Меню

Индукцию созданную молекулярными токами

Индукцию созданную молекулярными токами

Вы будете перенаправлены на Автор24

Определение молекулярного тока

Магнитное поле, подобно полю электрическому может быть макроскопическим и микроскопическим. Микроскопическое поле возникает в результате движения элементарных зарядов в веществе. Макроскопическое поле — результат усреднения микроскопических полей по бесконечно малым объемам пространства. Вращения электронов и ядер атомов по отношению к создаваемому ими магнитному полю эквивалентны токам, которые текут в атомах вещества. Средняя плотность такого тока в веществе равна нулю, переноса электрического заряда на макроскопические расстояния не происходит.

Итак, токи эквивалентные тем, которые возникают при движении элементарных зарядов в молекулах и атомах вещества, называют молекулярными токами.

Готовые работы на аналогичную тему

В ненамагниченных магнетиках молекулярные токи распределены хаотично, их магнитные поля в среднем взаимно компенсируют друг друга. Намагниченный магнетик можно характеризовать упорядоченным характером молекулярных токов, благодаря чему результирующее магнитное поле вещества не равно нулю.

В тех магнетиках, которые являются проводниками (например, металлы) различают токи проводимости (плотность тока проводимости $\overrightarrow>$), которые относят к упорядоченному движению заряда в макроскопическом понимании (например, движению свободных электронов в металле) и молекулярные токи ($\overrightarrow$), тогда микроскопическую плотность тока ($\overrightarrow>$) в среде вычисляют как:

Часто предполагают, что отличие токов проводимости от молекулярных токов в том, что молекулярные токи замыкаются внутри микроскопически малых объектов пространства. Подобное разделение токов на два типа упрощает вывод макро уравнений поля из посылок электронной теории.

Молекулярные токи и индукция магнитного поля

Для того, чтобы вычислить индукцию макроскопического поля молекулярные токи заменяют макроскопическими токами, которые непрерывно изменяются в пространстве. Такие токи имеют название токов намагничивания. Дальше эти плотность этих токов будем обозначать $\overrightarrow$. Плотность токов проводимости будем обозначать $\overrightarrow$. Так получаем, что магнитное поле порождается токами проводимости и токами намагничивания. Если известны эти токи, то можно вычислять индукцию поля $\overrightarrow,$ используя формулы для вакуума. В таком случае теорема о циркуляции вектора индукции магнитного поля будет иметь вид:

или в дифференциальной форме:

где I — ток проводимости, $I_m$ — ток намагничивания, полные токи, которые пронизывают контур L.

Итак, возникновение магнитных моментов связано с наличием круговых токов. Токи в элементарных объемах, которые приводят к возникновению магнитных моментов, назвали молекулярными токами. Однако не следует воспринимать этот термин буквально. Молекулярные токи, строго говоря, могут течь только внутри молекулы. При определении намагниченности и других параметров имеют в виду усредненные величины. Магнитные моменты представляют размазанными по объему вещества, а молекулярные токи текущими по всему объему.

Намагниченность

Для характеристики состояния намагниченного состояния магнетика используют вектор намагниченности $(\overrightarrow)$.

Намагниченностью ($\overrightarrow$) называют физическую величину, которая равна:

где $\triangle V$ — элементарный объем, $\overrightarrow>$ — магнитные моменты молекул, суммирование осуществляется по всем молекулам в объеме $\triangle V$. Из формулы (4) имеем, что:

Связь намагниченности с молекулярными токами

Рассмотрим бесконечно маленький замкнутый контур L, который ограничивает элемент площади $\triangle S$ (рис.1). Вычислим циркуляцию намагниченности ($\overrightarrow$) по контуру:

Молекулярные токи, их связь с вектором намагниченности

где $J_<\tau >$- тангенциальная составляющая вектора намагниченности вдоль контура L. Эта составляющая возникает за счет токов, которые текут по замкнутым контурам вокруг линии, вдоль которой проводится интегрирование. Умножим и разделим правую часть выражения (6) на величину $\delta S$ (площадь которую обтекает ток в плоскости, которая перпендикулярная линии интегрирования), проведем преобразования в том числе используя выражение (5):

