Меню

Источник постоянного тока электроника

Какие существуют виды источников электрического тока?

Источник электрического тока – это устройство, с помощью которого создаётся электрический ток в замкнутой электрической цепи. В настоящее время изобретено большое количество видов таких источников. Каждый вид используется для определённых целей.

Какие существуют виды источников электрического тока?

Виды источников электрического тока

Существуют следующие виды источников электрического тока:

  • механические;
  • тепловые;
  • световые;
  • химические.

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Какие существуют виды источников электрического тока?

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному. Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока. Металлические термопары используют лишь для измерения температуры.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор. В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой. Преобразователем тепла в электричество служит биметаллическая термопара.

Световые источники

С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока. Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту. Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.

Какие существуют виды источников электрического тока?

Химические источники

Все химические источники можно разбить на 3 группы:

  1. Гальванические
  2. Аккумуляторы
  3. Тепловые

Гальванические элементы работают на основе взаимодействия двух разных металлов, помещённых в электролит. В качестве пар металлов и электролита могут быть разные химические элементы и их соединения. От этого зависит вид и характеристики элемента.

ВАЖНО! Гальванические элементы используются только разово, т.е. после разряда их невозможно восстановить.

Существует 3 вида гальванических источников (или батареек):

  1. Солевые;
  2. Щелочные;
  3. Литиевые.

Солевые, или иначе «сухие», батарейки используют пастообразный электролит из соли какого-либо металла, помещённый в цинковый стаканчик. Катодом служит графито-марганцевый стержень, расположенный в центре стаканчика. Дешёвые материалы и лёгкость изготовления таких батареек сделали их самыми дешёвыми из всех. Но по характеристикам они значительно уступают щелочным и литиевым.

Какие существуют виды источников электрического тока?

В щелочных батарейках в качестве электролита используется пастообразный раствор щёлочи — гидрооксида калия. Цинковый анод заменён на порошкообразный цинк, что позволило увеличить отдаваемый элементом ток и время работы. Эти элементы служат в 1,5 раза дольше солевых.

В литиевом элементе анод сделан из лития — щелочного металла, что значительно увеличило продолжительность работы. Но одновременно увеличилась цена из-за относительной дороговизны лития. Кроме того, литиевая батарейка может иметь различное напряжение в зависимости от материала катода. Выпускают батарейки с напряжением от 1,5 В до 3,7 В.

Аккумуляторы — источники электрического тока, которые можно подвергать многим циклам заряда-разряда. Основными видами аккумуляторов являются:

  1. Свинцово-кислотные;
  2. Литий-ионные;
  3. Никель-кадмиевые.

Свинцово-кислотные аккумуляторы состоят из свинцовых пластин, погружённых в раствор серной кислоты. При замыкании внешней электрической цепи происходит химическая реакция, в результате которой свинец преобразуется в сульфат свинца на катоде и аноде, а также образуется вода. В процессе зарядки сульфат свинца на аноде восстанавливается до свинца, а на катоде до диоксида свинца.

Какие существуют виды источников электрического тока?

Литий-ионный аккумулятор получил своё название из-за того, что в качестве носителя электричества в электролите служат ионы лития. Ионы возникают на катоде, который изготовлен из соли лития на подложке из алюминиевой фольги. Анод изготавливается из различных материалов: графита, оксидов кобальта и других соединений на подложке из медной фольги.

Напряжение в зависимости от применяемых компонентов может быть от 3 В до 4,2 В. Благодаря низкому саморазряду и большому количеству циклов заряда-разряда литий-ионные аккумуляторы приобрели большую популярность в бытовой технике.

ВАЖНО! Литий-ионные аккумуляторы очень чувствительны к перезарядке. Поэтому для их зарядки нужно использовать зарядные устройства, предназначенные только для них, которые имеют встроенные специальные схемы, предотвращающие перезаряд. Иначе может произойти разрушение аккумулятора и его возгорание.

Какие существуют виды источников электрического тока?

В никель-кадмиевых аккумуляторах катод сделан из соли никеля на стальной сетке, анод из соли кадмия на стальной сетке, а электролит — смесь гидроксида лития и гидроксида калия. Номинальное напряжение такого аккумулятора — 1,37 В. Он выдерживает от 100 до 900 циклов зарядки-разрядки.

