Меню

Формулы мощности постоянного тока во всех видах

Все формулы

Все формулы по физике и математике

Темы по физике

  • Механика (56)
    • Кинематика (19)
    • Динамика и статика (32)
    • Гидростатика (5)
  • Молекулярная физика (25)
    • Уравнение состояния (3)
    • Термодинамика (15)
    • Броуновское движение (6)
    • Прочие формулы по молекулярной физике (1)
  • Колебания и волны (22)
  • Оптика (9)
    • Геометрическая оптика (3)
    • Физическая оптика (5)
    • Волновая оптика (1)
  • Электричество (39)
  • Атомная физика (15)
  • Ядерная физика (3)

Темы по математике

  • Квадратный корень, рациональные переходы (1)
  • Квадратный трехчлен (1)
  • Координатный метод в стереометрии (1)
  • Логарифмы (1)
  • Логарифмы, рациональные переходы (1)
  • Модуль (1)
  • Модуль, рациональные переходы (1)
  • Планиметрия (1)
  • Прогрессии (1)
  • Производная функции (1)
  • Степени и корни (1)
  • Стереометрия (1)
  • Тригонометрия (1)
  • Формулы сокращенного умножения (1)

Мощность постоянного тока

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам — очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА

Мощность постоянного тока — равна отношению напряжения в квадрате к сопротивлению на участке цепи.

\LARGE P=I\times U=I^2\times R=\frac<U^2 data-lazy-src=

 I— Сила тока

 U— Напряжение в цепи

 R— Сопротивление цепи

 A— Работа силы тока

 t— Время, за которое совершалась работа

Источник



Мощность постоянного и переменного электрического тока.

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

.

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

, где электрическое сопротивление.

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

, где — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работегальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока[править | править вики-текст]

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для практических расчётов бесполезна. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность[править | править вики-текст]

Единица измерения — ватт (W, Вт).

Среднее за период значение мгновенной мощности называется активной мощностью: . В цепях однофазного синусоидального тока , где и среднеквадратичные значения напряжения и тока, угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи или её проводимость по формуле . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепейэлектрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью активная связана соотношением .

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

Реактивная мощность[править | править вики-текст]

Единица измерения — вольт-ампер реактивный (var, вар)

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения и тока , умноженному на синус угла сдвига фаз между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью и активной мощностью соотношением: .

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина для значений от 0 до плюс 90° является положительной величиной. Величина для значений от 0 до −90° является отрицательной величиной. В соответствии с формулой , реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Читайте также:  Чем обозначается направление индукционного тока

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Полная мощность

Единица полной электрической мощности — вольт-ампер (V·A, В·А)

Полная мощность — величина, равная произведению действующих значений периодического электрического тока в цепи и напряжения на её зажимах: ; связана с активной и реактивной мощностями соотношением: где — активная мощность, — реактивная мощность (при индуктивной нагрузке , а при ёмкостной ).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Комплексная мощность[править | править вики-текст]

Мощность, аналогично импедансу, можно записать в комплексном виде:

где — комплексное напряжение, — комплексный ток, — импеданс, * — оператор комплексного сопряжения.

Модуль комплексной мощности равен полной мощности . Действительная часть равна активной мощности , а мнимая — реактивной мощности с корректным знаком в зависимости от характера нагрузки.

Источник

Мощность постоянного тока

Определения и формулы

Мощность постоянного токаМощность – это работа, произведенная за единицу времени. Электрическая мощность равна произведению тока на напряжение: P=U∙I. Отсюда можно вывести другие формулы для мощности:

Единицу измерения мощности получим, подставив в формулу единицы измерения напряжения и тока:

Единица измерения электрической мощности, равная 1 ВА, называется ватом (Вт). Название вольт-ампер (ВА) используется в технике переменного тока, но только для измерения полной и реактивной мощности.

Единицы измерения электрической и механической мощности связаны следующими соотношениями:

1 Вт =1/9,81 кГ•м/сек ≈1/10 кГ•м/сек;

1 кГ•м/сек =9,81 Вт ≈10 Вт;

1 л.с. =75 кГ•м/сек =736 Вт;

1 кВт =102 кГ•м/сек =1,36 л.с.

Если не учитывать неизбежных потерь энергии, то двигатель мощностью 1 кВт может перекачивать каждую секунду 102 л воды на высоту 1 м или 10,2 л воды на высоту 10 м.

1. Нагревательный элемент электрической печи на мощность 500 Вт и напряжение 220 В выполнен из проволоки высокого сопротивления. Рассчитать сопротивление элемента и ток, который через него проходит (рис. 1).

Ток найдем по формуле электрической мощности P=U∙I,

откуда I=P/U=(500 Bm)/(220 B)=2,27 A.

Сопротивление рассчитывается по другой формуле мощности: P=U^2/r,

откуда r=U^2/P=(220^2)/500=48400/500=96,8 Ом.

Схема к примеру 1

Схема к примеру 1

2. Какое сопротивление должна иметь спираль (рис. 2) плитки при токе 3 А и мощности 500 Вт?

