Меню

Физические процессы в электрических цепях постоянного тока кратко

Электротехника. Расчет цепей в задачах курсового расчета

Электрической цепью называется совокупность технических устройств, образующих пути для замыкания электрических токов и предназначенных для производства, передачи, распределения и потребления электрической энергии. Любая электрическая цепь предполагает наличие в своей структуре как минимум трех элементов, а именно: источников энергии, приемников энергии и соединяющих их проводов или линий электропередачи. Как известно, носителем энергии является электромагнитное поле, которое сосредоточено как внутри так и вне проводов. Таким образом, для рассмотрения физических явлений в электрической цепи во всей полноте необходимо проводить расчет и исследование электромагнитного поля заданной цепи. При физическом решении этой задачи пользуются дифференциальными понятиями и параметрами, характеризующими электромагнитное поле в рассматриваемой точке, такими как ` Е, ` Н, ` d , ` В, ` D, m , g , e . Математическое описание электромагнитных полей на основе дифференциальных понятий оказывается сложной задачей.

Электрическая цепь состоит, как правило, из отдельных однородных участков. В этом случае предоставляется возможность с достаточной для инженерных расчетов точностью описывать процессы на отдельных участках с помощью интегральных понятий:

электродвижущая сила (ЭДС) источника энергии;

электрическое напряжение;

электрический ток;

электрический заряд;

магнитный поток;

электрическое сопротивление.

Применение интегральных понятий к расчетам электрических цепей позволяет получать сравнительно простые решения задач с допустимой методической погрешностью.

В каждой реальной электрической цепи можно одновременно наблюдать следующие физические процессы:

1) процесс генерирования электрической энергии, который происходит в источниках (генераторах) в результате преобразования одного из видов энергии (механической, химической и др.) в электрическую;

2) процесс преобразования электрической энергии в другие виды, который протекает в приемниках энергии;

3) процесс накопления (или возврата) энергии в объеме магнитного поля:

4) процесс накопления (или возврата) энергии в объеме электрического поля:

Перечисленные физические процессы в том или другом сочетании присущи всем элементам электрической цепи, протекают одновременно и связаны между собой законом сохранения энергии.

При расчете режима электрической цепи она представляется некоторой условной схемой или схемой замещения, состоящей из комбинации идеальных схемных элементов. Каждый идеальный схемный элемент отображает на схеме один из физических процессов. Таких схемных элементов всего 5.

1) Идеальный источник напряжения (ЭДС) Е — это схемный элемент, который генерирует на своих выводах постоянную по величине ЭДС (Е=const), не зависящую от тока, имеет символьное обозначение, показанное на рис. 5а, характеризуется напряжением [В].

2) Идеальный источник тока J — это схемный элемент, который генерирует в цепи постоянный по величине ток (J=const), не зависящий от напряжения на его зажимах, имеет символьное обозначение, показанное на рис. 5б, характеризуется током [A].

3) Идеальный резистор R – это схемный элемент, в котором происходит только процесс преобразования электрической энергии в другие виды, имеет символьное обозначение, показанное на рис. 5в, характеризуется сопротивлением [Ом].

4) Идеальная катушка индуктивности L – это схемный элемент, в котором происходит только процесс накопления (или возврата) энергии в магнитном поле (WM=Li2/2), имеет символьное обозначение, показанное на рис. 5г, характеризуется индуктивностью [Гн].

5) Идеальная конденсатор С – это схемный элемент, в котором происходит только процесс накопления (или возврата) энергии в электрическом поле (WЭ=Сu2/2), имеет символьное обозначение, показанное на рис. 5д, характеризуется емкостью [Ф].

Каждый элемент электрической цепи на схеме замещения представляется одним или комбинацией из нескольких идеальных схемных элементов в зависимости от необходимости учета тех физических процессов, которые в нем протекают. Например, лампа накаливания представляется на схеме только одним схемным элементом резистором R, так как тепловая и световая энергия многократно больше энергии электромагнитного поля (рис. 6а), обмотка электромагнитного реле представляется на схеме комбинацией из двух элементов – R и L (рис. 6б), а протяженная двухпроводная линия – комбинацией из 6-и схемных элементов, которые комплексно учитывают физические процессы в ней (рис. 6в).

