависит от тока, отдаваемого источником во внешнюю цепь (нагрузку). В источниках тока, напротив, выходной ток почти не зависит от напряжения на его полюсах, которое определяется нагрузкой.

Основной единицей измерения разности потенциалов является вольт (В). На практике часто применяются производные от основной единицы измерения напряжения. Единица измерения милливольт (мВ) используется для обозначения разности потенциалов, эквивалентной 1/1000 В. Микровольт (мкВ) составляет 1/1000 мВ или 1/1000 000 В. Один киловольт (КВ) равен 1000 В, а один мегавольт (МВ) — 1 000 000 В.

Различают переменное напряжение и постоянное напряжение.

Источник постоянного напряжения

Аккумуляторная батарея — это типичный источник постоянного напряжения. Для питания электронных схем применяются преимущественно источники постоянного напряжения. Напряжение измеряется между положительным и отрицательным выводами (полюсами) источника. Для того, чтобы образовать замкнутую электрическую цепь, в которой протекает постоянный ток, полюсы источника питания должны быть соединены с выводами схемы (нагрузки), потребляющей энергию от источника, или с выводами измерительного прибора. Считается, что в нагрузке, подключённой к источнику питания, ток течёт в направлении от положительного потенциала к отрицательному.

Основные требования

На сегодняшний день все источники питания должны соответствовать следующим основным требованиям:

  • иметь в наличии плавную регулировку режимов сварки во всём диапазоне;
  • иметь в наличии приборы для контроля режимов сварки;
  • обеспечивать стабильное горение дуги;
  • иметь высокие динамические характеристики;
  • соответствовать основным требованиям по электробезопасности.

Наличие плавной регулировки и приборов контроля, обеспечивает точную настройку необходимых режимов сварки.

Динамические свойства сварочного аппарата определяются временем восстановления напряжения холостого хода после короткого замыкания в процессе сварки. Чем быстрее восстанавливается напряжение, тем лучше его динамические характеристики. Восстановление не должно превышать 0,05с.

Для повышения стабильности горения дуги дополнительно могут применяться осцилляторы. Они преобразующие низкое напряжение промышленной частоты в импульсы высокого напряжения и высокой частоты. Наложение этих импульсов на дуговой промежуток повышает устойчивость горения дуги.

Источник переменного напряжения

Промышленная электросеть — типичный источник переменного напряжения. Если в цепях постоянного напряжения полярность полюсов фиксирована и один из полюсов всегда положителен, а другой отрицателен, то в источниках переменного напряжения полярность постоянно меняется. В первой половине периода один из полюсов имеет отрицательную полярность, а другой — положительную. Во второй половине полярности полюсов меняются. Быстрота смены полярности в цепях переменного тока измеряется в герцах (Гц). В нашей сети напряжение является переменным и в течение одной секунды происходит 50 циклов (периодов) смены полярности напряжения. Частота сети переменного тока (в РФ) равна 50 Гц. Для примера, в США она равна 60 Гц.

ИСТОЧНИКИ ПИТАНИЯ ПЕРЕМЕННОГО ТОКА

Основные источники питания для свар­ки на переменном токе — сварочные трансформаторы. Их подразделяют на две группы: трансформаторы с нормаль­ным магнитным рассеянием и дополни­тельной реактивной катушкой — дрос­селем (трансформаторы типа СТЭ сняты с производства) и трансформаторы с по­вышенным магнитным рассеянием (типа ТД). По способу регулирования индук­тивного сопротивления трансформаторы второй группы можно разделить на три основных типа; с магнитными шунтами, подвижными обмотками и витковым (сту­пенчатым) регулированием.

К трансформаторам с магнитными шунтами относятся трансформаторы ти­па СТШ, которые выполнены с развитым (повышенным) магнитным рассеянием, регулируемым подвижными шунтами с помощью ходового винта. Трансформато­ры этого типа (СТШ-250, 300, 500-80) сняты с производства, но они еще имеют­ся в эксплуатации на ряде предприя­тий.

Сварочные трансформаторы с подвиж­ными обмотками (типа ТД) предназначе­ны для питания электрической дуги при ручной дуговой сварке, резке н наплавке металлов однофазным переменным током частотой 50 Гц. Трансформаторы этого типа однопостовые. Магнитное рассеяние у них регулируют изменением расстояния между первичной и вторичной обмотками. Вторичное напряжение трансформаторов несколько зависит от расстояния между обмотками: напряжение холостого хода при сдвинутых обмотках больше, при раз­двинутых — меньше. Магннтопровод трансформатора стержневого типа. Пер­вичная обмотка неподвижна и закрепле­на у нижнего ярма, вторичная обмотка подвижная, она перемещается вверх и вниз вручную с помощью винта, проходя­щего через верхнее ярмо. Значение сва­рочного тока увеличивается при сближе­нии обмоток и уменьшается при увеличе­нии расстояния между ними. У трансфор­маторов типа ТД уменьшены масса и раз­меры, повышены технологичность конст­рукции, удобство обслуживания и надеж­ность работы. Уменьшение массы и раз­меров достигнуто благодаря применению двухдиапазонного плавного регулирова­ния тока: в диапазоне больших токов первичная и вторичная обмотки вклю­чаются попарно параллельно, в диапазо­не малых токов — последовательно. При переключении на малые токи часть вит­ков первичной обмотки отключается и на­пряжение холостого хода повышается, что обеспечивает стабильность горения дуги на малых токах. Для включения и

в первичной обмотке (при этом трансфор­матор потребует из сети большой ток и сильно нагревается).

В первом случае необходимо устранить имеющиеся перекосы в устройстве пере­мещения обмоток, а также подтянуть шпильки. Во втором случае следует разо­брать отключенный от сети трансформа­тор, устранить витковое замыкание и, если понадобится, отремонтировать или перемотать обмотку вновь. В последнем случае нужно строго следить за тем, что­бы было сохранено прежнее число витков в обмотках.

Признаком виткового замыкания во вторичной обмотке является нагрев и да­же расплавление части обмотки, замк­нувшейся накоротко. Устраняют эту не­исправность так же, как при замыкании в первичной обмотке трансформатора.

Нарушение контакта в соединениях ха­рактеризуется повышенным нагревом со­единений и поэтому требует немедленно­го устранения. Трансформатор следует отключить, разобрать поврежденное сое-

динение, зачистить контактные поверх­ности, плотно пригнать их и до отказа затянуть зажимы. Перегрев обмоток и контактов может быть вызван также не­допустимой перегрузкой трансформато­ра.

Чрезмерный нагрев магнитопровода и скрепляющих его шпилек происходит из — за нарушения изоляции его листов и изо­ляции шпилек. Необходимо восстановить изоляцию.

Повреждение изоляции между обмот­кой и корпусом (корпус оказывается под напряжением) происходит сравнительно редко. Такая неисправность особенно опасна для сварщика, если трансформа­тор не заземлен. Необходимо срочно от­ключить трансформатор от сети, снять кожух и с помощью мегаомметра отыс­кать место повреждения.

Источник

Читайте также:  Касьянов г т феномен вращения электрического тока в нелинейной электрической системе