Плитка

Для этого случая применим другую формулу мощности: P=U∙I=r∙I∙I=r∙I^2;

отсюда r=P/I^2 =500/3^2 =500/9=55,5 Ом.

3. Какая мощность превращается в тепло при сопротивлении r=100 Ом, которое подключено к сети напряжением U=220 В (рис. 3)?

Схема к примеру 3

4. В схеме на рис. 4 амперметр показывает ток I=2 А. Подсчитать сопротивление потребителя и электрическую мощность, расходуемую в сопротивлении r=100 Ом при включении его в сеть напряжением U=220 В.

Схема к примеру 4

P=U∙I=220∙2=440 Вт, или P=U^2/r=220^2/110=48400/110=440 Вт.

5. На лампе указано лишь ее номинальное напряжение 24 В. Для определения остальных данных лампы соберем схему, показанную на рис. 5. Отрегулируем реостатом ток так, чтобы вольтметр, подключенный к зажимам лампы, показывал напряжение Uл=24 В. Амперметр при этом показывает ток I=1,46 А. Какие мощность и сопротивление имеет лампа и какие потери напряжения и мощности возникают на реостате?

Рисунок и схема к примеру

Мощность лампы P=Uл∙I=24∙1,46=35 Вт.

Ее сопротивление rл=Uл/I=24/1,46=16,4 Ом.

Падение напряжения на реостате Uр=U-Uл=30-24=6 В.

Потери мощности в реостате Pр=Uр∙I=6∙1,46=8,76 Вт.

6. На щитке электрической печи указаны ее номинальные данные (P=10 кВт; U=220 В).

Определить, какое сопротивление представляет собой печь и какой ток проходит через нее при работе P=U∙I=U^2/r;

r=U^2/P=220^2/10000=48400/10000=4,84 Ом; I=P/U=10000/220=45,45 А.

Нагревательные элементы электрической печи

7. Каково напряжение U на зажимах генератора, если при токе 110 А его мощность равна 12 кВт (рис. 7)?

Так как P=U∙I, то U=P/I=12000/110=109 В.

8. На схеме на рис. 8 показана работа электромагнитной токовой защиты. При определенном токе электромагнит ЭМ, который удерживается пружиной П, притянет якорь, разомкнет контакт К и разорвет цепь тока. В нашем примере токовая защита разрывает токовую цепь при токе I≥2 А. Сколько ламп по 25 Вт может быть одновременно включено при напряжении сети U=220 В, чтобы ограничитель не сработал?

Защита срабатывает при I=2 А, т. е. при мощности P=U∙I=220∙2=440 Вт.

Разделив общую мощность одной лампы, получим: 440/25=17,6.

Одновременно могут гореть 17 ламп.

9. Электрическая печь имеет три нагревательных элемента на мощность 500 Вт и напряжение 220 В, соединенных параллельно.

Каковы общее сопротивление, ток и мощность при работе печи (рис.91)?

Общая мощность печи P=3∙500 Вт =1,5 кВт.

Читайте также:  Испытания средств защиты переменным током

Результирующий ток I=P/U=1500/220=6,82 А.

Результирующее сопротивление r=U/I=220/6,82=32,2 Ом.

Ток одного элемента I1=500/220=2,27 А.

Сопротивление одного элемента: r1=220/2,27=96,9 Ом.

10. Подсчитать сопротивление и ток потребителя, если ваттметр показывает мощность 75 Вт при напряжении сети U=220 В (рис.10).

Так как P=U^2/r, то r=U^2/P=48400/75=645,3 Ом.

Ток I=P/U=75/220=0,34 А.

11. Плотина имеет перепад уровней воды h=4 м. Каждую секунду через трубопровод на турбину попадает 51 л воды. Какая механическая мощность превращается в генераторе в электрическую, если не учитывать потерь (рис. 11)?

Механическая мощность Pм=Q∙h=51 кГ/сек ∙4 м =204 кГ•м/сек.

Отсюда электрическая мощность Pэ=Pм:102=204:102=2 кВт.

12. Какую мощность должен иметь двигатель насоса, перекачивающего каждую секунду 25,5 л воды с глубины 5 м в резервуар, расположенный на высоте З м? Потери не учитываются (рис. 12).

Общая высота подъема воды h=5+3=8 м.

Механическая мощность двигателя Pм=Q∙h=25,5∙8=204 кГ•м/сек.

Электрическая мощность Pэ=Pм:102=204:102=2 кВт.

13. Гидроэлектростанция получает из водохранилища на одну турбину каждую секунду 4 м3 воды. Разница между уровнями воды в водохранилище и турбине h=20 м. Определить мощность одной турбины без учета потерь (рис. 13).

Механическая мощность протекающей воды Pм=Q∙h=4∙20=80 т/сек•м; Pм=80000 кГ•м/сек.

Электрическая мощность одной турбины Pэ=Pм:102=80000:102=784 кВт.