При составлении схемы замещения электрической цепи всегда пренебрегают второстепенными физическими процессами и явлениями, не оказывающими существенного влияния на точность технического расчета режима. Поэтому любая схема замещения реальной цепи отображает физические процессы в ней с некоторой степенью приближения.

Энергия от источника переносится приемнику электромагнитным полем со скоростью распространения волны. Для воздушных линий электропередачи эта скорость близка к скорости света с=300000 км/с, для кабельных линий она чуть меньше . Таким образом, электромагнитная волна за единицу времени (1 сек) многократно пробегает путь от источника энергии до приемника.

Согласно закону сохранения энергии в любой электрической цепи за любой промежуток времени T должен выполняться баланс между генерируемой и потребляемой энергией: å Wист= å Wпр. Количество энергии, за единицу времени (1сек), называется мощностью, следовательно, в любой цепи существует баланс между мощностью источников и приемников: å Рист= å Рпр.

В любой энергосистеме, состоящей из электростанций, линий электропередачи и потребителей электроэнергии в любой момент времени существует динамическое равновесие между суммарными мощностями источников и приемников электрической энергии, при этом источники энергии должны постоянно приспосабливаться к изменяющимся запросам потребителя. Электростанции в энергосистеме работают без промежуточного склада готовой продукции!

Источник



Процессы в электрических цепях

Электрической цепью есть набор приспособлений, что формируют путь протекания электрического тока, и предназначением которых есть выработка, распределение и потребление электроэнергии.

К составу электрической цепи относится набор обязательных элементов:

  • источники электроэнергии;
  • приемники электроэнергии;
  • провода, соединяющие предыдущие компоненты в контур.

Физические процессы в электрических цепях

Переносчиком энергии есть электромагнитное поле, находящееся внутри и вокруг проводов. Потому при изучения физических процессов, имеющих место в электрической цепи, нужно в полной мере рассматривать электромагнитное поле данной цепи.

Для проведения расчетов и изучения электромагнитного поля электрической цепи применяют понятие дифференциала и параметры электромагнитного поля в конкретной точке исследования. Описать математически параметры электромагнитного поля является задачей не из легких.

Зачастую электрические цепи включают отдельные однородные участки. Благодаря этому представляется возможным описать параметры электромагнитного поля для них. При этом применяются математические интегральные величины.

ЭДС источника электроэнергии рассчитывается так:

\(e_a b=\int\limits_a^bE_c торdl\)

Формула для вычисления напряжения запишется так:

Формула для расчета силы тока:

\(I=\int\limits_S^\Box \overrightarrow<σ>\overrightarrow \) I

Формула для определения электрического заряда:

Для расчета магнитного потока формула имеет следующий вид:

Для расчета электрического сопротивления используют следующее выражение:

Так как для расчета электрических цепей используют интегральные величины, становится возможным относительно простой расчет с получением параметров с небольшими неточностями.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Для любой электрической цепи характерно одновременное протекание таких физических процессов:

  • генерирование электрической энергии. Данный процесс имеет место в генераторах посредством трансформации каких-либо видов энергии в электрическую. Например, механической, химической, тепловой и прочих;
  • преобразование электроэнергии в прочие виды энергии. Подобные процессы имеют место в приемниках;
  • возвращение или накапливание электроэнергии в магнитном поле:
    \(W_M=\int_a^\Box < <1>\over 2> μμ_0 H^2 dV_2; \)
  • возвращение или накапливание электроэнергии в электрическом поле:
    \(W_Э=\int_V^\Box < <1>\over 2> μμ_0 H^2 dV. \)

Все вышеназванные процессы характерны для всех компонентов электрической цепи и производятся в один момент, подчиняясь законам сохранения энергии.

