Меню

Формула сопротивления тока для последовательного соединения

Последовательное и параллельное соединение резисторов.

Как я и обещал в статье про переменные резисторы (ссылка), сегодня речь пойдет о возможных способах соединения, в частности о последовательном соединении резисторов и о параллельном.

Последовательное соединение резисторов.

Давайте начнем с рассмотрения цепей, элементы которой соединены последовательно. И хоть мы и будем рассматривать только резисторы в качестве элементов цепи в данной статье, но правила, касающиеся напряжений и токов при разных соединениях будут справедливы и для других элементов. Итак, первая цепь, которую мы будем разбирать выглядит следующим образом:

Последовательное соединение резисторов.

Здесь у нас классический случай последовательного соединения – два последовательно включенных резистора. Но не будем забегать вперед и рассчитывать общее сопротивление цепи, а для начала рассмотрим все напряжения и токи. Итак, первое правило заключается в том, что протекающие по всем проводникам токи при последовательном соединении равны между собой:

А для определения общего напряжения при последовательном соединении, напряжения на отдельных элементах необходимо просуммировать:

В то же время, по закону Ома для напряжений, сопротивлений и токов в данной цепи справедливы следующие соотношения:

Тогда для вычисления общего напряжения можно будет использовать следующее выражение:

Но для общего напряжение также справедлив закон Ома:

Здесь R_0 – это общее сопротивление цепи, которое исходя из двух формул для общего напряжения равно:

Таким образом, при последовательном соединении резисторов общее сопротивление цепи будет равно сумме сопротивлений всех проводников.

Например для следующей цепи:

Пример цепи.

Общее сопротивление будет равно:

Количество элементов значения не имеет, правило, по которому мы определяем общее сопротивление будем работать в любом случае 🙂 А если при последовательном соединении все сопротивления равны ( R_1 = R_2 = … = R ), то общее сопротивление цепи составит:

В данной формуле n равно количеству элементов цепи. С последовательным соединением резисторов мы разобрались, давайте перейдем к параллельному.

Параллельное соединение резисторов.

Параллельное соединение резисторов.

При параллельном соединении напряжения на проводниках равны:

А для токов справедливо следующее выражение:

То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:

Подставим эти выражения в формулу общего тока:

А по закону Ома ток:

Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:

Данную формулу можно записать и несколько иначе:

Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:

Пример цепи.

Смешанное соединение резисторов.

Помимо параллельного и последовательного соединений резисторов существует еще смешанное соединение. Из названия уже понятно, что при таком соединении в цепи присутствуют резисторы, соединенные как параллельно, так и последовательно. Вот пример такой цепи:

Смешанное соединение резисторов.

Давайте рассчитаем общее сопротивление цепи. Начнем с резисторов R_1 и R_2 – они соединены параллельно. Мы можем рассчитать общее сопротивление для этих резисторов и заменить их в схеме одним единственным резистором R_ <1-2>:

Теперь у нас образовались две группы последовательно соединенных резисторов:

  • R_ <1-2>и R_3
  • R_4 и R_5

Упрощенная схема.

Заменим эти две группы двумя резисторами, сопротивление которых равно:

Упрощенная схема 2.

Как видите, схема стала уже совсем простой 🙂 Заменим группу параллельно соединенных резисторов R_ <1-2-3>и R_ <4-5>одним резистором R_ <1-2-3-4-5>:

И в итоге у нас на схеме осталось только два резистора соединенных последовательно:

Финальная цепь.

Общее сопротивление цепи получилось равным:

Таким вот образом достаточно большая схема свелась к простейшему последовательному соединению двух резисторов!

Тут стоит отметить, что некоторые схемы невозможно так просто преобразовать и определить общее сопротивление – для таких схем нужно использовать правила Кирхгофа, о которых мы обязательно поговорим в будущих статьях. А сегодняшняя статья на этом подошла к концу, до скорых встреч на нашем сайте!

Источник

Сила тока при последовательном соединении

В электрических цепях используются различные типы соединений. Основными являются последовательные, параллельные и смешанные схемы подключений. В первом случае используется несколько сопротивлений, соединенных в единую цепочку друг за другом. То есть, начало одного резистора соединяется с концом второго, а начало второго – с концом третьего и так далее, до любого количества сопротивлений. Сила тока при последовательном соединении будет одинаковой во всех точках и на всех участках. Для определения и сравнения других параметров электрической цепи, следует рассматривать и остальные виды соединений, обладающие собственными свойствами и характеристиками.