В соответствии с определением магнитного момента ($p_m=IS\to _m=\delta I\delta S,\ $)$\ где\ \delta I\ сила\ тока,\ который\ обтекает\ площадку\ \ \delta S,$ причем$\ \delta I$ пересекает $\triangle S$ по нармали. Получаем из (7):

где $\triangle I_n$- нормальная составляющая силы тока, которая пересекает площадку $\triangle S.$ В результате мы получили:

Из выражения (9) легко получить:

Формула (10) — выражение для объемной плотности молекулярных токов, которые являются причиной намагниченности $\overrightarrow$.

Молекулярные токи могут течь и по поверхности раздела меду магнетиками или между магнетиком и вакуумом. Тогда поверхностная плотность молекулярного тока ($i_=\frac<\triangle I_>$) равна:

где $\overrightarrow$ — единичные вектор нормали к поверхности раздела, направленные во вторую среду.

Задание: Получите формулу, связывающую объемную плотность молекулярных токов и вектор намагниченности ($\overrightarrow=rot\overrightarrow$).

Найдем составляющую ротора вектора намагниченности в направлении нормали к площадке $\triangle S\ (рис.1)$. Используем определение ротора и равенство (1.1):

$j_$— нормальная составляющая плотности молекулярных токов. Это логично, так как именно они отвечают за возникновение намагниченности.

Равенство (1.2) выполняется при любой ориентации площадки $\triangle S,$ то есть для любых компонент $rot\overrightarrow\ $и $\overrightarrow$. Следовательно, имеет место равенство:

Задание: Покажите, что поля постоянного магнита в виде цилиндра и поле соленоида с током эквивалентны.

Молекулярные токи, их связь с вектором намагниченности

Найдем поверхностную плотность молекулярного тока однородного намагниченного цилиндра (рис.2), который является постоянным магнитом.

Намагниченность цилиндра ($\overrightarrow$) изображена на рис.2 стрелкой. В вакууме намагниченность равна нулю $J_2=0.$ Нормаль $\overrightarrow$ — внешняя нормаль к цилиндру. В соответствии с формулой:

плотность поверхностного молекулярного тока, который течет по цилиндру, равна:

Читайте также:  Источником электрического тока является заряд частица молекула материя

\[\overrightarrow>=\overrightarrow\times \left(-\overrightarrow\right)=\overrightarrow\times \overrightarrow\left(2.2\right).\]

Одна из линий тока показана как окружность со стрелкой. Намагниченность $\overrightarrow$ составляет с текущим по поверхности током правовинтовую систему. Из формулы:

следует, что объемные молекулярные токи внутри цилиндра отсутствуют.

Ответ: Поле вне цилиндра создано поверхностными молекулярными токами, которые текут по окружностям. Этим доказано, что поля постоянного цилиндрического магнита и поле соленоида эквивалентны.

Источник



Молекулярные токи

Определение молекулярных токов

Молекулярными токами называют токи, которые существуют в пределах одного атома (молекулы), вызваны они движением электронов в атомах (молекулах, ионах).

Молекулярные токи еще называют микротоками в противовес макротокам, которые связывают с движением заряженных тел. Молекулярные токи существуют во всех веществах. О существовании молекулярных токов говорил еще А. Ампер.

Молекулярные токи являются причиной намагничивания веществ (магнетиков) во внешнем магнитном поле. Если магнетик не намагничен, то молекулярные токи располагаются в нем хаотично, при этом суммарное действие их равно нулю. При внесении магнетика в магнитное поле расположение молекулярных токов становится частично или полностью упорядоченным. Так, магнетик можно представлять как систему мелких ориентированных токов. Каждый молекулярный ток в магнетике имеет определенный магнитный момент ($<\overline

>_m$), при внесении магнетика в магнитное поле, вещество в целом приобретает магнитный момент, который равен векторной сумме моментов молекулярных токов.

Суммарный магнитный момент молекулярных токов, которые заключены в единице объема вещества, называют вектором намагниченности ($\overline$):

$<\overline

>_$ — магнитный момент отдельной молекулы (атома); N — число молекул в объеме $\Delta V$.