Для расчета физических процессов в электрических цепях их представляют, как условные схемы, состоящие из идеальных компонентов. При этом каждый из них будет соответствовать определенному процессу. К данным элементам относятся пять компонентов:

  1. Идеальный источник ЭДС \(E\) . Этот компонент производит постоянную ЭДС, которая не зависима от силы тока и описывается напряжением.
  2. Идеальный источник электрического тока \(I\) . Этот компонент производит постоянный электрический ток. Эта величина не зависима от напряжения и описывается током.
  3. Идеальный резистор \(R\) . Этот компонент выполняет функцию преобразования электроэнергии в прочие виды энергии. Он обозначается символически и описывается сопротивлением.
  4. Идеальная катушка индуктивности \(L\) . Данный компоненте цепи отвечает за возвращение или накапливание электроэнергии в магнитном поле. Он описывается индуктивностью.
    \(W_M= <\over 2> \)
  5. Идеальный конденсатор \(C\) . Этот компоненте цепи отвечает за возвращение или накапливание электроэнергии в электрическом поле. Он описывается емкостью.
    \(W_Э= <<Сu^2>\over 2> \)

Все компоненты цепи отображаются посредством одного или двух идеальных компонентов, в зависимости от того, какие именно процессы нужно рассчитать.

Переходные процессы в электрических цепях

Под влиянием различных факторов в электрических цепях происходят переходные процессы. Подобное влияние способствует переходу электрических цепей из устоявшихся состояний в какие-то новые. Источниками таких воздействий может быть коммутационная аппаратура, подключение или отключение источников и прочее.

К примеру, если есть электрическая цепь с источником напряжения \(U_0\) , к ней подключить разряженный конденсатор \(C\) через резистор \(R\) , то напряжение в конденсаторе изменится от нуля до \(U_0\) согласно закону:

где \(τ=RC\) – постоянная времени.

Анализируя процессы в электрических цепях, сталкиваются с их разновидностями. Они бывают переходными и стационарными (установившимися).

Стационарными есть такие процессы, при которых значения напряжений и токов остаются постоянными на отдельных участках.

Для стационарных процессов характерен повтор мгновенных значений токов и напряжений в разветвлениях. При этом токи, напряжения и структура цепи неизменны. Для установившихся процессов характерна зависимость напряжений и токов от разновидностей внешних воздействий и характеристик самой цепи.

Переходным есть процесс в электрической цепи, проявляющийся при ее переходе от одного состояния в другое, что отличается от предыдущего хотя бы одни параметром. Напряжения и токи при таком переходе называют переходящими.

Стационарный режим может изменяться из-за внешних сигналов, например, включения или выключения внешних или внутренних источников влияния.

Коммутацией есть любая перемена в электрической цепи, активизирующая процесс перехода.

Коммутацией в электрических цепях есть процесс переключения элементов электрической цепи или отключение полупроводникового устройства.

Все переходные процессы на практике являются быстропротекающими. Они могут протекать за тысячные доли секунды. В очень редких случаях они могут длиться секунду и более.

При этом рождается вопрос, а есть ли смысл обращать внимание на столь быстротечные процессы? На данный вопрос в каждом конкретном случае будет свой ответ, так как роль каждого из таких процессов может быть различна по степени важности. Переходные процессы особо важное значение имеют в устройствах усиливающих, преобразовывающих и формирующих импульсные сигналы, продолжительность которых равна длительности таких переходных процессов.

Переходные процессы есть основной причиной изменения импульсных сигналов при пересечении ими электрических цепей. Анализирование и вычисление параметров автоматических устройств, непрерывно осуществляющих преобразования электрических цепей, невозможно без переходных процессов.

При этом, для некоторых устройств переходные процессы являются крайне нежелательными. Рассчитывая переходные процессы, определяют потенциальную возможность перенапряжения и резкого роста электрического тока, что является очень важным в электрических цепях большой емкости и индуктивности.

Не нашли что искали?

Просто напиши и мы поможем

Причины проявления переходных процессов в электрических цепях

Проявление переходных процессов непосредственно зависит от особенностей преобразования энергетических запасов реактивных элементов электрической цепи. Энергию, накапливающуюся в магнитном поле индукции, по которому течет ток, выражают так:

Энергию, накапливающуюся в электрическом поле конденсатора, заряженного до напряжения U_C, выражают формулой:

Так как запас магнитной энергии \(W_L\) зависит от электрического тока катушки \(i_L\) , а электрической энергии \(W_C\) – от напряжения конденсатора \(u_C\) , то при самых разных коммутациях наблюдается ключевое правило: напряжение конденсатора и ток катушки не меняются скачкообразно. Другими словами, их изменение происходит плавно.

