Меню

Формулы токов для соединений звезда

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

18.04.2013

Трехфазный ток. Соединение звездой и треугольником

До сих пор мы изучали переменный ток, который создавался одной э. д. с. Такой ток называется однофазным переменным током. Система из трех однофазных токов, создаваемых тремя э. д. с. одной частоты, но сдвинутых один относительно другого на одну треть периода (120°), называется трехфазным током.

Трехфазный ток вырабатывают трехфазные генераторы. На рис. 1 схематически показан трехфазный генератор, на неподвижной части которого, называемой статором, расположены три отдельные обмотки.

Подвижная часть генератора, называемая ротором, представляет собой электромагнит. При вращении ротора в катушках обмотки статора индуктируется э. д. с.

Так как обмотки смещены одна относительно другой на 120°, то в них индуктируются э. д. с., у которых амплитуды смещены по фазе также на 120°, т. е. в трех обмотках индуктируются э. д. е., угол сдвига фаз между которыми ф = 120° (каждую обмотку обычно называют фазой).

Начала обмоток обозначаются буквами А, В и С, концы соответственно x, у и z.
К кольцам 1 и 2 присоединены концы обмотки электромагнита. Щетки 3, 4 служат для ввода постоянного тока.

Графики э. д. с. в трех обмотках трехфазного генератора представлены на рис. 2.

В трехфазном генераторе как бы имеются три однофазных генератора с общей магнитной системой. Представим, что генератор трехфазного тока подключен к нагрузке так, как показано на рис. 3.

Через А1, А2, А3 обозначены обмотки (фазы) генератора, а через А1 , , А2 , , А3 , — фазы потребителей (электрические лампы).

Три провода B1 — B1 , ; B2 — B2 , ; B3 — B3 , можно соединить вместе в один провод (рис. 4) ОО , , называемый нулевым или нейтральным.

Так как алгебраическая сумма трех равных, сдвинутых друг относительно друга на 120°, синусоидальных токов в любой момент времени равна нулю, то при равномерной нагрузке фаз этот провод не нужен, так как ток в нем в этом случае равен нулю. Точка О, в которой соединяются все три фазы обмотки машины и нулевой провод, называется нулевой или нейтральной.

Соединение фаз генератора трехфазного тока, показанное на рис. 4, называется соединением звездой. Аналогичное соединение цепей нагрузки называется включением нагрузки звездой.

Напряжение между началом и концом фазы называется фазовым напряжением и обозначается Uф.

Напряжение между концами фаз или проводами линий называется линейным напряжением и обозначается Uл. Соответственно и величина тока называется фазовой (Iф) или линейной (Iл). Очевидно, что при соединении звездой Iл = Iф , так как фаза генератора и соответствующая линия соединены последовательно.

Величина линейного напряжения при соединении фаз звездой равна

в чем можно легко убедиться, измеряя напряжение между двумя линейными проводами и сравнивая его с напряжением между нулевым проводом и линейным.

Другое соединение фаз генератора трехфазного тока и его потребителей — соединение треугольником — показано на рис. 5. При соединении треугольником фазы включены последовательно: конец одной соединен с началом другой и т. д., сумма э. д. с. трех фаз в каждый момент времени равна нулю. Поэтому при отключении внешней цепи ток в фазах будет равен нулю. При соединении треугольником фазовое напряжение равно линейному Uф = Uл, а сила тока в линии при равномерной нагрузке фаз равна

Источник



§60. Схема соединения «звездой»

Схема «звезда с нулевым проводом».

При соединении фазных обмоток источника трехфазного тока (например, генератора) по схеме «звезда с нулевым проводом» концы его трех обмоток соединяют в общий узел 0, который называется нулевой точкой, или нейтралью источника (рис. 206).

Рис. 206. Схема «звезда с нулевым проводом», направление в ней линейных и фазных токов и напряжений

Рис. 206. Схема «звезда с нулевым проводом», направление в ней линейных и фазных токов и напряжений

Приемники электрической энергии объединяют в три группы ZA, ZB и Zc (фазы нагрузки), концы которых также соединяют в общий узел 0′ (нулевая точка, или нейтраль нагрузки). Обмотки источника соединяют с фазами нагрузки четырьмя проводами. Провода 1, 2 и 3, присоединенные к началам фазных обмоток (А, В, С), называют линейными. Провод 4, соединяющий нулевые точки 0 и 0′, называют нулевым, или нейтральным.