Природа молекулярных токов

Все атомы состоят из положительного ядра, в котором сосредотачивается почти вся масса атома и некоторого числа электронов. Суммарный отрицательный заряд электронов в атоме равен положительному заряду ядра, атом в нормальном состоянии электрически нейтрален.

Электроны в атоме непрерывно движутся. При объяснении многих явлений считают, что орбиты движения электронов вокруг ядра представляют собой окружности (или в крайнем случае эллипсы). Каждый электрон в атоме перемещается по собственной орбите, разные орбиты электронов находятся в разных плоскостях.

Электроны, вращающиеся по орбитам, образуют замкнутые токи, поэтому и предполагают, что именно они являются молекулярными токами.

Гиромагнитное отношение

Электроны имеют не только заряд, но и массу. Поэтому каждый электрон, движущийся по орбите, обладает не только магнитным моментом, как любой замкнутый ток, но и имеет определенный механический момент.

Магнитный момент электрона ($p_m$) на орбите и его момент импульса ($L$) связаны:

где $q_e$ — заряд электрона; $m$ — масса электрона. Отношение $\frac$ называют гиромагнитным отношением. Формула (1) справедлива для круговых и эллиптических орбит электронов. Направления векторов магнитного и механического моментов электрона при движении его по орбите направлены в противоположные стороны.

Теорема Лармора

Если на электрон, движущийся по своей орбите, действует магнитное поле, то он получит дополнительное равномерное вращение (явление прецессии), при котором вектор $\overline$ будет описывать конус вокруг направления вектора магнитной индукции ($\overline$) c некоторой угловой скоростью $\overline<\omega >$. Электрон — отрицательно заряженная частица, вектор угловой скорости $\overline<\omega >$ будет направлен параллельно $\overline$, величина угловой скорости $\omega $ равна:

Скорость прецессии не зависит от угла между векторами $\overline$ и $\overline$.

Описанный выше результат действия магнитного поля на движение электрона по его орбите является содержанием теоремы Лармора, которая говорит:

Действие магнитного поля на электрон состоит в том, что на первоначальное движение частицы накладывается равномерное вращение вокруг направления внешнего магнитного поля.

Так как атом имеет в своем составе совокупность электронов, следовательно, обладает магнитным и механическим моментами. Во внешнем магнитном поле атомы сначала прецессируют, а за тем под воздействием соударений, ориентируются в направлении поля, из-за чего вещество намагничивается.

Примеры задач с решением

Задание. Какова частота прецессии Лармора для орбиты электрона в атоме, если магнитное поле Земли составляет $B=5\cdot <10>^<-5>Тл?$

Решение. Так как масса и заряд электрона нам известны и равны они: $q_e=1,6\cdot <10>^<-19>Кл;;\ m=9,1\cdot <10>^<-31>кг,$ то найдем угловую скорость, с которой осуществляется прецессия электрона на его орбите как:

Ответ. $\omega =4,4\cdot <10>^6\frac<1><с>$

Рассмотрим изотропный магнетик. Намагниченность ($\overline$) в точке магнетика появляется при действии магнитного поля и определяется $\overline.\ $При слабых магнитных полях:

\[\overline\sim \overline\ \left(2.1\right).\]

В изотропном магнетике $\overline||\overline$, кроме того имеем:

где $\chi $ — магнитная восприимчивость вещества.

Объемная плотность молекулярного тока ($<\overline>_$) пропорциональна объёмной плотности стороннего тока ($\overline$):

При отсутствии объемных сторонних токов остаются при намагничивании только поверхностные молекулярные токи.

Рассмотрим бесконечный цилиндрический провод круглого сечения (рис.1). По проводу течет ток, плотность которого $\overline$.

Молекулярные токи, пример 1

Тогда молекулярный ток в объеме цилиндра имеет плотность:

где $\mu $ — магнитная проницаемость вещества.

Источник

Индукцию созданную молекулярными токами

где μ = 4p·10 -7 Гн/м — магнитная постоянная.