Согласно понятиям физики, переходными процессами есть процессы перехода цепи из докоммутационного энергетического режима в послекоммутационный. Каждый стационарный процесс в электрической цепи характеризуется определенными значениями магнитной и электрической энергии.

При каждом переходе от одного состояния к другому наблюдается уменьшение или увеличение энергии полей, что способствует процессу перехода, который заканчивается лишь при завершении преобразования энергии. Если в процессе коммутации энергия в цепи не меняется, то переход не происходит.

Процесс перехода при коммутации возможен только тогда, когда происходит изменение стационарного режима цепи с элементами, аккумулирующими энергию.

Процессы перехода могут быть спровоцированы:

  • включением или отключением электрической цепи;
  • коротким замыканием элементов или участков цепи;
  • подсоединением или отсоединением отдельных элементов или целых ветвей.

Также нужно сказать, что процессы перехода имеют место под влиянием на электрическую цепь импульсных сигналов.

Источник

Электрические цепи постоянного тока. Электрические цепи и ее элементы

Электрические цепи и ее элементы

Электрической цепью постоянного тока называют совокупность устройств и объектов: источников электрической энергии, преобразователей, потребителей, коммутационной, защитной и измерительной аппаратуры, соединительных проводов или линии электропередачи.

Электрические и электромагнитные процессы в этих объектах описываются с помощью понятий об электродвижущей силе (ЭДС — E), токе (I) и напряжении (U).

Элементы цепи можно разделить на три группы:

1) элементы, предназначенные для генерирования электроэнергии (источники энергии, источники ЭДС);

2) элементы, преобразующие электроэнергию в другие виды энергии: механическую, тепловую, световую, химическую и т.д. (эти элементы называются приемниками электрической энергии или потребителями);

3) элементы, предназначенные для передачи электрической энергии от источника к приемникам (линии электропередачи, соединительные провода); элементы, обеспечивающие уровень и качество напряжения и т.д.

Источники питания цепи постоянного тока – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термо- и фотоэлементы и др.

Электрическими приемниками или потребителями постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др. Все электоприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение. По ГОСТ 721-77 напряжение равно 27, 110, 220, 440 В, так же 6, 12, 24, 36 В.

Коммутационная аппаратура служит для подключения потребителей к источникам, то есть для замыкания и размыкания источников электроцепи.

Защитная аппаратура предназначена для размыкания цепи в аварийных ситуациях.

Измерительная аппаратура предназначена для замера тока, напряжения и других электрических величин.

Линии электропередачи используются, когда источники и потребители удалены друг от друга на большие расстояния. Соединительные провода предназначены для соединения между собой зажимов или электродов элементов электрической цепи.

Активные и пассивные элементы

Элемент называется пассивным, если он не может вызывать протекание тока, то есть если он не создает тока или ЭДС. Если собрать несколько пассивных элементов (резисторы, конденсаторы, катушки индуктивности) в электрическую цепь, то ток в цепи не потечет.

Элемент, который создает ЭДС и вызывает протекание тока, называется активным (источники электроэнергии).

Линейные и нелинейные цепи

Электрическая цепь называется линейной, если электрическое сопротивление или другие параметры участков, не зависят от значений и направлений токов и напряжений. Электрические процессы линейной цепи описываются линейными алгебраическими и дифференциальными уравнениями.

Если электрическая цепь содержит хотя бы один нелинейный элемент, то она является нелинейной.

Топологические элементы электрической цепи.

Графическое изображение электрической цепи называется электрической схемой. Электрическая схема включает: узлы, ветви, контуры.

Ветвь – совокупность элементов, соединенных последовательно. По ветви протекает один и тот же ток.

Узел – точка соединения трех или более ветвей.

Контур – совокупность ветвей, при обходе которых осуществляется замкнутый путь.

Простейшая электроцепь имеет один контур с одной ветвью и не имеет узлов. Сложные электроцепи имеют несколько контуров.

Положительные направления тока, напряжения и ЭДС.