Последовательное и параллельное соединение сопротивлений

Любая нагрузка обладает сопротивлением, препятствующим свободному течению электрического тока. Его путь проходит от источника тока, через проводники к нагрузке. Для нормального прохождения тока, проводник должен обладать хорошей проводимостью и легко отдавать электроны. Это положение пригодится далее при рассмотрении вопроса, что такое последовательное соединение.

Сила тока при последовательном соединении

В большинстве электрических цепей применяются медные проводники. Каждая цепь содержит приемники энергии – нагрузки, обладающие различными сопротивлениями. Параметры соединения лучше всего рассматривать на примере внешней цепи источника тока, состоящей из трех резисторов R1, R2, R3. Последовательное соединение предполагает поочередное включение этих элементов в замкнутую цепь. То есть начало R1 соединяется с концом R2, а начало R2 – с концом R3 и так далее. В такой цепочке может быть любое количество резисторов. Эти символы используют в расчетах последовательные и параллельные соединения.

Сила тока на всех участках будет одинаковой: I = I1 = I2 = I3, а общее сопротивление цепи составит сумму сопротивлений всех нагрузок: R = R1 + R2 + R3. Остается лишь определить, каким будет напряжение при последовательном соединении. В соответствии с законом Ома, напряжение представляет собой силу тока и сопротивления: U = IR. Отсюда следует, что напряжение на источнике тока будет равно сумме напряжений на каждой нагрузке, поскольку ток везде одинаковый: U = U1 + U2 + U3.

При постоянном значении напряжения, ток при последовательном соединении будет находиться в зависимости от сопротивления цепи. Поэтому при изменении сопротивления хотя-бы на одной из нагрузок, произойдет изменение сопротивления во всей цепи. Кроме того, изменятся ток и напряжение на каждой нагрузке. Основным недостатком последовательного соединения считается прекращение работы всех элементов цепи, при выходе из строя даже одного из них.

Совершенно другие характеристики тока, напряжения и сопротивления получаются при использовании параллельного соединения. В этом случае начала и концы нагрузок соединяются в двух общих точках. Происходит своеобразное разветвление тока, что приводит к снижению общего сопротивления и росту общей проводимости электрической цепи.

Для того чтобы отобразить эти свойства, вновь понадобится закон Ома. В данном случае сила тока при параллельном соединении и его формула будет выглядеть так: I = U/R. Таким образом, при параллельном соединении n-го количества одинаковых резисторов, общее сопротивление цепи будет в n раз меньше любого из них: Rобщ = R/n. Это указывает на обратно пропорциональное распределение токов в нагрузках по отношению к сопротивлениям этих нагрузок. То есть, при увеличении параллельно включенных сопротивлений, сила тока в них будет пропорционально уменьшаться. В виде формул все характеристики отображаются следующим образом: сила тока – I = I1 + I2 + I3, напряжение – U = U1 = U2 = U3, сопротивление – 1/R = 1/R1 + 1/R2 + 1/R3.

При неизменном значении напряжения между элементами, токи в этих резисторах не имеют зависимости друг от друга. Если один или несколько резисторов будут выключены из цепи, это никак не повлияет на работу других устройств, остающихся включенными. Данный фактор является основным преимуществом параллельного соединения электроприборов.

В схемах обычно не используется только последовательное соединение и параллельное соединение сопротивлений, они применяются в комбинированном виде, известном как смешанное соединение. Для вычисления характеристик таких цепей применяются формулы обоих вариантов. Все расчеты разбиваются на несколько этапов, когда вначале определяются параметры отдельных участков, после чего они складываются и получается общий результат.

Законы последовательного и параллельного соединения проводников

Основным законом, применяемым при расчетах различных видов соединений, является закон Ома. Его основным положением является наличие на участке цепи силы тока, прямо пропорциональной напряжению и обратно пропорциональной сопротивлению на данном участке. В виде формулы этот закон выглядит так: I = U/R. Он служит основой для проведения расчетов электрических цепей, соединяемых последовательно или параллельно. Порядок вычислений и зависимость всех параметров от закона Ома наглядно показаны на рисунке. Отсюда выводится и формула последовательного соединения.