Тепловые химические элементы служат как источники резервного питания. Они дают отличные характеристики по удельной плотности тока, но имеют короткий срок службы (до 1 часа). Применяются в основном в ракетной технике, где нужны надёжность и кратковременная работа.

Источник



Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Простой источник постоянного тока своими руками

Многие из нас, кто работал с аналоговыми цепями, часто сталкивались с терминами источник напряжения и источник тока в конструкции схемы. В то время как все, что обеспечивает постоянное напряжение, например, простой выход USB 5 В или адаптер 12 В, может рассматриваться как источник напряжения, термин «источник тока» всегда остается загадкой. И многие схемы, особенно те, в которых используются операционные усилители или коммутационные цепи, потребуют от вас использования источника постоянного тока. Так что подразумевается под источником тока? Как это будет работать и зачем это нужно?

Читайте также:  Рассчитать ток короткого замыкания в конце линии

Простой источник постоянного тока своими руками

В этом уроке мы найдем ответы на эти вопросы, а также соберем и протестируем простую схему источника постоянного тока с использованием транзистора. Схема, используемая в этом руководстве, сможет выдавать постоянный ток 100 мА на вашу нагрузку, но вы можете изменить его с помощью потенциометра в соответствии с вашими проектными требованиями.

Обычно, когда блок питания управляет нагрузкой, возможны два режима работы: один – в режиме постоянного напряжения (CV), а другой – в режиме постоянного тока (CC).

В режиме CV источник питания обеспечивает постоянство выходного напряжения и изменяет выходной ток в соответствии с сопротивлением нагрузки. Лучшим примером будет ваш USB-порт на 5В, где выходное напряжение зафиксировано на уровне 5В, но в зависимости от нагрузки ток будет меняться. Если вы подключите маленький светодиод, он будет потреблять меньше тока, а если вы подключите больший, он будет потреблять больше тока, но напряжение на светодиоде всегда будет 5 В.

В режиме постоянного тока идеальный источник тока обеспечивает постоянный выходной ток и изменяет выходное напряжение в зависимости от сопротивления нагрузки. Примером этого будет зарядное устройство на 12 В в режиме CC, в котором зарядный ток будет зависеть от напряжения. В случае, если ваша батарея составляет 10,5 В, если вы подключите ее к зарядному устройству на 1 А 12 В, ваш выходной ток от зарядного устройства всегда будет 1 А, но выходное напряжение будет изменяться для поддержания этого тока зарядки 1 А. Так что именно здесь требуются цепи постоянного тока, другим примером может быть схема драйвера светодиода постоянного тока, где ток светодиода должен быть постоянным.

В этом проекте мы создадим простой транзисторный генератор постоянного тока, используя только 4 компонента. Это очень недорогая схема, которая может обеспечить источник постоянного тока 100 мА с использованием источника питания 5 В. Он также будет иметь потенциометр для управления токовым выходом в диапазоне от 1 до 100 мА. Это обеспечит постоянный ток, даже если есть изменения в сопротивлении нагрузки. Устройство будет полезно для использования, когда цепь нуждается в стабильном питании без колебаний.

Схема состоит только из двух активных компонентов, TL431 и BC547. TL431 является шунтовым регулятором, который использует опорное напряжение 2,5 В. Он поддерживает ток катода 1-100 мА для операций, связанных с шунтом. Другие компоненты являются пассивными компонентами. Резисторы должны иметь допуск 1% для точного вывода. Принципиальная схема источника постоянного тока с использованием транзистора.

Простой источник постоянного тока своими руками. Схема

Вышеприведенная схема полностью подключена к линии 5В. Выходная нагрузка должна быть подключена между выходом и заземлением. На приведенной выше схеме BC547 работает в качестве проходного транзистора. Выходной ток цепи зависит от приведенной ниже формулы, которую можно использовать для расчета выходного тока цепи источника постоянного тока:

Iout = Vref/R4 + Ika

Iout = 100 мА или .100 A
Vref = 2,5 В
Ika = 1 мА или .001 A (Примечание: минимальный ток смещения)

Iout = Vref/R4 + Ika
.100 = 2.5/R4 + .001
.100 — .001 = 2.5/R4
R4 = 2.5/.099
R4 = 25 Ом (приблизительно)