Чтобы правильно записать уравнения, описывающие процессы в электрических цепях, и произвести анализ этих процессов, необходимо задать условные положительные направления ЭДС источников питания, тока в элементах или ветвях цепи и напряжения на зажимах элементов цепи или между узлами цепи.

Внутри источника ЭДС постоянного тока положительным является направление ЭДС от отрицательного полюса к положительному полюсу. Это соответствует определению ЭДС как величины, характеризующей способность сторонних сил вызывать электрический ток.

По отношению к источнику ЭДС все элементы цепи составляют внешний участок цепи.

За положительное направление тока в цепи принимают направление, совпадающее с направлением ЭДС. Во внешней цепи положительным является направление от положительного полюса источника к отрицательному полюсу. В электронной теории – направление совпадает с направлением положительно заряженных частиц.

Условным положительным направлением падения напряжения (или просто напряжения) на элементах цепи или между двумя узлами цепи принимают направление, совпадающее с условно положительным направлением тока в этом элементе или в этой ветви. Положительное направление напряжения на зажимах источника ЭДС всегда противоположно положительному направлению ЭДС.

Действительные направления электрических величин, определяемые расчетом, могут совпадать или не совпадать с условными направлениями. При расчетах если определено, что ток, ЭДС и напряжения положительны, то их действительные направления совпадают с условно принятыми положительными направлениями, если отрицательны, то не совпадают.

Основные законы электрической цепи

Условное обозначение параметров в цепях постоянного и переменного тока.

i – переменный ток; I – постоянный ток;

u – переменное напряжение; U – постоянное напряжение;

e – переменная ЭДС; E – постоянная ЭДС;

Напряжение U на зажимах потребителя прямо пропорционально сопротивлению R и току I , проходящему через него

Но выражение не является следствием закона Ома, так как сопротивление R=const и не зависит от тока и напряжения, протекающего через сопротивление.

Если ввести понятие проводимость G,то , .

Размерность сопротивления R – Ом (Ом), проводимости G – сименс (См).

Первый закон Кирхгофа

Алгебраическая сумма токов сходящихся в узле равно нулю.

где n – число ветвей, сходящихся в узле.

До написания уравнения необходимо задать условные положительные направления токов в ветвях, обозначив эти направления на схеме стрелками. Токи, направленные к узлу, записываются со знаком плюс, а токи, направленные от узла, со знаком минус.

Например: I1=5 A

Иначе первый закон Кирхгофа может быть сформулирован: сумма токов, втекающих в узел, равна сумме токов, вытекающих из узла:

Второй закон Кирхгофа

Отражает физическое положение, состоящее в том, что изменение потенциала во всех элементах контура в сумме равно нулю.

Алгебраическая сумма ЭДС в любом контуре электрической цепи постоянного тока равна алгебраической сумме падений напряжений на всех сопротивлениях, входящих в этот контур.

где n – число ЭДС в контуре; m – число сопротивлений в контуре.

При составлении уравнений по второму закону Кирхгофа предварительно задают условные положительные направления токов во всех ветвях электрической цепи и для каждого контура выбирают направление обхода. Если при этом направление ЭДС совпадает с направлением обхода контура, то такую ЭДС берут со знаком плюс, если не совпадает – со знаком минус. Падение напряжения со знаком плюс, если положительное направление тока в данном элементе цепи совпадает с положительным направление обхода контура, а со знаком минус, если такого совпадения нет.

Иная формулировка второго закона Кирхгофа – сумма падений напряжений на всех элементах контура, включая источник ЭДС, равна нулю:

Если в ветви имеется n последовательно соединенных элементов с сопротивлением Rk, то

То есть падение напряжения на участке цепи или напряжение между зажимами ветви, состоящей из последовательно соединенных элементов, равно сумме падений напряжений на этих элемента.

Режимы работы электрической цепи

Элементами цепи являются конкретные электрические устройства, которые могут работать в различных режимах. Режимы работы как отдельных элементов, так и всей цепи характеризуются значениями тока и напряжения, следовательно, таких режимов может быть множество.