Более сложные вычисления с участием других величин требуют применения правила Кирхгофа. Его основное положение заключается в том, что несколько последовательно соединенных источников тока, будут обладать электродвижущей силой (ЭДС), составляющей алгебраическую сумму ЭДС каждого из них. Общее сопротивление этих батарей будет состоять из суммы сопротивлений каждой батареи. Если выполняется параллельное подключение n-го количества источников с равными ЭДС и внутренними сопротивлениями, то общая сумма ЭДС будет равно ЭДС на любом из источников. Значение внутреннего сопротивления составит rв = r/n. Эти положения актуальны не только для источников тока, но и для проводников, в том числе и формулы параллельное соединение проводников.

В том случае, когда ЭДС источников будет иметь разное значение, для расчетов силы тока на различных участках цепи применяются дополнительные правила Кирхгофа.

Источник



Формула сопротивления тока для последовательного соединения

Проводники в электрических цепях могут соединяться последовательно и параллельно.

При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:

.

По закону Ома, напряжения и на проводниках равны

.

При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.

Этот результат справедлив для любого числа последовательно соединенных проводников.

При параллельном соединении (рис. 1.9.2) напряжения 1 и 2 на обоих проводниках одинаковы:

.

Сумма токов 1 + 2, протекающих по обоим проводникам, равна току в неразветвленной цепи:

= 1 + 2.

Этот результат следует из того, что в точках разветвления токов (узлы и ) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу за время Δ подтекает заряд Δ, а утекает от узла за то же время заряд 1Δ + 2Δ. Следовательно, = 1 + 2.

При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Этот результат справедлив для любого числа параллельно включенных проводников.

Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 1.9.3 приведен пример такой сложной цепи и указана последовательность вычислений.

Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 1.9.4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.

Цепи, подобные изображенной на рис. 1.9.4, а также цепи с разветвлениями, содержащие несколько источников, рассчитываются с помощью правил Кирхгофа.

Источник

Последовательное и параллельное соединение проводников — формулы и примеры расчетов

Последовательное соединение

При данном типе подключения проводники монтируются один за другим. В результате конец первого является началом второго и т. д. Особенность такого соединения заключается в отсутствии разветвлений. Со свойствами созданной этим способом электроцепи можно познакомиться на примере схемы с двумя потребителями, выключателем и источником питания. Последовательное подсоединение проводников обладает несколькими особенностями:

  • сила тока при последовательном соединении одинакова в любом потребителе;
  • общее напряжение соответствует сумме напряжений на всех нагрузках;
  • сопротивление электроцепи составляют показатели сопротивления каждого потребителя.

Этот тип подключения предполагает возможность использования любого числа нагрузок. На этапе конструирования цепи следует помнить, что показатель общего сопротивления обязательно будет превышать уровень сопротивления отдельного участка. Этот факт объясняется увеличением длины проводов. В результате можно получить формулу для определения сопротивления всей цепи: R = R * n. В ней n равно числу проводников.

Что касается напряжения (U), то этот показатель на любом участке электроцепи будет меньше суммарного показателя в n раз. Например, если в бытовую электросеть с U = 220 В подключить 5 лампочек равной мощности, то напряжение на каждом элементе составит 44 вольта.

Также в процессе конструирования электроцепей важно помнить еще об одной важнейшей особенности последовательного подсоединения. Если в процессе работы выходит из строя даже один проводник, то ток не сможет проходить по всей схеме. Отличным примером, иллюстрирующим это свойство, будет ёлочная гирлянда. Достаточно сгореть одной лампе, и вся конструкция перестанет функционировать. Чтобы обнаружить вышедший из строя элемент, придется проверить всю гирлянду.

Параллельное подключение

Этот тип подсоединения предполагает установку проводников в общих начальных и конечных точках. В результате нагрузки монтируются параллельно, а их количество может быть любым. Для исследования главных свойств такой электроцепи необходимо собрать простую схему, состоящую из источника питания, выключателя и двух ламп. Ко всем нагрузкам также необходимо подключить по амперметру. Еще один прибор этого типа предназначен для измерения показателя общего сопротивления.

Если замкнуть ключ, то измерительные приборы, подсоединенные к нагрузке, покажут значение токовой нагрузки I1 и I2. На общем амперметре в такой ситуации можно будет увидеть суммарное значение токов на каждом из двух участков схемы. Это существенно отличает параллельное соединение от последовательного. В случае если одна нагрузка выходит из строя, то остальные продолжат свою работу. Именно поэтому в бытовых электросетях используется параллельное подсоединение.