Доступное самое низкое значение R4 составляет 22 Ом. Теперь значение потенциометра можно найти по той же формуле. До этого максимальный доступный ток 100 мА был достигнут резистором 22 Ом. На этот раз потенциометр снизит выходной ток до самого низкого уровня. Поскольку минимальный ток катода, требуемый для TL431, составляет 1 мА, следует предположить, что самый низкий ток будет 2 мА. Следовательно, используя ту же формулу:

Iout = Vref/VR1 + Ika
.002 = 2,5/VR1 + .001
.002 — .001 = 2.5/VR1
.001 = 2,5/VR1
VR1 = 2,5 кОм

Таким образом, доступный потенциометр с минимальным значением 2,2 кОм можно использовать для управления током. Последний расчет заключается в определении значения резистора смещения R1 по следующей формуле:

R1 = Vin/(Iout/hFE + Ika)

Iout = 100 мА (.100A)
Vin = 5 В
hFE = 100 (Максимум)
Ika = 1 мА или .001 A
R1 = Vin/(Iout/hFE + Ika)
R1 = 5/(.100/100 + .001)
R1 = 2,5 кОм

Таким образом, доступное наименьшее значение R1 может составлять 2,2 кОм.

Транзистор BC547 действует как проходной транзистор, который управляется резистором смещения R1 и шунтирующим регулятором TL431. База транзистора фактически подключена через делитель тока. Эта схема делителя тока выполнена с использованием резистора смещения и шунтирующего регулятора. TL431 регулирует постоянный ток посредством измерения опорного напряжения. Схема собранная на макете может выглядеть следующим образом.

Простой источник постоянного тока своими руками

Для проверки схемы использовались разные нагрузки (разные значения резистора). Был использован мультиметр для измерения выходного тока цепи, и выходной ток всегда был около 100 мА, как показано на следующем изображении.

Простой источник постоянного тока своими руками

Источники постоянного тока используются во многих устройствах. В системе светодиодного освещения для операций, связанных с управлением светодиодом, требуется источник постоянного тока. Как и в портативных устройствах, в цепях зарядки аккумуляторов также применяются источники постоянного тока.

Источник

Введение в электронику: РЕГУЛИРУЕМЫЙ ИСТОЧНИК ПОСТОЯННОГО НАПРЯЖЕНИЯ

Любой схеме требуется электропитание., Применяемые обычно батарейки стоят достаточно дорого, что, в частности, и заставляет экспериментатора заняться изготовлением регулируемого источника питания.

Существует множество различных принципов построения стабилизированных источников питания. В простейшем случае для стабилизации напряжения используется стабилитрон, но его возможности и характеристики весьма ограничены. Мы предлагаем схему простого и эффективного регулируемого стабилизированного источника питания, который способен обеспечить питание для большинства предложенных в данной книге устройств (рис. 4.1).

Читайте также:  Источник питания постоянного тока гост

Сетевое напряжение 220 В поступает на первичную обмотку трансформатора. Низкое напряжение, снимаемое с его вторичной обмотки, выпрямляется диодным мостом VD1. На стабилитроне VD2 и диодах VD3-VD5 формируется фиксированное опорное напряжение. Часть этого напряжения, задаваемая потенциометром R4, используется для определения выходного напряжения источника. После эмиттерного повторителя-на транзисторах VT1, VT2 и VT3, обеспечивающего усиление по току, напряжение подается на выход источника питания.

Рис. 4.1. Принципиальная схема регулируемого источника постоянного напряжения

Работа устройства Трансформатор и выпрямитель

В источнике рекомендуется использовать трансформатор мощностью от 6 до 20 ВА, обеспечивающий на вторичной обмотке переменное напряжение с эффективным значением 24 В. Если трансформатор имеет две обмотки по 12 В, необходимо соединить их последовательно. Диодный мост VD1 осуществляет двухполупериодное выпрямление вторичного напряжения, а конденсатор С1 – сглаживание выпрямленного напряжения. На положительном выводе С1 величина напряжения, в зависимости от нагрузки, может составлять 26-30 В.

Получение управляющего потенциала

Благодаря стабилитрону VD2 (на 24 В) и диодам VD3-VD5 на положительном выводе С2 получается постоянное напряжение, равное 24 + (3 х 0,6) = 25,8 В. Потенциометр R4 предназначен для получения изменяемого от 0 до 25,8 В напряжения. Три диода (VD2, VD3, VD5) компенсируют падение напряжения на базбэмиттерных переходах трех транзисторов составного эмиттерного повторителя VT1-VT3.