Идеальные и реальные источники ЭДС и тока

Идеальным называется источник ЭДС, напряжение, на зажимах которого не зависит от тока протекающего через него. Внутреннее сопротивление такого источника (R=0) равно нулю. Во всех практических случаях реальные источники ЭДС (или источники питания) не являются идеальными, так как обладают внутренним сопротивлением ( ).

Пусть источник характеризуется постоянными ЭДС ( E=const) и внутренним сопротивлением (R=const). По второму закону Кирхгофа можно записать:

где RI=U – напряжение на зажимах внешней цепи; RI – падение напряжения внутри источника ЭДС. Одновременно напряжение U является напряжением на зажимах источника, следовательно:

Это уравнение, описывающее напряжение во внешней цепи от тока в ней (U=f(I)), является уравнением внешней характеристики источника ЭДС. Это уравнение является линейным.

Различают следующие режимы: режим холостого хода, режим короткого замыкания и номинальный режим.

Режим холостого хода – это режим, при котором ток в цепи равен нулю I=0, что имеет место при разрыве цепи. В режиме холостого хода U=E. Вольтметр при этом измеряет ЭДС источника.

Режим короткого замыкания – это режим, когда сопротивление приемника равно нулю:

Номинальный режим — расчетный режим, при котором потребитель работает в условиях указанных в паспорте. Номинальные значения тока напряжения и мощности соответствуют выгодным условиям работы устройства с точки зрения экономичности, надежности, долговечности и т.д.

Ток короткого замыкания может достигать больших величин, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным режимом.

Согласованный режим источника ЭДС и внешней цепи имеет место, когда сопротивление внешней цепи равно внутреннему сопротивлению источника (R=R0). В этом случае

Идеальный источник тока – тот источник, у которого создаваемый ток не зависит от напряжения на его зажимах, то есть его внутреннее сопротивление или его внутренняя проводимость . У реального источника проводимость не равна нулю . Расчет такой цепи ведется с учетом внутренней проводимости источника тока: I=I-GU, I=f(U).

Источник

Примеры расчета электрических и магнитных цепей

Физические процессы в электрической цепи

Электрической цепью называется совокупность технических устройств, образующих пути для замыкания электрических токов и предназначенных для производства, передачи, распределения и потребления электрической энергии. Любая электрическая цепь предполагает наличие в своей структуре как минимум трех элементов, а именно: источников энергии, приемников энергии и соединяющих их проводов или линий электропередачи. Как известно, носителем энергии является электромагнитное поле, которое сосредоточено как внутри так и вне проводов. Таким образом, для рассмотрения физических явлений в электрической цепи во всей полноте необходимо проводить расчет и исследование электромагнитного поля заданной цепи. При физическом решении этой задачи пользуются дифференциальными понятиями и параметрами, характеризующими электромагнитное поле в рассматриваемой точке, такими как ` Е, ` Н, ` d , ` В, ` D, m , g , e . Математическое описание электромагнитных полей на основе дифференциальных понятий оказывается сложной задачей.

Ответы на билеты к экзамену по физике Физика. Примеры решения задач контрольной работы

Электрическая цепь состоит, как правило, из отдельных однородных участков. В этом случае предоставляется возможность с достаточной для инженерных расчетов точностью описывать процессы на отдельных участках с помощью интегральных понятий:

электродвижущая сила (ЭДС) источника энергии;

электрическое напряжение;

электрический ток;

электрический заряд;

магнитный поток;

электрическое сопротивление.

Применение интегральных понятий к расчетам электрических цепей позволяет получать сравнительно простые решения задач с допустимой методической погрешностью.

В каждой реальной электрической цепи можно одновременно наблюдать следующие физические процессы:

1) процесс генерирования электрической энергии, который происходит в источниках (генераторах) в результате преобразования одного из видов энергии (механической, химической и др.) в электрическую;

2) процесс преобразования электрической энергии в другие виды, который протекает в приемниках энергии;

3) процесс накопления (или возврата) энергии в объеме магнитного поля:

4) процесс накопления (или возврата) энергии в объеме электрического поля:

Перечисленные физические процессы в том или другом сочетании присущи всем элементам электрической цепи, протекают одновременно и связаны между собой законом сохранения энергии.