Формула (3.6.1) записана в системе СИ. Это соотношение было установлено в 1820 г. Андре Ампером и носит название закона Ампера.

С помощью формулы (3.6.1) устанавливается единица силы тока в системе СИ: 1 А определяется как сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м в вакууме, вызвал бы между этими проводниками силу, равную 2·10 -7 Н на каждый метр длины.

Читайте также:  Ток в нагрузке от сопротивления нагрузки rн

Взаимодействие токов осуществляется посредством поля, которое называется магнитным . Для исследований магнитного поля применяют пробный ток, циркулирующий в плоском замкнутом контуре очень малых размеров. Ориентацию контура в пространстве характеризует вектор нормали к его плоскости, причем положительным считают направление нормали, связанное с направлением тока по правилу правого винта (Рис. 3.6.1).

Рис. 3.6.1. Пробный контур

Если внести пробный контур в магнитное поле, то обнаружится, что поле оказывает на контур ориентирующее действие, поворачивая его в определенном направлении. Это направление и принимают за направление магнитного поля в данной точке. Если контур повернуть так, чтобы направления нормали и поля не совпадали, возникает вращающий момент, стремящийся вернуть контур в равновесное положение. Величина этого момента зависит от угла a между нормалью и направлением тока, достигая наибольшего значения Ммакс при α=90°, и обращается в нуль при α=0°.

Введем магнитный момент контура:

(3.6.2)

где S — площадь контура.

Тогда, исходя из опыта, можно записать:

(3.6.3)

где для количественной характеристики магнитного поля введена физическая величина, называемая магнитной индукцией .

Соотношение (3.6.3) определяет модуль вектора В. Следовательно, выполняется:

(3.6.4)

Направление вектора совпадает с направлением нормали к пробному контуру. Поле этого вектора наглядно представляют с помощью линий магнитной индукции.

Из сказанного следует, что вектор характеризует силовое действие магнитного поля.

3.6.2. Закон Био-Савара-Лапласа.
Магнитные поля прямого и кругового токов

Для расчета магнитной индукции поля в результате обобщения экспериментальных данных Био и Савара Лаплас предложил формулу:

(3.6.5)

где i — сила тока, — вектор, совпадающий с элементарным участком тока и направленный так же, как и ток, — вектор, проведенный от элемента тока в ту точку, где производится наблюдение поля (Рис. 3.6.2).

Рис. 3.6.2. К закону Био-Савара-Лапласа

Направление вектора задается векторным произведением в (3.6.5), т.е. этот вектор направлен перпендикулярно плоскости, в которой лежат вектора и , причем так, что, если смотреть из конца вектора , то поворот от вектора к производится против часовой стрелки. Единицей магнитной индукции в СИ является 1 Тл (Тесла).

Модуль вектора можно вычислить с помощью формулы:

(3.6.6)

где α — угол между векторами и .

Рассмотрим поле, создаваемое током, текущим по бесконечному прямому проводу (Рис. 3.6.3).

Рис. 3.6.3. К расчету магнитного поля бесконечного прямого проводника

Все векторы в данной точке имеют одинаковое направление (перпендикулярно плоскости чертежа и за него).

Поэтому сложение этих векторов можно заменить сложением их модулей. Пусть точка, для которой вычисляется поле, находится на расстоянии b от проводника. Из Рис. 3.6.3 ясно, что:

(3.6.7)

Подставим этот результат в формулу (3.6.6):

(3.6.8)

Угол α изменяется от 0 до π. Следовательно, получим:

(3.6.9)

Линии магнитной индукции поля прямого проводника представляют собой систему концентрических окружностей (Рис. 3.6.4).

Рис. 3.6.4. Магнитное поле прямого проводника

Рассмотрим поле, создаваемое током, текущим по проводнику в виде окружности радиуса R (Рис. 3.6.5).

