Меню

Индукция тока постоянным магнитом

Индукция тока постоянным магнитом

Т.к. вопросов по первой части не поступило, я делаю вывод, что пока всё понятно. Правда по генератору тоже никто ничего не написал, значит будем разбираться подробнее.

Итак, это схема простйшего электрогенератора:

При вращении рамки в постоянном магнитном поле в ней возникает электрический ток, называемый индукционным, а сам процесс называется электромагнитной индукцией:

«Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током».

У этого тока есть одно важное свойство, которое для одних стало возможностью скрыть правду, а для других – простым объяснением, почему для получения большего количества энергии от генератора нужно приложить большую силу для его вращения. В Вики это звучит так:

«Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток».

В реальном генераторе это происходит так: при приближении части рамки к северному полюсу магнита в этой части рамки возникает ЭДС и северный магнитный полюс. Два одноимённых магнитных полюса начинают отталкиваться и возникает сопротивление вращению рамки. Во второй части рамки происходит тоже самое, только с южным полюсом. Чем быстрее вращается генератор, тем быстрее меняется магнитное поле в рамке, а значит возникает бОльший ток, соответственно бОльшее магнитное поле и бОльшее сопротивление вращению. Этого оказалось достаточно, чтобы заявить о соблюдении закона сохранения энергии: хотите больше энергии – приложите большее усилие. Очень многим этого хватило и теперь эти убеждения сложно переломить. Однако давайте рассмотрим процесс индукции чуть внимательнее. Я уже писал об этом в посте «Зарождение».

Итак, при приближении рамки к магнитному полюсу, в ней возникает ток и такой же магнитный полюс, который начинает оказывать сопротивление движению. А что происходит с магнитным полем магнита?

Оно ослабевает, переходя в электрическую энергию? Нет. Иначе при увеличении скорости вращения генератора и увеличении тока всё больше магнитного поля переходило бы в электричество и сопротивление вращению наоборот уменьшалось бы.

Оно переходит на проводник, разделяется, но в сумме остаётся таким же? Нет. Тогда бы усилие для вращения генератора не менялось от скорости и нагрузки.

На самом деле оно остаётся без изменений, а суммарное магнитное поле ещё и увеличивается на поле, возникшее вокруг проводника. Магнит при этом не теряет своей энергии и это доказывается десятилетиями работы генераторов на постоянных магнитах. Тогда откуда появляется энергия в проводнике? Кинетическая энергия вращения превращается в электрическую? Правда? А если ничего не вращать? Вы знаете как работает электрический трансформатор? Например такой:

«Работа трансформатора основана на двух базовых принципах:
Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм).
Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция).
На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока , при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку
».

Хочу обратить ваше внимание на выделенный текст: ток индукции появляется во всех обмотках трансформатора, ЭДС во всех обмотках равны и зависят только от скорости изменения магнитного потока. Получается, что если намотать две или три вторичных обмотки, то можно получить в два-три раза больше энергии, чем было затрачено (за минусом разных потерь)? В принципе, даже ещё больше. Ведь на самом деле, закон сохранения энергии работает только с телами, обладающими массой покоя. Но тут вовремя появилась и проблема, называемая самоиндукцией, которая помогла скрыть дармовую энергию.

«Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока.
При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС. Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).
Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции
».

Оказалось, что ток, проходя по проводнику, создаёт вокруг него магнитное поле, изменение которого создаёт ток в этом же проводнике и он не всегда совпадает с направлением первичного тока (потому что если бы он всегда совпадал, то получился бы вечный источник энергии, а если бы всегда не совпадал, то никакого тока вообще не было бы). Другими словами, ЭДС самоиндукции оказывает сопротивление току в катушке почти так же, как обычный генератор сопротивляется вращению. Чем больше ток и его частота в катушке, тем больше это сопротивление, а значит и потери. При подключении катушки к источнику переменного напряжения получается вот такая картина:

А при добавлении дополнительных катушек в общее магнитное поле их взаимное влияние увеличивается, индуктивность и поля складываются и накладываются друг а друга, а сопротивление (а значит и потери) всей системы только возрастают. В результате получилась красивая зависимость, которая, якобы, подтверждает закон сохранения энергии и не даёт получить больше энергии, чем затрачено. Это сопротивление назвали реактивным, без ваттным, из-за него не выделяется тепло в катушке и списали на него все потери энергии.