При расчете режима электрической цепи она представляется некоторой условной схемой или схемой замещения, состоящей из комбинации идеальных схемных элементов. Каждый идеальный схемный элемент отображает на схеме один из физических процессов. Таких схемных элементов всего 5.

1) Идеальный источник напряжения (ЭДС) Е — это схемный элемент, который генерирует на своих выводах постоянную по величине ЭДС (Е=const), не зависящую от тока, имеет символьное обозначение, показанное на рис. 5а, характеризуется напряжением [В].

2) Идеальный источник тока J — это схемный элемент, который генерирует в цепи постоянный по величине ток (J=const), не зависящий от напряжения на его зажимах, имеет символьное обозначение, показанное на рис. 5б, характеризуется током [A].

3) Идеальный резистор R – это схемный элемент, в котором происходит только процесс преобразования электрической энергии в другие виды, имеет символьное обозначение, показанное на рис. 5в, характеризуется сопротивлением [Ом].

4) Идеальная катушка индуктивности L – это схемный элемент, в котором происходит только процесс накопления (или возврата) энергии в магнитном поле (WM=Li2/2), имеет символьное обозначение, показанное на рис. 5г, характеризуется индуктивностью [Гн].

5) Идеальная конденсатор С – это схемный элемент, в котором происходит только процесс накопления (или возврата) энергии в электрическом поле (WЭ=Сu2/2), имеет символьное обозначение, показанное на рис. 5д, характеризуется емкостью [Ф].

Каждый элемент электрической цепи на схеме замещения представляется одним или комбинацией из нескольких идеальных схемных элементов в зависимости от необходимости учета тех физических процессов, которые в нем протекают. Например, лампа накаливания представляется на схеме только одним схемным элементом резистором R, так как тепловая и световая энергия многократно больше энергии электромагнитного поля (рис. 6а), обмотка электромагнитного реле представляется на схеме комбинацией из двух элементов – R и L (рис. 6б), а протяженная двухпроводная линия – комбинацией из 6-и схемных элементов, которые комплексно учитывают физические процессы в ней (рис. 6в).

При составлении схемы замещения электрической цепи всегда пренебрегают второстепенными физическими процессами и явлениями, не оказывающими существенного влияния на точность технического расчета режима. Поэтому любая схема замещения реальной цепи отображает физические процессы в ней с некоторой степенью приближения.

Энергия от источника переносится приемнику электромагнитным полем со скоростью распространения волны. Для воздушных линий электропередачи эта скорость близка к скорости света с=300000 км/с, для кабельных линий она чуть меньше . Таким образом, электромагнитная волна за единицу времени (1 сек) многократно пробегает путь от источника энергии до приемника.

Согласно закону сохранения энергии в любой электрической цепи за любой промежуток времени T должен выполняться баланс между генерируемой и потребляемой энергией: å Wист= å Wпр. Количество энергии, за единицу времени (1сек), называется мощностью, следовательно, в любой цепи существует баланс между мощностью источников и приемников: å Рист= å Рпр.

В любой энергосистеме, состоящей из электростанций, линий электропередачи и потребителей электроэнергии в любой момент времени существует динамическое равновесие между суммарными мощностями источников и приемников электрической энергии, при этом источники энергии должны постоянно приспосабливаться к изменяющимся запросам потребителя. Электростанции в энергосистеме работают без промежуточного склада готовой продукции!

Теоремы и методы расчета сложных резистивных цепей

1. Основные определения

Узлом электрической цепи (схемы) называется точка, в которой сходятся не менее трех ветвей.

Ветвью электрической цепи (схемы) называется участок, состоящий из последовательно включенных элементов, расположенных между двумя смежными узлами.

Сложной называется электрическая цепь (схема), содержащая не менее двух узлов, не менее трех ветвей и не менее двух источников энергии в разных ветвях.

В сложной электрической цепи наблюдаются одновременно в той или иной мере разнородные физические процессы, а именно, процесс генерирования электрической энергии, процесс преобразования электрической энергии в другие виды и процесс обмена энергией между магнитным полем, электрическим полем и источниками энергии. В общем случае для отображения этих физических процессов схема замещения цепи должна содержать кроме источников энергии (E, J) все разнородные схемные элементы (R, L, C). Математически физические процессы в такой схеме можно описать системой дифференциальных уравнений, составленных для схемы замещения по законам Кирхгофа.