Благодаря применению аналогичной схемы, появится возможность определить напряжение при параллельном соединении. Для этого нужно добавить в нее еще один прибор — вольтметр. Полученный с его помощью результат измерения будет общим для любого участка схемы. После этого можно провести расчет параллельного соединения резисторов. Чтобы решить такую задачу, нужно применить закон Ома. Он гласит, что сила тока равна отношению напряжения к сопротивлению.

Это позволяет вывести следующую формулу — U/R = U1/R1 + U2/R2. В ней R и U — показатели суммарного сопротивления и напряжения электроцепи соответственно. U1, U2, R1 и R2 — значения напряжения и сопротивления на первом и втором потребителе. Так как электроток одинаков для всей схемы, то формула для определения сопротивление при параллельном соединении примет вид — 1/R = 1/R1 + 1/R2.

Это говорит о том, что при этом виде подсоединения потребителей сопротивление имеет невысокое значение. Следовательно, токовая нагрузка тока существенно увеличится.

Данный факт необходимо учитывать при подключении к домашней электрической сети большого числа электроприборов. В такой ситуации возможен перегрев проводов.

Основные законы

Проектирование электрических цепей предполагает наличие хороших знаний основных закономерностей последовательного и параллельного подключения нагрузки. Это касается не только закона Ома, но и постулатов Кирхгофа. Эти физики внесли большой вклад в развитие электротехники. Для более простого восприятия основных законов все формулы стоит рассматривать в следующей последовательности:

  • при последовательном соединении через каждый участок цепи протекает ток одинаковой силы;
  • общее сопротивление схемы при последовательном подключении равно сумме сопротивления всех проводников;
  • напряжение в электросети при параллельном подключении одинаково для каждого участка;

В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в узле всегда равна нулю. Благодаря этому, можно получить формулу для нахождения эквивалентного сопротивления цепи, если известно сопротивление каждой нагрузки. Она имеет следующий вид: Ro =R1*R2 / R1+R2.

Для последовательного соединения нагрузок применим второй закон Кирхгофа. Согласно ему, сумма ЭДС в замкнутом электрическом контуре равна сумме падений напряжений на каждой нагрузке. В результате общее сопротивление можно определить с помощью следующей формулы: Ro = R1 + R2.

Также можно рассчитать и индуктивность при различных видах соединения катушек. В случае с последовательным все довольно просто, достаточно использовать следующую формулу: Lo = L1 + L2. По сути, вместо двух элементов можно установить один с соответствующим показателем индуктивности.

При параллельном подсоединении катушек ситуация усложняется, так как возможны три варианта:

  • магнитные поля катушек не пересекаются: Lo = L1 * L2 / L1 + L2;
  • катушки подсоединены в одном направлении и их поля пересекаются: Lo = L1 * L2-М 2 / L1 + L2 — 2 М;
  • пересечение полей наблюдается при встречном подсоединении: Lo = L1 * L2-М 2 / L1 + L2 + 2 М.

Сегодня часто для расчета этих и других показателей, например, емкости конденсатора, можно использовать онлайн-калькулятор.

Особенности применения

Каждый из методов подключения нагрузки нашел свое применение в быту и промышленности. Параллельный способ целесообразно использовать в ситуации, когда электроприбор требуется целенаправленно отключать. Примером здесь может стать электрический звонок, соединенный последовательно с источником питания и кнопкой. В соответствии с этим же принципом работает и ручной фонарик, состоящий из светодиода, ключа и батарейки.

Однако последовательное включение приборов не всегда позволяет решить поставленные задачи. В каждой квартире присутствует большое количество осветительных приборов. Если все их соединить последовательно, то они будут включаться и отключаться одновременно, что требуется крайне редко. Именно люстры принято подключать параллельно. В результате у потребителя появится возможность активировать нужное в данный момент количество ламп. Благодаря этому, достигается требуемая освещенность помещения и экономится электрическая энергия.

В быту чаще всего используется смешенное подключение нагрузок. Этот вид подсоединения проводников является сочетанием параллельного и последовательного соединения. При этом на стадии проектирования электросети крайне важно учитывать все преимущества и недостатки каждого типа подсоединения. Для определения необходимых показателей общую цепь следует разделить на простые участки, а полученные результаты затем суммируются.