Однако Никола Тесла в своё время нашёл выход из этого положения и главным вопросом его жизни стал вопрос беспроводной передачи энергии, а не её получение. Это сейчас катушки Тесла называют трансформаторами, а сам он называл их генераторами энергии и так оно и было. Получать энергию он мог в неограниченных количествах и не считал это чем-то сложным и тем более невозможным, т.к. он понял саму суть происходящего процесса. Я попробую объяснить его как можно доступнее, но опять придётся начинать из далека.

Исходя из теории Всемирного Эфира, которая существовала до Теории Относительности, Тесла полагал, что электромагнитная волна это волна эфира, окружающего нас везде. Эфир не имеет массы и инерции, а значит на то, чтобы его сдвинуть не тратится энергия. Получается, что для создания электромагнитной волны нужно раскачать эфир переменным магнитным полем, но так, чтобы почти не тратить на это энергию. И такой способ был найден. Был придуман последовательный колебательный контур:

«Колебательный контур – это замкнутая электрическая цепь, содержащая катушку индуктивности и конденсатор, в которой могут возбуждаться электрические колебания.
Колебания тока и напряжения в колебательном контуре связаны с переходом энергии электрического поля конденсатора в энергию магнитного поля катушки индуктивности и обратно
».

Получается, что если зарядить конденсатор от источника тока, а потом соединить его с катушкой, то в цепи возникнут автоколебания. Ток из конденсатора будет переходить в магнитное поле катушки и обратно многократно, пока не рассеется от различных небольших потерь на нагрев и т.д. При этом на раскачивание самого эфира энергия не тратится. В добротных контурах колебания могут продолжаться несколько минут, при этом совершенно не потребляя энергии из вне. Всё это время вокруг катушки будет переменное магнитное поле, раскачивающее эфир вокруг неё. Казалось бы, осталось только поставить рядом ещё пару катушек и проблема энергии решена, но тут надо вспомнить, что индукционный ток в соседней катушке создаёт своё магнитное поле, направленное против поля, его создавшего и очень быстро его подавит (вспомним и про безваттное сопротивление). Получается, что первую катушку всегда надо подпитывать током и он будет как бы переходить на вторую катушку. При этом, если вторую катушку не замыкать, то тока в разомкнутом контуре не будет и первая катушка практически не будет потреблять энергии. Так работают современные трансформаторы. Только я бы сказал, что он не переливает энергию с одной катушки на другую, а продавливает с огромным усилием и потерями, нагреваясь и гудя при этом.

Читайте также:  Физик открывший вихревые токи

Решением проблемы могло бы стать создание катушки, которая бы не оказывала сопротивления магнитному потоку, т.е. не имеющей самоиндукции. Однако тут появляется противоречие: в катушке, обладающей индукцией всегда будет и ток самоиндукции, а в катушке, не имеющей индуктивности, не может появиться индукционный ток и она бесполезна. Любой замкнутый проводник имеет свою индуктивность, хоть самую малую.

Никола Тесла очень хорошо представлял себе магнитные поля и их взаимодействия и поэтому смог найти очень простое и, я бы сказал, элегантное решение проблемы. Он придумал катушку, у которой пропадает реактивное сопротивление на определённой частоте. Эта катушка была названа бифилярной:

Тесла запатентовал эту катушку, как что-то совершенно новое, чем она и была, но не описал в патенте своего способа её использования, а скорее всего это описание было позже изъято. В описании осталось только упоминание, что эта катушка может использоваться для создания больших магнитных полей. С другой стороны, один из видов этой катушки как раз обладает нулевой самоиндукцией. Совпадение?

Сейчас различные виды этой катушки используются в радиотехнике, но оригинального назначения, похоже, так до сих пор никто и не понял. Более подробно об этой катушке я напишу в следующий раз.