14. У двигателя постоянного тока с параллельным возбуждением обмотка якоря и обмотка возбуждения соединены параллельно. Обмотка якоря имеет сопротивление r=0,1 Ом, а ток якоря I=20 А. Обмотка возбуждения имеет сопротивление rв=25 Ом, а ток возбуждения равен Iв=1,2 А. Какая мощность теряется в обеих обмотках двигателя (рис. 14)?

Потери мощности в обмотке якоря P=r∙I^2=0,1∙20^2=40 Вт.

Потери мощности в обмотке возбуждения

Общие потери в обмотках двигателя P+Pв=40+36=76 Вт.

15. Электроплитка на напряжение 220 В имеет четыре переключаемые ступени нагрева, что достигается путем различных включений двух нагревательных элементов с сопротивлениями r1 и r2, как это показано на рис. 15.

Определить сопротивления r1 и r2, если первый нагревательный элемент имеет мощность 500 Вт, а второй 300 Вт.

Так как мощность, выделяемая в сопротивлении, выражается формулой P=U∙I=U^2/r, то сопротивление первого нагревательного элемента

а второго нагревательного элемента r2=U^2/P2 =220^2/300=48400/300=161,3 Ом.

В положении ступени IV сопротивления соединяются последовательно. Мощность электроплитки в этом положении равна:

P3=U^2/(r1+r2 )=220^2/(96,8+161,3)=48400/258,1=187,5 Вт.

В положении ступени I нагревательные элементы соединены параллельно и результирующее сопротивление равно: r=(r1∙r2)/(r1+r2)=(96,8∙161,3)/(96,8+161,3)=60,4 Ом.

Мощность плитки в положении ступени I: P1=U^2/r=48400/60,4=800 Вт.

Эту же мощность получим, сложив мощности отдельных нагревательных элементов.

16. Лампа с вольфрамовой нитью рассчитана на мощность 40 Вт и напряжение 220 В. Какие сопротивление и ток имеет лампа в холодном состоянии и при рабочей температуре 2500 °С?

Мощность лампы P=U∙I=U^2/r.

Отсюда сопротивление нити лампы в горячем состоянии rt=U^2/P=220^2/40=1210 Ом.

Сопротивление холодной нити (при 20 °С) определим по формуле rt=r∙(1+α∙∆t),

откуда r=rt/(1+α∙∆t)=1210/(1+0,004∙(2500-20) )=1210/10,92=118 Ом.

Через нить лампы в горячем состоянии проходит ток I=P/U=40/220=0,18 А.

Ток при включении равен: I=U/r=220/118=1,86 А.

При включении ток примерно в 10 раз больше, чем ток горячей лампы.

17. Каковы потери напряжения и мощности в медном контактном проводе электрифицированной железной дороги (рис. 16)?

Провод имеет сечение 95 мм2. Двигатель электропоезда потребляет ток 300 А на расстоянии 1,5 км от источника тока.

Потеря (падение) напряжения в линии между точками 1 и 2 Uп=I∙rп.

Сопротивление контактного провода rп=(ρ∙l)/S=0,0178∙1500/95=0,281 Ом.

Падение напряжения в контактном проводе Uп=300∙0,281=84,3 В.

Напряжение Uд на зажимах двигателя Д будет на 84,3 В меньше, чем напряжение U на зажимах источника Г.

Падение напряжения в контактном проводе во время движения электропоезда меняется. Чем дальше электропоезд удаляется от источника тока, тем длиннее линия, а значит, больше ее сопротивление и падение напряжения в ней. Ток по рельсам возвращается к заземленному источнику Г. Сопротивление рельсов и земли практически равно нулю.

Источник

Как рассчитать мощность электрического тока?

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

  • P – активная мощность;
  • U – напряжение приложенное к участку цепи;
  • I — сила тока, протекающего через соответствующий участок.
Читайте также:  Система тягового электроснабжения переменного тока 2х25 кв

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U 2 /R

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I 2 *R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

Суммарная мощность

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Треугольник мощностей

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:

Мощность и линейное напряжение

Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.

Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.

Шильд электродвигателя

Рис. 2. Шильд электродвигателя

Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:

  • полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
  • коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
  • тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
  • напряжение, при соединении обмоток треугольником составит 220 В;
  • сила тока при том же способе соединения – 13,3 А.

С таким перечнем характеристик можно воспользоваться несколькими способами:

S = 1,732*220*13,3 = 5067 Вт

Чтобы найти искомую величину, сначала определяем активную составляющую:

P = Pполезная / КПД = 3000/0.8 = 3750 Вт

Далее полную по способу деления активной на коэффициент cos φ:

S = P/cos φ = 3750/0.74 = 5067 Вт

Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.

Примеры задач

Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.

Последовательная расчетная цепь

Рис. 3. Последовательная расчетная цепь

Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:

P = U 2 /R = 81 / (10+20+30) = 1.35 Вт

Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:

Параллельная схема подключения

Рис. 4. Параллельная схема подключения

Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:

Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:

P = I 2 *R = 25*6 = 150 Вт

Видео по теме

Источник