Напряжения uА, uв и uс между началами и концами обмоток отдельных фаз источника или фаз нагрузки ZA, ZB и Zc называют фазными. Они равны также напряжениям между каждым из линейных проводов и нулевым проводом. При отсутствии потери напряжения в обмотках источника (при холостом ходе) фазные напряжения равны соответствующим э. д. с. в этих обмотках.

Фазными токами iA, iB, ic называют токи, протекающие по обмоткам источника или фазам нагрузки ZA, ZB и Zc. Напряжения uAB, uBC, uCA между линейными проводами и токи, проходящие по этим проводам, называют линейными.

Будем считать положительными напряжения uА, uB и uC в фазах источника и нагрузки, если они направлены от начала фаз к концам, а линейные напряжения uАВ, uBC, uСА — если они направлены от предыдущей фазы к последующей.

Из рис. 206 следует, что в схеме «звезда» линейные токи равны фазным, т. е. Iл = Iф, так как при переходе от фазы источника или нагрузки к линейному проводу нет каких-либо ответвлений.

Мгновенные значения напряжений согласно второму закону Кирхгофа:

Переходя от мгновенных значений напряжений к их векторам, имеем:

Следовательно, линейное напряжение равно разности векторов соответствующих фазных напряжений.

По полученным векторным уравнениям можно построить векторную диаграмму (рис. 207, а), которую можно преобразовать в диаграмму (рис. 207,б). Из этой диаграммы видно, что в симметричной трехфазной системе векторы линейных напряжений →uAB, →uВС, →uСА образуют равносторонний треугольник ABC, внутри которого расположена симметричная трехлучевая звезда фазных напряжений →uА, →uВ, →uС.

Читайте также:  Действующее значение тока в цепи с индуктивностью

В равнобедренных треугольниках АОВ, ВОС и СОА основание равно Uл две другие стороны — Uф и острый угол между этими сторонами и основанием составляет 30°.

Рис. 207. Векторные диаграммы напряжений для схемы «звезда с нулевым проводом»

Рис. 207. Векторные диаграммы напряжений для схемы «звезда с нулевым проводом»

Таким образом, в трехфазной системе, соединенной по схеме «звезда с нулевым проводом», линейное напряжение больше фазного в √З раз. Величина √З = 1,73 положена в основу шкалы номинальных напряжений переменного тока: 127, 220, 380 и 660 В. В этом ряду каждое следующее значение напряжения больше предыдущего в 1,73 раза.

В нулевом проводе проходит ток i0, мгновенное значение которого равно алгебраической сумме мгновенных значений токов, проходящих в отдельных фазах: i0 = iA+iB+iC.

Переходя от мгновенных значений токов к их векторам, имеем:

Векторы токов →iА, →iВ и →iС сдвинуты относительно векторов соответствующих напряжений →uA, →uB, →uС на углы →iA, →iB, →iC (рис. 208, а). Значения этих углов зависят от соотношения между активным и реактивным сопротивлениями, включенными в данную фазу.

На этой же диаграмме показано сложение векторов →iА, →iВ и →iC для определения вектора тока →i. Обычно ток →i меньше токов

Рис. 208. Векторные диаграммы напряжений и токов в отдельных фазах для схемы «звезда с нулевым проводом» при неравномерной (а) и равномерной (б) нагрузках фаз

Рис. 208. Векторные диаграммы напряжений и токов в отдельных фазах для схемы «звезда с нулевым проводом» при неравномерной (а) и равномерной (б) нагрузках фаз

IA, 1В и IC в линейных проводах, поэтому нулевой провод имеет площадь поперечного сечения, равную или даже несколько меньшую площади сечения линейных проводов.

В схеме «звезда с нулевым проводом» приемники электрической энергии можно включать на два напряжения: линейное Uл (при подключении к двум линейным проводам) и фазное UФ (при подключении к нулевому и одному из линейных проводов).

Схема «звезда без нулевого провода».

Очевидно, что при равномерной нагрузке можно удалить нулевой провод и передавать электрическую энергию источника к приемнику по трем линейным проводам 1, 2 и 3 (рис. 209).