Источник



Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ \( S \) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ \( B \) ​, площади поверхности ​ \( S \) ​, пронизываемой данным потоком, и косинуса угла ​ \( \alpha \) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ \( \Phi \) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ \( \alpha \) ​ магнитный поток может быть положительным ( \( \alpha \) \( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

Читайте также:  Сформулируйте правило правой руки для кольцевого тока

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ \( \varepsilon_ \) ​, возникающая в катушке с индуктивностью ​ \( L \) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ \( \Phi \) ​ через контур из этого проводника пропорционален модулю индукции ​ \( \vec \) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ \( L \) ​ между силой тока ​ \( I \) ​ в контуре и магнитным потоком ​ \( \Phi \) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Источник

Сила и слабость постоянных магнитов

Тема номера Вадим ОШИРОВ 14109

Что такое постоянный магнит и чем его магнитное поле отличается от магнитного поля контура с током? Есть ли разница в магнитных полях одиночного и составного магнита? Что происходит «внутри» постоянного магнита при взаимодействии с другим постоянным магнитом или контуром с током? Можно ли эффективно использовать постоянные магниты с целью получения механической или электрической энергии? Подобных вопросов множество, и многие из них связаны с понятием электрический ток.

Чистым или нейтральным током можно, по всей видимости, назвать ситуацию, когда имеются условно удаленные от других заряды, состоящие из равного количества отрицательно и положительно заряженных частиц, одни из которых двигаются относительно других в преобладающем направлении. Именно взаимное движение зарядов противоположного знака друг относительно друга – и есть нейтральный ток. Другие варианты движения зарядов, допустим, с преобладанием зарядов одного знака, будут в своем роде производными от нейтрального тока и соответственно иметь некоторые особенности электрических взаимодействий.

Во многих ситуациях мы имеем дело далеко не с нейтральными токами, поскольку существуют как неравномерное распределение зарядов по длине проводников с током, так и скачки напряженности электрического поля на некоторых границах проводников (наличие вызывающего ток ЭДС и т. п.). Поэтому для изучения свойств нейтрального тока следует пользоваться либо кольцевым сверхпроводником с током, либо постоянными магнитами, которые в данном случае условно можно рассматривать как систему с кольцевым нейтральным током.

Кольцевые токи магнитов

Рассматривая постоянные магниты, как кольцевые нейтральные токи, можно сделать некоторые общие замечания. Электрический кольцевой ток поддерживается без внешней подпитки достаточно длительное время. Процесс протекания нейтрального тока не сопровождается тепловыделением или электромагнитными излучениями (просто поддерживается тепловой баланс с окружающей средой и телом постоянного магнита).

Несмотря на то что «магнитные» нейтральные кольцевые токи, будем считать, постоянны по величине, при взаимодействии магнитов между собой возникают ситуации, когда возможны как некоторые переходные процессы, так и взаимное влияние токов друг на друга. Другими словами, возникает явление электрической взаимной индукции.

Взаимная индукция двух контуров с током при наличии магнитной связи достаточно подробно описана в литературе. Известно, что энергия двух контуров с током, обладающих магнитной связью, отличается от суммы собственных энергий токов на величину взаимной энергии двух токов. Распространяя это правило на взаимодействие постоянных магнитов, можно сказать, что энергия системы магнитов отличается от суммарной энергии каждого магнита. Это понятно, поскольку при сближении или удалении магнитов происходит механическая работа.

Но так ли постоянны по величине эквивалентные круговые токи постоянных магнитов? Действительно, они представляют, упрощенно, сумму огромного числа элементарных молекулярных токов. Но в отличие от прочих материальных тел постоянный магнит имеет внешнее и внутреннее магнитное поле, которое «связывает» все элементарные токи, и каждый круговой ток реагирует на колебания остальных, как и они в свою очередь на его колебания. Другими словами, в постоянном магните все элементарные токи представляют как бы единый «организм», что и делает его собственно постоянным магнитом. Если разрушить данный «организм» и каждый элементарный ток начнет независимое «существование», магнитные свойства у данного объекта пропадают.

Вращение – залог эффективности

В группе из трех магнитов средний магнит «модулирует» суммарное магнитное поле всех трех магнитов. Причем максимум плотности смещается в одну сторону, а с противоположной стороны магнитное поле практически отсутствует. При изменении магнитной силы среднего магнита происходит плавное изменение суммарного поля, причем плотность магнитного потока как бы перемещается на другую сторону.