В стационарном режиме (в режиме постоянного тока) напряжение на катушке равно нулю ( ), что соответствует короткому замыканию этого элемента, а при постоянном напряжении ток в конденсаторе равен нулю ( ), что соответствует разрыву ветви с этим элементом. Следовательно, на установившийся режим постоянного тока схемные элементы L и C не оказывают влияния и могут быть исключены из схемы замещения (участки с L закорочены, а ветви с C удалены). Цепи постоянного тока представляются эквивалентными схемами, содержащими только постоянные источники энергии E, J и резистивные элементы R. Такие схемы получили название резистивных или постоянного тока. Установившийся режим постоянного или переменного тока в таких схемах описывается системой линейных алгебраических уравнений, составленных по законам Кирхгофа.

В настоящей главе будут рассматриваться только резистивные цепи в режиме постоянного тока. В последующем рассмотренные в данной главе теоремы и методы расчета будут распространены на цепи переменного тока в установившемся синусоидальном режиме.

2. Метод преобразования (свертки) схемы

Если схема электрической цепи содержит только один источник энергии (E или J), то пассивная часть схемы может быть преобразована (свернута) к одному эквивалентному элементу RЭ ( рис. 7).

Свертка схемы начинается с самых удаленных от источника ветвей, проводится в несколько этапов до достижения полной свертки. После полной свертки схемы определяется ток источника по закону Ома: . Токи в остальных элементах исходной схемы находятся в процессе обратной развертки схемы. Такой метод расчета токов получил название метода последовательного преобразования (свертки) схемы.

При применении данного метода возможны следующие виды преобразований.

1) Последовательное преобразование заключается в замене нескольких элементов, включенных последовательно, одним эквивалентным (рис. 8). Несложно доказать, что при этом справедливы следующие соотношения:

и

2) Параллельное преобразование состоит в замене нескольких элементов, включенных параллельно, одним эквивалентным (рис. 9). Несложно доказать, что при этом справедливы следующие соотношения:

и

Для двух элементов: и

3) Взаимное преобразование схем звезда — треугольник (рис. 10) возникает при свертке сложных схем.

Условием эквивалентности двух схем являются равенства для них токов (I1, I2, I3), напряжений (U12, U23, U31) и входных сопротивлений (R12, R23, R31) и соответственно входных проводимостей ( G12, G23, G31).

Приравняем входные сопротивления для обеих схем со стороны двух произвольных ветвей при отключенной третей (рис. 10):

(1)

(2)

(3)

Сложим почленно уравнения (1) и (3) и вычтем из суммы уравнение (2), получим:

, по аналогии: , .

Приравняем входные проводимости для обеих схем со стороны произвольной вершины и двух других вершин, замкнутых накоротко (рис. 11):

(4)

(5)

(6)

Сложим почленно уравнения (4) и (5) и вычтем уравнение (6), получим:

, по аналогии: , .

В последних уравнениях заменим проводимости на соответствующие им сопротивления , получим:

; ; .

При наличии полной симметрии соотношение между параметрами эквивалентных схем составляет: .

4) Замена параллельных ветвей эквивалентной ветвью (рис. 12) осуществляется согласно теореме об эквивалентном генераторе.

Напряжение холостого хода Uxxab= EЭ определяется по методу двух узлов:

.

Эквивалентное входное сопротивление находится методом свертки схемы:

.

5) Перенос источника ЭДС через узел схемы: источник ЭДС Е можно перенести через узел во все ветви, отходящие от узла (рис. 13а, б.):

6) Привязка источника тока к произвольному узлу согласно схеме (рис. 14а, б):

7) Взаимное преобразование схем с источником напряжения и с источником тока согласно схеме (рис. 15а, б). Схемы эквивалентны при равенстве для обеих напряжений U и токов I на нагрузке:

.

Сравнивая левые и правые части равенства, получим соотношения между параметрами эквивалентных схем:

.

Источник

Читайте также:  Что такое центр кругового тока