Рис. 209. Схема «звезда без нулевого провода»

Рис. 209. Схема «звезда без нулевого провода»

Такая схема называется «звезда без нулевого провода». При трехпроводной системе передачи электрической энергии в каждое мгновение ток по одному (или двум) проводу проходит от источника трехфазного тока к приемнику, а по двум другим (или одному) протекает обратно от приемника к источнику (рис. 210).

Рис 210. Кривые изменения токов в линейных проводах (а) при трехпроводной системе и направление в них токов в различные моменты времени (б в, г)

Рис 210. Кривые изменения токов в линейных проводах (а) при трехпроводной системе и направление в них токов в различные моменты времени (б в, г)

Такими же будут и соотношения между фазными и линейными токами и напряжениями:

Следует отметить, что схема «звезда без нулевого провода» может быть применена только при равномерной нагрузке фаз. Практически это имеет место лишь при подключении к источникам трехфазного тока электрических двигателей, так как каждый трехфазный электродвигатель снабжен тремя одинаковыми обмотками, которые равномерно нагружают все три фазы.

При неравномерной нагрузке напряжения на отдельных фазах нагрузки будут различными. На некоторых фазах (с меньшим сопротивлением) напряжение уменьшится, а на других увеличится по сравнению с нормальным, что является недопустимым.

Практически неравномерная нагрузка фаз возникает при питании трехфазным током электрических ламп, так как в этом случае распределение тока между всеми тремя фазами не может быть гарантировано (отдельные лампы могут включаться и выключаться в индивидуальном порядке). Особенно опасны в схеме «звезда без нулевого провода» обрыв или короткое замыкание в одной из фаз.

Можно показать путем построения соответствующих векторных диаграмм, что при обрыве в одной из фаз напряжение в других двух фазах уменьшается до половины линейного, вследствие чего лампы, включенные в эти фазы, будут гореть с недокалом.

Источник

Цепи трехфазного переменного тока (соединение потребителей по схеме «звезда»)

Цель работы. Исследовать электрическую цепь трехфазного переменного тока, содержащую приемник электрической энергии, соединенный по схеме «звезда» с нулевым (нейтральным) проводом и без него.

Краткие теоретические сведения

Трехфазная симметричная система ЭДС состоит из трех ЭДС, одинаковых по амплитуде и частоте, но сдвинутых друг относительно друга на 120º.

При соединении «звездой» концы обмоток фаз генератора X, Y, Z соединяют в одну общую точку N , называемую нейтральной или нулевой. К началам фаз генератора А, В, С подключают провода, с помощью которых источник питания (генератор) соединяется с приемником. Эти провода называются линейными, а трехфазная система – трехпроводной (рис.20).

Рис.20. Трехпроводная система трехфазного переменного тока (соединение по схеме «звезда»).

Если нейтральная (нулевая) точка N генератора соединена проводом с нейтральной (нулевой) точкой n приемника, то система называется четырехпроводной с нулевым (нейтральным) проводом (рис.19).

Рис.21. Четырехпроводная система трехфазного переменного тока с нулевым (нейтральным) проводом (соединение по схеме «звезда»).

При соединении «звездой» каждая фаза генератора, линейный провод и фаза нагрузки соединены между собой последовательно и через них проходит один и тот же ток. Следовательно, при соединении «звездой» линейный ток равен фазному, т.е.

Напряжения между началом и концом каждой фазы нагрузки А, В, С, равные (при пренебрежении падением напряжения в проводах) напряжениям на фазах генератора, называются фазными напряжениями. Напряжения между линейными проводами AB, BC, CA называются линейными напряжениями. Токи, протекающие в фазах нагрузки A, B, C, называются фазными токами. Для системы «звезда» линейные токи одни и те же с фазными Л = Ф.

По второму закону Кирхгофа можно определить соотношения между фазными и линейными напряжениями

Так как трехфазная система генератора симметрична, то действующие значения ЭДС генератора равны между собой и равны действующим значениям на нагрузке при пренебрежении падением напряжения в линии A = B = C = A = B = C = Ф .