Источник

Параллельное соединение резисторов, а также последовательное

Ни одна электрическая схема не обходится без резисторов. Что это такое, для чего он нужен и какими способами их подключают в электрическую цепь рассмотрим подробно.

Что такое резистор и для чего он нужен

Резистор – пассивный элемент электрической цепи, который поглощает энергию тока и преобразовывает её в тепло за счет сопротивления потоку электронов в цепи.

Зависимость тока от сопротивления описывается законом Ома и рассчитывается по формуле I = U/R.

Свойство резисторов ограничивать ток и снижать напряжение используется во многих электронных устройствах и бытовых приборах.

Справка: Резисторы бывают двух видов – постоянные и переменные, во втором случае сопротивление проводника изменяется механическим путем (вручную).

Последовательное и параллельное соединение резисторов – основные способы соединения резистивных элементов.

Внимание! Резистор не имеет полярности, длина выводов с обоих концов одинакова, поэтому для лучшего понимания сути соединения предлагается называть выводы:

  1. С правого края – правый.
  2. С левого края – левый.

Понятие параллельного подключения резисторов

При параллельном подключении правые выводы всех резисторов соединяются в один узел, левые – во второй узел.

паралельное-соединение-резисторов

При параллельном включении резисторов ток в цепь разветвляется по отдельным ветвям, протекая через каждый элемент – по закону Ома величина тока обратно пропорциональна сопротивлению, напряжение на всех элементах одинаковое.

соединение-резисторов

Справка: Ветвь – фрагмент электрической цепи, содержащий один или несколько последовательно соединенных компонентов от узла до узла.

Последовательное подключение

При последовательном соединении резисторы нужно подключить в цепь друг за другом – правый вывод одного резистора к левому второго, правый второго – к левому третьего и так далее в зависимости от количества соединяемых элементов.

Последовательное подключение резисторов

При последовательном соединении ток, не изменяя своей величины, течет через все резистивные элементы.

Последовательное-подключение-резисторов

Смешанное подключение

При смешанном подключении в одной схеме сочетаются несколько видов соединений – последовательное, параллельное соединение резисторов и их комбинации. Самую сложную электрическую схему, состоящую из источников питания, диодов, транзисторов, конденсаторов и других радиоэлектронных элементов можно заменить резисторами и источниками напряжения, параметры которых изменяются в каждый момент времени. О параллельном соединении резистора и конденсатора читайте тут.

Смешанное подключение-резисторов

Смешанная схема делится на фрагменты, ток и напряжение рассчитывается для каждого отдельно в зависимости от того, как они соединены на выбранном сегменте электрической схемы.

Важно! Для расчета сопротивления резистора в схеме применяют отдельные формулы для каждого конкретного элемента в зависимости от вида соединения.

Что ещё нужно учитывать при подключении резисторов

Важный показатель в работе резистивного элемента мощность рассеивания – переход электрической энергии в тепловую, вызывающую нагрев элемента.

При превышении допустимой мощности рассеивания резисторы будут сильно греться и могут сгореть, поэтому при расчете схем соединения надо учитывать этот параметр – важно знать насколько изменится мощность резистивных элементов при включении в электрическую цепь.

Какая мощность тока при последовательном и параллельном соединении

Определение мощности отдельного резистивного элемента производится по формуле

P = U²/R или P = I²R , которую можно вывести из формулы расчета мощности электрической цепи P = UI по закону Ома.

Мощность при параллельном соединении

Рассчитав сопротивление каждого элемента в отдельности, считаем мощность каждого по формуле P = I²R, где

  • R – не номинальное сопротивление резистивного элемента, а рассчитанное для данной цепи;
  • I – сила тока в цепи.

При параллельном соединении через меньший резистор протекает больший ток – мощность рассеивания на этом резистивном элементе будет больше, чем на остальных.

Важно! При расчете параллельной цепи следует учитывать мощность сопротивления с самым маленьким номиналом.

Мощность при последовательном соединении

Вычислив сопротивление каждого резистивного элемента по отдельности, рассчитываем мощность каждого по формуле P = U²/R, где

  • R – рассчитанное нами сопротивление для определенной схемы;
  • U – падение напряжения на данном резистивном элементе.

Справка: Полную мощность цепи при последовательном и параллельном соединении можно найти, сложив вычисленные мощности отдельных элементов, входящих в цепь Pобщ = P1+P2+P3+…+Pn.