Транзисторы VT1, VT2 и VT3, включенные по схеме Дарлингтона, образуют усилитель тока. На эмиттере выходного транзистора VT3 величина напряжения, регулируемого резистором R4, составляет от 0 до 24 В. Внутренний нагрузочный резистор R3 необходим для измерения напряжения в отсутствии внешней нагрузки.

Учитывая большую величину возможной рассеиваемой мощности, транзистор VT3 должен монтироваться на теплоотводящем радиаторе. Чертеж печатной платы источника представлен на рис. 4.2, а сборочный чертеж (монтажная схема) – на рис. 4.3.

Печатные проводники, идущие к выходным клеммам питания, должны быть достаточно широкими, с учетом передаваемой по ним мощности.

Рис. 4.2. Чертеж печатной платы регулируемого источника постоянного напряжения

Рис. 4.3. Монтажная схема регулируемого источника постоянного напряжения

Для улучшения теплового контакта транзистор VT3 крепится к радиатору (и вместе с ним – к печатной плате) с помощью винтов диаметром 4 мм. Не следует забывать, что корпус транзистора 2Ν3055 является его коллектором. Следовательно, он постоянно находится под напряжением порядка 30 В. Радиатор устанавливается между транзистором VT3 и платой.

Перечень элементов источника приведен в табл. 4.1.

Таблица 4.1. Перечень элементов регулируемого источника напряжения

Источник: Фигьера Б., Кноэрр Р., Введение в электронику: Пер. с фр. М.: ДМК Пресс, 2001. – 208 с.: ил. (В помощь радиолюбителю).

Источник

Источники постоянного тока: виды, характеристики, сферы применения

Постоянный ток существует только в замкнутой цепи и сохраняет свое направление и основные параметры неизменными во времени. Для его поддержания необходимо наличие постоянного напряжения. Это требование является неизменным для различных источников постоянного тока.

Источники постоянного электрического тока

Существует несколько основных видов источников энергии постоянного тока. Каждый из них основан на использовании разных физических принципов и используется в определенных условиях. К ним можно отнести следующие виды:

  • механические, превращающие механическую энергию вращения ротора в электрическую энергию;
  • тепловые, в которых в электрическую энергию преобразуется тепловая энергия;
  • химические, в которых в электрическую энергию преобразуется энергия, выделяющаяся в результате химического процесса;
  • световые, превращающие энергию солнечного света в электрическую энергию.

В основном электроэнергия вырабатывается электростанциями, от которых потребители получают не постоянный, а переменный ток, который затем преобразуется в постоянный. Но во многих сферах можно применять только тепловые, световые или химические источники постоянного электрического тока.

Тепловые источники

В этих источниках используется термоэлектрический эффект. Электрический ток в замкнутой цепи возникает благодаря разнице температур, контактирующих между собой, металлов или полупроводниковых структур. В месте контакта при нагреве возникает электродвижущая сила (термо-ЭДС). Электрический ток заряженных частиц направлен от нагретого участка в сторону холодного. Его величина пропорциональна разнице температур. В месте спая образуется термопара.

Приборы, которые для создания постоянного тока используют тепло, выделяющееся при распаде радиоактивных изотопных материалов, являются радиоизотопными термоэлектрическими генераторами.

Световые источники

Свойство полупроводников создавать ЭДС при попадании на них потока света используется при создании световых источников постоянного тока.

Солнечная батарея

Объединение большого количества кремниевых структур позволяет создавать солнечные батареи. Небольшие электростанции, созданные на базе таких солнечных панелей, имеют на сегодняшний день КПД не более 15%.

Химические источники

Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:

  • гальванические элементы, являющиеся первичными источниками ;
  • электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;

*ХИТ — химические источники тока.

Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).

Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:

  • солевые или «сухие»;
  • щелочные;
  • литиевые.

В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).

Батарейка одноразовая

В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.

Читайте также:  Датчик тока для сварочного аппарата

Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.

К основным видам аккумуляторов относятся:

  • свинцово-кислотные;
  • никель-кадмиевые щелочные;
  • литий-ионные.

Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).

Аккумулятор автомобильный

Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.

В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.