Исходя из равенства угла сдвига между фазами 120 на генераторе и нагрузке и выведенных из второго закона Кирхгофа уравнений (37), равны между собой и действующие значения линейных напряжений

Векторная диаграмма фазных и линейных напряжений (рис.20) будет для симметричного генератора и четырехпроводной системы «звезда» неизменна при любой нагрузке. На рис.20а приведена полярная, а на рис. 20б – топографичекая векторная диаграмма.

а) б)

Рис.22. Полярная и топографическая векторные диаграммы напряжений в четырехпроводной системе «звезда»

Из векторной диаграммы (рис.20а) получим соотношение между линейными и фазными напряжениями.

UAB = 2UА cos 30º = UА = UФ.

В общем случае для четырехпроводной системы «звезда» при любой нагрузке

К симметричному трехфазному генератору с нейтральным проводом может быть присоединена любая симметричная и несимметричная нагрузка. Нагрузка называется симметричной, если сопротивления и углы сдвига фаз между напряжением и током всех ее фаз одинаковы

Читайте также:  Тиристорный преобразователь постоянного тока в переменный

Несоблюдение любого из условий (39) приведет к нарушению симметричности нагрузки трехфазной системы.

Рассмотрим четырехпроводную трехфазную систему с нагрузкой, соединенной по схеме «звезда».

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Так как UA = UB = UC = UФ = , то

Топографическая векторная диаграмма токов и напряжений при симметричной активной нагрузке представлена на рис.21.

Рис.23. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при симметричной активной нагрузке

По первому закону Кирхгофа

Для симметричной нагрузки

2) Несимметричная активная нагрузка: ZA = RA ; ZB = RB ; ZC = RC ; RARBRC ; IAIBIC

Топографическая векторная диаграмма токов и напряжений при несимметричной нагрузке представлена на рис.22

Рис.24. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Для нахождения значения тока IN по выражению (42) необходимо найти геометрическую сумму векторов A , B и C (рис.22). В результате получаем

Общая мощность трехфазной цепи в этом случае будет равна

Трехпроводная трехфазная система с соединением нагрузки по схеме «звезда» без нулевого (нейтрального) провода (рис.20).

Рассмотрим, что произойдет с токами и напряжениями при отключении нейтрального провода (рис.20).

В трехпроводной системе, соединенной по схеме «звезда» между нулевой точкой нагрузки и нулевой точкой генератора возникает напряжение UnN , величина и направление которого зависят от величины и характера нагрузки.

Согласно методу двух узлов в случае активной нагрузки напряжение UnN, можно выразить следующим образом

Составим уравнения по второму закону Кирхгофа

Токи в фазах нагрузки определяются

Проанализируем электрическое состояние трехпроводной трехфазной системы, соединенной по схеме «звезда», при различных значениях нагрузки.

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Векторная диаграмма токов и напряжений приведена на рис.25.

Рис.25. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при симметричной активной нагрузке

Векторная диаграмма аналогична диаграмме, построенной для четырехпроводной системы с симметричной активной нагрузкой. Подобным образом аналогична диаграмма для симметричной активно-реактивной нагрузки, поэтому при симметричной нагрузке отпадает необходимость нулевого провода, т.к. ток в нем равен нулю.

2) Несимметричная активная нагрузка: ZA = RA ; ZB = RB ; ZC = RC ; RARBRC ; IAIBIC

При отключении нейтрального провода ток I становится равным нулю, следовательно, при несимметричной нагрузке должны измениться и токи IA , IB , IC. изменение же этих токов может произойти только при условии, что изменились напряжения на фазах нагрузки. Следовательно, фазные напряжения нагрузки теперь не будут представлять симметричную систему векторов, т.к. действующие значения этих напряжений не будут равны между собой, а их фазовый сдвиг относительно друг друга будет отличаться от 120º (рис.26).

Рис.26. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Нулевая точка нагрузки n смещена относительно нулевой точки генератора N.

Из рис.25 видно, что напряжения на фазах нагрузки определяются как

что соответствует выражению (47)

Проведя геометрическое сложение векторов , , и разделив полученный результат на значение проводимости Y = , в соответствии с выражением (45), получаем вектор nN.

Вычитая полученный результат из векторов , , и , находим соответственно , и .

В результате получаем выражения для расчета действующих значений фазных напряжений UA, UВ, UС и токов IA, IВ, IС.

Для измерения мощности в работе используется метод двух ваттметров W1 и W2 (рис.27).