Как правильно рассчитать сопротивление

Применяется закон Ома для участка цепи – расчет сопротивления делается по формуле R = U/I, где

  • U – падение напряжение на конкретном резистивном элементе;
  • I – ток, протекающий через него.

При последовательном соединении

Для двух элементов считаем Rобщ = R1+R2.

Для нескольких сопротивлений разного номинала Rобщ = R1+R2+R3+…+Rn.

При параллельном соединении

Расчет для двух резисторов делаем по формуле Rобщ = (R1×R2)/(R1+R2).

Сопротивление параллельных резисторов с разным номиналом рассчитываем по формуле

Для элементов, соединенных в параллель, суммарное сопротивление всегда ниже наименьшего номинального.

Как рассчитать сложные схемы соединения резисторов

Сложные схемы рассчитываются путем группировки по параллельному и последовательному способу соединения.

Смешанное подключение-резисторов

Перед нами сложная схема – задача рассчитать общее сопротивление:

  1. R2, R3, R4 объединим в последовательную группу – применим формулу R2,3,4 = R2+R3+R4.
  2. R5 и R2,3,4 – параллельно соединенные резисторы, рассчитаем R5,2,3,4 = 1/ (1/R5+1/R2,3,4).
  3. R5,2,3,4, R1, R6 опять объединяем в последовательную группу – суммируя величины, получаем Rобщ = R5,2,3,4+R1+R6.

Для больших схем существуют специальные методы, облегчающие расчет. Один из таких методов – эквивалентное преобразование «треугольника» в «звезду». Такая система расчета применяется в том случае, когда невозможно по схеме определить последовательное или параллельное подключение резисторов.

Преобразование «звезда-треугольник»

Для соединения резистивных элементов, кроме вышеописанных способов, существует несколько других видов соединения:

  • «звезда» – соединение трех ветвей с одним общим узлом;
  • «треугольник» – соединение ветвей схемы в виде треугольника, сторонами которого служат ветви, вершины представляют узлы.

Справка: Узел – точка, в которой соединяются три и более проводника электрической цепи.

Эквивалентность замены предполагает стабильность токов, входящих в каждый узел, при одинаковых напряжения между одноименными узлами «треугольника» и «звезды».

Сопротивление резистора луча «звезды»

Сопротивление резистора луча «звезды» равно произведению сопротивлений резисторов прилегающих сторон «треугольника», деленному на сумму сопротивлений резисторов трех сторон «треугольника».

Сопротивление резисторов сторон «треугольника» равно сумме произведения сопротивлений резисторов двух прилегающих лучей «звезды», деленного на сопротивление третьего луча.

формулы рассчета звезды резисторов

О разнице подключения звезда и треугольник читайте здесь.

Чему равна сила тока в цепи при параллельном соединении резисторов

Согласно правилу Кирхгофа ток, поступающий в узел, равен току, выходящему из узла, – величина тока до группы параллельных резисторов и после нее должна быть неизменной.

Ток в группе параллельных резисторов распределяется по цепи в зависимости от их номинала, после прохождения через сопротивления суммируется в узле и выходит из него неизменным I = I1+I2+I3+…+In.

Как определить величину эквивалентного сопротивления при последовательном соединении резисторов

Справка: Эквивалентом сопротивления называется замена части схемы, состоящей из нескольких резистивных элементов, одним элементом.

Для последовательного соединения эквивалентное сопротивление равно сумме сопротивлений резисторов, включенных в группу, для расчета применяется формула Rэкв = R1+R2+…+Rn.

Например: Нужно посчитать эквивалентное сопротивление данной схемы.

Смешанное подключение-резисторов

Решение задачи производится путем разделения резистивных элементов на системные группы.

Выделяем первую группу из последовательно соединенных элементов – R2, R3, R4.

сложная-схема-подключения-резисторов

Выделяем вторую группу из последовательных элементов R1, R5, R6.

сложная_схема_подключения_резисторов

Получаем величину двух эквивалентных сопротивлений Rобщ1 и Rобщ2, соединенных параллельно.

Делаем расчет всей схемы Rэкв= Rобщ1× Rобш2/ (Rобщ1+ Rобщ2).

Зная способы соединения и формулы расчета можно рассчитать любую сложную схему соединения резистивных элементов, однако существует множество онлайн калькуляторов, которые сделают это быстрей человека, достаточно только ввести нужные параметры компонентов схемы.

Источник

Читайте также:  Генератор не выдает нужный ток