Механические источники постоянного тока

Устройствами, преобразующими механическую энергию в электрическую, являются турбо и гидро генераторы. Они вырабатывают переменный электрический ток. Для основной части бытовых приборов источником постоянного тока выступают их блоки питания. В них производится преобразование переменного напряжения генератора в постоянное напряжение, необходимое для работы устройств. Эту задачу выполняют выпрямители, которые должны обеспечивать необходимую мощность источника постоянного тока для их нагрузки и постоянное значение выходного напряжения, не зависящее от потребляемого тока.

Блоки питания могут быть линейными и импульсными. Линейные блоки выполняются по разным схемам, основу которых составляют:

  • однополупериодые выпрямители;
  • двухполупериодные выпрямители.

В выпрямителях используется свойство полупроводниковых диодов пропускать ток только в одном направлении. Выпрямленное таким образом напряжение еще не является постоянным. Емкости последующих за выпрямителем конденсаторов сглаживающего фильтра при своем быстром заряде и медленном разряде поддерживают величину положительного однополярного напряжения на определенном значении. Его величина определяется трансформатором, получающим напряжение от генератора переменного тока. Для однофазного напряжения домашней сети 220 В 50 Гц его стальной сердечник имеет значительные размеры и вес.

Схемы однополупериодных содержат всего один полупроводниковый диод, пропускающий только одну полуволну синусоидального переменного входного напряжения.

Выпрямитель одного периода

Двухполупериодные выпрямители выполняются по мостовой схеме или по схеме с общей точкой. В последнем случае вторичная обмотка сетевого трансформатора имеет вывод от своей середины. Эти выпрямители представляют собой параллельное включение двух однополупериодных выпрямителей. Они действуют на обе полуволны синусоиды переменного входного напряжения.

Выпрямитель со средней точкой

Мостовая схема выпрямителя является наиболее распространенной. Соединение 4-х диодов в ней напоминает «квадрат». К одной из диагоналей подключается переменное напряжение вторичной обмотки сетевого трансформатора. Нагрузка включается в другую диагональ «квадрата». Им будет входной элемент сглаживающего фильтра.

Мостовая схема выпрямления

Регулирование источника

Для обеспечения постоянного значения уровня выходного напряжения, не зависящего от потребляемого нагрузкой тока и колебаний входного переменного напряжения, все современные источники питания постоянного тока имеют ступень стабилизации и регулирования.

Схемы стабилизаторов

В ней выходное напряжение сравнивается с эталонным (опорным) значением.

При появлении различия между ними вырабатывается управляющий сигнал, который по цепи управления изменяет величину выходного напряжения. Величину значения опорного напряжения можно изменять в широких пределах, имея на выходе регулированного источника питания постоянного тока необходимое для работы напряжение.

Импульсные источники

Схемы с использованием входных трансформаторов напряжения сети получили название линейных. В импульсных источниках питания производится двойное преобразование — сначала переменное напряжение выпрямителем преобразуется в постоянное, затем вырабатывается переменное импульсное напряжение более высокой частоты, которое в выходном каскаде снова преобразуется в постоянное напряжение необходимого значения.

Генераторы импульсов вырабатывают непрерывную импульсную последовательность с частотой (15-60) кГц. Регулирование выходного напряжения осуществляется посредством широтно-импульсной модуляции (ШИМ), при которой уровень сигнала на выходе блока питания определяется шириной импульсов, вырабатываемых генератором и значением их скважности. Регулированные источники питания постоянного тока импульсного типа все чаще используются при создании аппаратуры различного назначения.

Сравнение источников

Отсутствие мощного входного трансформатора в импульсных источниках питания позволяет создавать конструкции значительно более легкие и с меньшими линейными размерами. Их эффективность значительно выше источников, выполненных по линейным схемам. Коэффициент полезного действия доходит до значения 98%. В них широкое распространение получили микросхемы, выполняющие функции контроллеров.

Каждый из типов стабилизированных источников постоянного тока находит применение в своей сфере. А она весьма многообразна. Основой являются характеристики источников постоянного тока. Линейные источники обеспечивают низкий уровень пульсаций выходного напряжения и малое значение уровня собственного шума. Это достигается отсутствием переключений при их работе, которые создают большой уровень помех в широком частотном диапазоне. В импульсных источниках приходится применять сложные схемные решения для борьбы с ними, что приводит к удорожанию изделий, в которых они применяются.

Заключение

В статье был дан общий обзор существующих источников постоянного тока. Изложенный материал лишь знакомит читателей с основными принципами их работы. Из него можно сделать вывод, что каждый из видов источников постоянного тока используется в своей области.

Источник