Рис.27. Схема измерения мощности методом двух ваттметров

Поясним принцип работы этого метода.

Приборы для измерения активной мощности (ваттметры), включенные в цепь однофазного переменного тока, измеряют величину

Р = UI ∙ cos (U ^ I) , (50)

где U — напряжение, приложенное к обмотке напряжения ваттметра;

I — ток, протекающий по токовой обмотке ваттметра;

U ^ I = φ — угол сдвига между напряжением и током.

Активная мощность трехфазной цепи при симметричной нагрузке фаз может быть выражена двумя равноценными формулами

Р = 3∙UФIФ ∙ cos φ или

Р = ∙UЛIФ ∙ cos φ . (51)

Для измерения активной мощности в трехпроводных цепях трехфазного тока как при симметричной, так и при несимметричной нагрузке фаз (независимо от способа соединения нагрузки «звездой» или «треугольником»), широкое практическое применение получил метод двух ваттметров, включенных как показано на рис.14.

Показания ваттметров W1 и W2 можно записать следующим образом

Обозначим через α и β соответственно углы (UAB ^ IA) и (UCB ^ IC) . Для определения α и β построим векторную диаграмму для случая симметричной активно-индуктивной нагрузки (рис.27). Согласно построению α = 30º + φ, β = 30º – φ.

Учитывая, что при симметричной нагрузке UАВ = UСВ = UЛ и IА = IС = IЛ, показания ваттметров можно записать следующим образом:

Р = Р1 + Р2 = UЛIЛ ∙ [cos (30º + φ) + cos (30º – φ)] = UЛIЛ ∙ cos φ. (53)

Полученное выражение совпадает с выражением (45). Таким образом доказано, что сумма показаний двух ваттметров будет равна активной мощности трехфазной цепи.

Рис.28. Векторная диаграмма трехпроводной системы трехфазного переменного тока с симметричной активно-индуктивной нагрузкой

Разность показаний двух ваттметров, умноженная на , будет равна реактивной мощности цепи Q.

Q = ( Р1Р2) = UЛIЛ ∙ [cos (30º + φ) – cos (30º – φ)] = UЛIЛ ∙sin φ. (54)

Показания каждого из ваттметров в отдельности не имеют никакого физического смысла, за исключением случая симметричной и чисто активной нагрузки, при которой Р1 = Р2 и составляет половину измеряемой мощности трехфазной цепи.

ПЛАН РАБОТЫ

Задание 1. Определить электрические параметры четырехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» с нулевым (нейтральным) проводом.

1. Собрать электрическую схему (рис.29).

Рис.29. Схема лабораторной установки: А-х, В-y, C-z — трехфазный ламповый реостат, установленный на стенде; А1 — амперметр на ток 1–2 А; А2, А3, А — амперметры на ток 0,25–0,5–1 А; V – вольтметр на 75-150-300-600 В.

2. Установить симметричную нагрузку фаз, включив по пять ламп в каждой фазе, и измерить IA, IB, IC, IN, UA, UB, UC, UAB, UBC, UCA.

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и осуществить измерения электрических параметров, указанных в п.2.

4. Вычислить электрические параметры, указанные в табл.7.

5. занести результаты измерений и вычислений в табл.7.

Задание 2. Определить электрические параметры трехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» без нулевого (нейтрального) провода.

1. Собрать электрическую схему (рис.30).

Рис.30. Схема лабораторной установки: А-х, В-y, C-z — трехфазный ламповый реостат, установленный на стенде; А1 — амперметр на ток 1–2 А; А2, А3 — амперметры на ток 0,25–0,5–1 А; V – вольтметр на 75-150-300-600 В; W1 и W2 — ваттметры на напряжение 75−150−300−600 В и ток 1−2,5−5 А.

2. Установить симметричную нагрузку, включив по пять ламп в каждой фазе, и измерить линейные и фазные напряжения, фазные токи, активные мощности.

Читайте также:  Выпрямитель переменного тока в постоянный 220в

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и измерить электрические параметры, указанные в п.2.

4. Вычислить электрические параметры, указанные в табл.8.

5. Занести результаты измерений и вычислений в табл.8.

1. Схемы измерений (рис.29 и 30) с обозначениями используемых приборов.

2. Расчет электрических параметров.