Что в конечном итоге это дает? Поскольку средний магнит можно просто вращать, будет происходить и перемещение максимума плотности суммарного магнитного потока по кругу, равное частоте вращения среднего магнита. Другими словами, один средний магнит может управлять суммарным полем, которое складывается из силы трех магнитов. Причем при вращении среднего магнита не происходит изменения суммарной энергии магнитного поля, т. е. вращение среднего магнита происходит без затрат энергии.

Вращающийся или меняющий свое направление максимум магнитного потока можно использовать в различных устройствах – начиная от простейших вариантов насосов и заканчивая двигателями или генераторами. Все устройства будут отличаться высокой эффективностью и низким энергопотреблением.

Конечно, вращение среднего постоянного магнита – не единственный вариант практического использования группы из трех постоянных магнитов в генераторах или двигателях. Данный средний магнит можно заменить на электромагнит, через обмотку которого пропускают переменный ток различной формы (в зависимости от назначения или конструкции).

Наибольший интерес представляет использование этого эффекта в двух видах двигателей: с линейным возвратно-поступательным движением и вращательных. Момент вращения таких двигателей может достигать значительных величин при относительно небольших рабочих оборотах.

Где можно использовать постоянные магниты?

Одной из особенностей двигателей с активным использованием постоянных магнитов является возможность использования электрического резонанса. Поскольку управляющий электромагнит периодически меняет полярность, т. е. питается переменным током, от частоты которого зависят обороты (в случае вращательного двигателя) в соотношении 1 / К, где К – число полюсов, электромагниты можно включить в состав колебательного контура с емкостью. Соединение электромагнитов может быть последовательное, параллельное или комбинированное, а емкость подбирается по резонансу на рабочей частоте двигателя, при этом среднее значение тока, проходящего через электромагниты, будет большим, а внешняя подпитка по току будет компенсировать в основном активные потери.

Данный режим работы будет наиболее привлекательным с точки зрения экономичности, а двигатель, в котором он используется, будет называться магнитно-резонансный шаговый. Обороты двигателя в этом случае практически не зависят от нагрузки и определяются частотой электрического резонанса, разделенного на число полюсов, несмотря на увеличение потребляемого тока при увеличении нагрузки. С целью повышения рабочих оборотов возможно применение многофазных схем питания электромагнитов двигателей. Среднее ожидаемое снижение потребляемой электрической энергии данными магнитно-резонансными шаговыми двигателями может достигать 60‑75 % по сравнению с обычными электрическими двигателями. Подобные двигатели отличаются большим моментом вращения, достаточно жесткой нагрузочной характеристикой, стабильной частотой вращения, высокой надежностью (якорь не имеет токонесущих элементов), отсутствием подвижных контактов и искрения и т. п., поэтому область их применения будет иметь свои особенности.

Читайте также:  Чем скат бьет током

Несмотря на это, они могут превосходить по некоторым параметрам как трехфазные асинхронные и синхронные машины, так и коллекторные двигатели постоянного тока. Одно из основных преимуществ – низкое энергопотребление.

Генератор с повышенным КПД

Применение постоянных магнитов эффективно, например, в конструкции электрического генератора с неподвижным ротором. Достоинство подобных генераторов – отсутствие подвижных частей, высокая надежность, экономичность, простота конструкции. Применение магнитных материалов с особыми свойствами позволит получить еще большую экономичность. Среднее сокращение энергозатрат при производстве электроэнергии на генераторах такого типа может достигать 50% и более.

В основе их конструкции лежит принцип модуляции суммарного магнитного поля трех постоянных магнитов средним магнитом, в качестве которого выступает электромагнит. Применение постоянных магнитов позволяет достичь снижения энергетических затрат при генерации электрической энергии.