Рис. 3.6.5. К расчету поля кругового тока

Найдем магнитную индукцию в центре окружности. Каждый элемент тока создает в центре индукцию, направленную вдоль положительной нормали к контуру. Ее направление определяется по правилу правого винта. Поэтому вычисление магнитной индукции сводится к сложению модулей. Поскольку α = π/2, то из формулы (3.6.6) следует:

(3.6.10)

Интегрируя (3.6.10) по всему контуру, получим:

(3.6.11)

Найдем магнитную индукцию на оси кругового тока, на расстоянии х от плоскости, в которой лежит контур (Рис. 3.6.6).

Рис. 3.6.6. Магнитное поле на оси кругового тока

Векторы перпендикулярны к плоскостям, проходящим через векторы и . Следовательно, они образуют симметричный конус. Ясно, что результирующий вектор должен быть направлен по оси контура. Каждый из векторов вносит вклад , который по модулю равен:

(3.6.12)

Угол между векторами и — прямой, поэтому выполняется:

(3.6.13)

Интегрируя по всему контуру с током и учитывая, что , получим:

(3.6.14)

При х = 0 эта формула переходит в (3.6.11) для индукции магнитного поля в центре кругового тока.

3.6.3. Магнитное поле в веществе

Если несущие ток проводники находятся в какой-либо среде, магнитное поле заметно изменится. Это объясняется тем, что любое вещество является магнетиком, т.е. способно под действием магнитного поля приобретать магнитный момент (намагничиваться). Намагниченное вещество создает магнитное поле ´, которое складывается с полем, обусловленным токами . Оба поля в сумме дают результирующее усредненное (макроскопическое) поле в среде:

(3.6.15)

Для объяснения явления намагничивания тел Ампер предположил, что в атомах вещества циркулируют круговые токи. Каждый такой ток обладает магнитным моментом и создает в окружающем пространстве магнитное поле. В отсутствие внешнего поля молекулярные токи ориентированы беспорядочным образом, вследствие чего их результирующее магнитное поле равно нулю. Под действием поля магнитные моменты атомов приобретают преимущественную ориентацию в одном направлении, вследствие чего магнетик намагничивается. — его суммарный магнитный момент становится отличным от нуля. Возникает поле ´.

Читайте также:  Меня люди бьют током

Намагниченность вещества характеризуют магнитным моментом единицы объема. Эту величину называют вектором намагниченности . В общем случае имеем:

(3.6.16)

где ΔV — физически бесконечно малый объем, взятый в окрестности рассматриваемой точки, — магнитный момент отдельной молекулы.

Суммирование производится по всем молекулам, заключенным в объеме ΔV.

Найдем поток вектора через произвольную замкнутую поверхность:

(3.6.17)

Опыт показывает, что линии магнитного поля, в отличие от линий напряженности электрического поля, всегда замкнуты. Поэтому интеграл в (3.6.17) должен быть равен нулю, поскольку каждая из линий магнитной индукции пересекает замкнутую поверхность четное число раз — входит в поверхность столько же раз, сколько и выходит. Следовательно, выполняется:

(3.6.18)

Это равенство выражает теорему Гаусса для вектора магнитной индукции: поток вектора магнитной индукции через любую замкнутую поверхность равен нулю .

Для описания магнитных свойств магнетиков удобно использовать вспомогательную величину — напряженность магнитного поля :

(3.6.19)

Единица измерения в СИ — 1 А/м. Величина напряженности магнитного поля зависит только от суммы макроскопических токов и не зависит от молекулярных токов. В свою очередь, намагниченность зависит только от суммы молекулярных токов. Как показывает опыт, намагниченность пропорциональна величине напряженности магнитного поля:

(3.6.20)

где χ — материальная характеристика способности тел намагничиваться, называемая магнитной восприимчивостью .

Подставляя (3.6.20) в (3.6.19), получим:

(3.6.21)

где μ = 1 + χ — магнитная проницаемость вещества.

Из (3.6.21) получается простое соотношение:

(3.6.22)

которое называют материальным уравнением магнитостатики.