3. Таблицы 7 и 8 с результатами измерений и вычислений.

4. Построенные в масштабе топографические векторные диаграммы (две к заданию 1 по данным п.1-2 табл.7 в соответствии с рис. 21 и 22 и две к заданию 2 по данным пп.1-2 табл.8 в соответствии с рис. 24 и 25.

Измеренные величины Вычисленные величины
IA IВ IС I UA UВ UС UAВ UВС UСА UЛ/ UФ РА РВ РС Р
А А А А В В В В В В В Вт Вт Вт Вт
0,6 0,6 0,6
0,6 0,45 0,35 0,21
Измеренные величины Вычисленные величины
IA IВ IС UA UВ UС UAВ UВС UСА Р1(W1) Р2(W2) UЛ/ UФ РА РВ РС Ррасч Р(W1+W2)
А А А В В В В В В Вт Вт В Вт Вт Вт Вт Вт
0,6 0,6 0,6
0,525 0,475 0,375

1. Как относятся друг с другом ЭДС, составляющие трехфазную систему?

2. Как соединяются обмотки генератора при соединении «звездой»?

3. Чем отличается схема четырехпроводной системы трехфазного тока от схемы трехпроводной системы?

4. Что соединяет нулевой (нейтральный) провод?

5. Что такое линейные и фазные токи и напряжения и каковы соотношения между ними при соединении звездой в векторной форме?

6. Как связаны линейные и фазные напряжения в четырехпроводной системе трехфазного тока?

7. Что такое симметричная и несимметричная нагрузка?

8. Чему равна геометрическая сумма токов в четырехпроводной трехфазной системе при симметричной нагрузке?

9. Чему равен ток в нулевом проводе при симметричной нагрузке?

10. отличаются ли токи и напряжения в четырехпроводной и трехпроводной системах трехфазного тока при одинаковой симметричной нагрузке?

11. При какой нагрузке необходимо включить в трехфазную систему нулевой провод и зачем?

12. Как определить ток в нулевом проводе четырехпроводной системы при несимметричной нагрузке, зная линейные токи?

13. При каких условиях будут равны напряжения на всех фазах нагрузки в трехпроводной трехфазной системе?

14. Каков характер нагрузки в осветительных сетях?

15. Какую систему трехфазного тока нужно использовать в осветительных сетях и почему?

16. какую мощность можно определить методом двух ваттметров?

17. Чему равна активная мощность цепи при применении метода двух ваттметров?

18. В каких системах трехфазного тока может быть применен метод двух ваттметров?

19. Можно ли определить полную мощность трехфазной системы, используя метод двух ваттметров?

20. Можно ли определить коэффициент мощности трехфазной системы, используя метод двух ваттметров?

Источник

Расчет трехфазной цепи, соединенной звездой

date image2014-02-02
views image21405

facebook icon vkontakte icon twitter icon odnoklasniki icon

Соединение в треугольник. Схема, определения

Соединение в звезду. Схема, определения

Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 7. 1.

Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N’ называют нейтральным (нулевым) проводом.

Напряжения между началами фаз или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями.

Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах — линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.

ZN — сопротивление нейтрального провода.

Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений

На рис. 7.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.

Из векторной диаграммы видно, что

При симметричной системе ЭДС источника линейное напряжение больше фазного
в √3 раз.

Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.
На рис. 7.3 изображена трехфазная цепь, соединенная треугольником. Как видно
из рис. 7.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.

Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.

Линейный ток равен геометрической разности соответствующих фазных токов.
На рис. 7.4 изображена векторная диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.

Из векторной диаграммы видно, что

Iл = √3 Iф при симметричной нагрузке.

Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме «звезда». Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

Трехфазную цепь, соединенную звездой, удобнее всего рассчитать методом двух узлов.
На рис. 7.5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (ZA ≠ ZB ≠ ZC )

Нейтральный провод имеет конечное сопротивление ZN .
В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
Это напряжение определяется по формуле (7.2).

Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):

Ток в нейтральном проводе

1. Симметричная нагрузка . Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.
Узловое напряжение

потому что трехфазная система ЭДС симметрична, .

Напряжения фаз нагрузки и генератора одинаковы:

Фазные токи одинаковы по величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует

В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

На рис. 7.6 изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.

2. Нагрузка несимметричная , RA

Источник