Магнитная система данного генератора представляет в общем виде «крест в кольце», где одна из перекладин креста представляет собой постоянные магниты, а другая – электромагнит управления, катушка которого может быть разбита на две части или использоваться в виде единой катушки. Кольцо представляет собой магнитопровод с низкими потерями на вихревые токи, на котором располагаются 4 рабочие обмотки (выходные обмотки), соединение которых осуществляется попарно. Выходное напряжение имеет удвоенную частоту по отношению к частоте тока, питающего электромагнит управления.

Если при работе обычного генератора (с вращающимся ротором) неизменный магнитный поток ротора (постоянные магниты или электромагнит), вращаясь от приводного внешнего двигателя, периодически изменяет магнитный поток в статорных обмотках, то увеличиваются механические затраты со стороны приводного двигателя.

В случае с неподвижным ротором отсутствуют потери на трение и противодействующий вращательный момент приводного двигателя. По сути это особый вид трансформаторного преобразователя с дополнительной подпиткой от магнитного поля постоянных магнитов. В процессе преобразования входного переменного тока происходит удвоение частоты выходного тока. Поскольку магнитное поле постоянных магнитов не меняет своего направления – происходит лишь периодическое перераспределение его по секторам кольца ‑то оно активно работает, вкладывая свой «вклад» в генерацию ЭДС.

Магнитный поток управляющей или первичной обмотки электромагнита меняет знак, т. е. происходит процесс, аналогичный процессу простого трансформатора. КПД трансформаторного преобразования достаточно велик. Другими словами, мы получаем трансформатор-удвоитель частоты с повышенным КПД.

Что в конечном итоге это дает? Получается, что входная мощность как минимум меньше выходной. Превышение выходной мощности над входной происходит за счет энергии постоянных магнитов, которые, в отличие от привычной схемы генерации, неподвижны.

Дополнительные возможности данного генератора можно получить, применив для кольцевого сердечника статора магнитные материалы с особыми свойствами.
К недостаткам устройства можно отнести следующее: удвоение частоты выходного напряжения, некоторую сложность изготовления магнитопроводов и обмоток, необходимость компенсационных обмоток для задания необходимой нагрузочной характеристики. Максимальная мощность определяется в основном энергией применяемых постоянных магнитов, от которых зависят все остальные параметры.

Для создания трехфазного тока можно применить либо 3 подобных преобразователя (питание управляющих обмоток синхронизировано), либо аналогичную конструкцию, изготовленную в трехфазном варианте.

Источник

Магнитное поле тока, магнитный ток.

Магнитное поле тока представляет собой силовое поле, воздействующее на электрические заряды и на тела, находящиеся в движении и имеющие магнитный момент, вне зависимости от состояния их движения. Магнитное поле является частью электромагнитного поля.

Ток заряженных частиц либо магнитные моменты электронов в атомах создают магнитное поле. Также, магнитное поле возникает в результате определенных временных изменений электрического поля.

Вектор индукции магнитного поля В представляет собой главную силовую характеристику магнитного поля. В математике В = В (X,Y,Z) определяется как векторное поле. Это понятие служит для определения и конкретизации физического магнитного поля. В науке зачастую вектор магнитной индукции попросту, для краткости, именуется магнитным полем. Очевидно, что такое применение допускает некоторую вольную трактовку этого понятия.

Ещё одной характеристикой магнитного поля тока есть векторные потенциал.

Векторный потенциал

В научной литературе часто можно встретить, что в качестве главной характеристики магнитного поля, в условиях отсутствия магнитной среды (вакууме), рассматривается вектор напряжённости магнитного поля. Формально, такая ситуация вполне приемлема, поскольку в вакууме вектор напряженности магнитного поля H и вектор магнитной индукции B совпадают. В тоже время, вектор напряженности магнитного поля в магнитной среде не наполнен тем же физическим смыслом, и является второстепенной величиной. Исходя из этого при формальной равенства этих подходов для вакуума, систематическая точка зрения рассматривает вектор магнитной индукции основной характеристикой магнитного поля тока.

основной характеристикой магнитного поля

Магнитное поле, безусловно, представляет собой особенный вид материи. С помощью этой материи происходит взаимодействие между обладающими магнитным моментом и движущимися заряженными частицами либо телами.

Специальная теория относительности рассматривает магнитные поля как следствие существования самих электрических полей.