Для вакуума χ = 0, μ = 1, и уравнение (3.6.22) будет иметь вид:

(3.6.23)

Как в уравнении (3.6.22), так и в уравнении (3.6.23) поле имеет смысл внешнего магнитного поля. Перепишем (3.6.19) в виде:

(3.6.24)

Сравнивая (3.6.24) с (3.6.15), с учетом (3.6.23) имеем:

(3.6.25)

Подставляя (3.6.23) в (3.6.21), имеем:

(3.6.26)

Отсюда следует важный вывод: относительная магнитная проницаемость показывает, во сколько раз усиливается магнитное поле в магнетике по сравнению с вакуумом.

© ФГОУ ВПО Красноярский государственный аграрный университет, 2015

Источник

Магнитные свойства вещества

215. Докажите, что отношение числового значения орбитального магнитного момента pm электрона к числовому значению его орби механического момента Le (гиромагнитное отношение орбитальных моментов) одинаково для любой орбиты, по которой движется электрон.

216. Принимая, что электрон в невозбужденном атоме водорода движется по круговой орбите радиусом r = 52,8 пм, определить: 1) магнитный момент pm эквивалентного кругового тока; 2) орбитальный механический момент Le электрона; 3) исходя из полученных числовых значений, гиромагнитное отношение орбитальных моментов, доказав, то оно совпадает со значением, определяемым универсальными постоянными.

218. В однородное магнитное поле вносится длинный вольфрамовый стержень (магнитная проницаемость вольфрама μ = 1,0176). Определить, какая доля суммарного магнитного поля в этом стержне определяется молекулярными токами.

219. Напряженность однородного магнитного поля в пластине равна 5 А/м. Определить магнитную индукцию поля, создаваемого молекулярными токами, если магнитная восприимчивость платины равна 3,6*10 4 .

220. По круговому контуру радиусом r = 40 см, погруженному в жидкий кислород, течет ток I = 1 А. Определить намагниченность в центре этого контура. Магнитная восприимчивость жидкого кислорода χ = 3,4*10 -3 .

221. По обмотке соленоида индуктивностью L = 3 мГн, находящегося в диамагнитной среде, течет ток I = 0,4 А. Соленоид имеет длину l = 45 см, площадь поперечного сечения S = 10 см 2 и число витков N = 1000. Определить внутри соленоида: 1) магнитную индукцию; 2) намагниченность.

222. Соленоид, находящийся в диамагнитной среде, имеет длину l = 30 см. площадь поперечного сечения S = 15 см 2 и число витков N = 500 . Индуктивность соленоида L = 1.5 мГн, а сила тока, протекающего по нему, I = 1 A. Определите: 1) магнитную индукцию внутри соленоида. 2) намагниченность внутри соленоида.

223. Индукция магнитного поля в железном стержне В = 1,2 Тл. Определить для него намагниченность, если зависимость В(Н) для данного сорта ферромагнетика представлена на рисунке.

224. Железный сердечник длиной l = 0,5 м малого сечения (d 2 и число витков N = 400. Определить энергию магнитного поля соленоида.

226. Обмотка тороида с железным сердечником имеет N = 151 виток. Средний радиус r тороида составляет 3 см. Сила тока I через обмотку равна 1 А. Определите для этих условий: 1) индукцию магнитного поля внутри тороида; 2) намагниченность сердечника; 3) магнитную проница сердечника. Используйте график зависимости B от H, приведенный в задаче 223.

227. На железном сердечнике в виде тора со средним диаметром d = 10 мм намотана обмотка с общим числом витков N = 600. В сердечнике сделана узкая поперечная прорезь шириной b = 1,5 мм (рисунок к задаче 228). При силе тока через обмотку I = 4 А магнитная индукция в про B = 1,5 Тл. Пренебрегая рассеянием поля на краях прорези, определите магнитную проницаемость железа для данных условий.

228. На железном сердечнике в виде тора со средним диаметром d = 70 мм намотана обмотка с общим числом витков N = 600. В сердечнике сделана узкая поперечная прорезь шириной b = 1,5 мм. Магнитная проницаемость железа для данных условий μ = 500. Определить при силе тока через обмотку I = 4 А: 1) напряженность Н магнитного поля в железе; 2) напряженность Н магнитного поля в прорези.

Ошибка в тексте? Выдели её мышкой и нажми

Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!

Источник