В совокупности магнитное и электрическое поля формируют электромагнитное поле. Проявлениями электромагнитного поля является свет и электромагнитные волны.

Магнитное поле тока

Квантовая теория магнитного поля рассматривает магнитное взаимодействие как отдельный случай электромагнитного взаимодействия. Он переносится безмассовым бозоном. Бозон представляет собой фотон — частицу, которую можно представить как квантовое возбуждение электромагнитного поля.

Порождается магнитное поле либо током заряженных частиц, либо трансформирующимся во временном пространстве электрическим полем, либо собственными магнитными моментами частиц. Магнитные моменты частиц для однообразного восприятия формально сводятся к электрическим токам.

Вычисление значения магнитного поля.

Простые случаи позволяют вычислить значения магнитного поля проводника с током по закону Био-Савара-Лапласа, либо при помощи теоремы о циркуляции. Таким же образом может быть найдено значение магнитного поля и для тока, произвольно распределённого в объёме или пространстве. Очевидно, эти законы применимы для постоянных либо относительно медленно изменяющихся магнитных и электрических полей. То есть, в случаях наличия магнитостатики. Более сложные случаи требуют вычисления значения магнитного поля тока согласно уравнений Максвелла.

Проявление наличия магнитного поля.

Основным проявлением магнитного поля является влияние на магнитные моменты частиц и тел, на заряженные частицы находящиеся в движении. Силой Лоренца называется сила, которая воздействует на электрически заряженную частицу, которая движется в магнитном поле. Эта сила имеет постоянно выраженную перпендикулярную направленность к векторам v и B. Она также имеет пропорциональное значение заряду частицы q, составляющей скорости v, осуществляющейся перпендикулярно направлению вектора магнитного поля B, и величине, которая выражает индукцию магнитного поля B. Сила Лоренца согласно Международной системе единиц имеет такое выражение: F = q [v, B], в системе единиц СГС: F = q / c [v, B]

Векторное произведение отображено квадратными скобками.

В результате влияния силы Лоренца на движущиеся по проводнику заряженные частицы, магнитное поле и может осуществлять воздействие на проводник с током. Силой Ампера является сила, действующая на проводник с током. Составляющими этой силы считаются силы, воздействующие на отдельные заряды, которые движутся внутри проводника.

Явление взаимодействия двух магнитов.

Явление магнитного поля, которое мы можем встретить в повседневной жизни, получило название взаимодействие двух магнитов. Оно выражается в отталкивании друг от друга одинаковых полюсов и притяжении противоположных полюсов. С формальной точки зрения описать взаимодействия между двумя магнитами как взаимодействие двух монополей, является достаточно полезной, реализуемой и удобной идеей. В то же время, детальный анализ свидетельствует, что в действительности это не совсем верное описание явления. Основным вопросом, остающимся без ответа в рамках такой модели, является, почему монополя не могут быть разделены. Собственно, экспериментально доказано, что любое изолированное тело не имеет магнитный заряд. Также эту модель невозможно применить к магнитному полю, созданному макроскопическим током.

С нашей точки зрения, правильно считать, что сила, действующая на магнитный диполь, находящийся в неоднородном поле, стремится развернуть его таким образом, чтобы магнитный момент диполя имел одинаковое с магнитным полем направление. Однако нет магнитов, которые подвержены воздействию суммарной силы со стороны однородного магнитного поля тока. Сила, которая действует на магнитный диполь с магнитным моментом m выражается следующей формулой:

Магнитное поле тока, магнитный ток.

.

Действующая на магнит сила со стороны неоднородного магнитного поля, выражается суммой всех сил, которые определяются данной формулой, и воздействующих на элементарные диполи, которые составляют магнит.

Электромагнитная индукция.

В случае изменения во времени потока вектора магнитной индукции через замкнутый контур, в этом контуре формируется ЭДС электромагнитной индукции. Если контур неподвижен, она порождается вихревым электрическим полем, которое возникает в результате изменения магнитного поля со временем. Когда магнитное поле не изменяется со временем и нет изменений потока из-за движения контура-проводника, то ЭДС порождается силой Лоренца.

Источник

Adblock
detector