Меню

Электрический ток в различных средах конспекты

Краткий конспект подготовки к ЗНО по физике №26 «Электрический ток в различных средах.»

Конспект 26. Электрический ток в различных средах.

6. Электрический ток в металлах

У металлов электронная проводимость.
– сила тока в сечении металлического проводника, А
Где e – элементарный заряд, Кл
– концентрация электронов проводимости,
S – площадь поперечного сечения проводника, м²
– средняя скорость движения электронов, м/с

7. Зависимость сопротивления металлов от температуры

Замечание. При увеличении температуры сопротивление металлического проводника растет.
– сопротивление металлического проводника при данном изменении температур относительно 0° C, Ом
Где – сопротивление при 0º C, Ом
∆T – разность температур относительно 0º C, К=º C
α – температурный коэффициент сопротивления (табл.),
– удельное сопротивление металла при данном изменении температур относительно 0º C, Ом∙м
Где – удельное сопротивление при 0º C, Ом∙м
Определение. Сверхпроводимость – явление уменьшения сопротивления до нуля при охлаждении до определенной низкой температуры некоторых веществ.

8. Электрический ток в растворах и расплавах электролитов

Определение. Электролиты – это вещества, растворы или расплавы которых проводят электрический ток.
Электролиты имеют ионную проводимость.
Замечание. При увеличении температуры сопротивление электролита уменьшается.
Определение. Электролитическая диссоциация – процесс образования ионов в электролите при его растворении или плавлении.
Определение. Электролиз – совокупность процессов, протекающих на электродах, погружённых в электролит, при прохождении электрического тока. В результате этих процессов на электродах выделяются вещества, входящие в состав электролита.
Замечание. Катод, присоединен к «-» полюсу источника, анод – к «+», поэтому на катоде откладываются положительные ионы вещества (катионы), а на аноде отрицательные (анионы).
con-26-21
Законы Фарадея:
1) Масса вещества, выделившегося на электроде при электролизе прямо пропорциональна величине заряда, переданного на этот электрод.
– масса вещества, выделившегося на электроде, кг
Где k – электрохимический эквивалент выделившегося вещества (табл. и расч.), кг/Кл
q – заряд, переданный на электрод, Кл
– электрохимический эквивалент, кг/Кл
Где M – молярная масса иона, кг/моль
n – валентность иона, ед
– расписанная форма закона электролиза Фарадея, кг
Где I – сила тока при электролизе, А
t – время процесса электролиза, с
Замечание. Иногда используются следующие обозначения при записи формулы электрохимического эквивалента:
– заряд иона, Кл
– постоянная Фарадея, Кл/моль
2) Массы различных веществ, которые выделяются при прохождении одинакового заряда, пропорциональны их химическим эквивалентам.
Замечание. Применение электролиза: рафинирование, гальваностегия (хромирование, никелирование), гальванопластика.

9. Электрический ток в полупроводниках

Определение. Полупроводники – это вещества, у которых концентрация свободных зарядов больше, чем в диэлектриках, но меньше, чем в проводниках.
В чистых полупроводниках электронно-дырочная проводимость.
Замечание. При увеличении температуры сопротивление полупроводника уменьшается.
Определение. Дырка – вакантное место, которое может быть занято электроном, т.е. носитель положительного заряда.
Примесная проводимость полупроводников:
1) р-типа (дырочная проводимость) создается акцепторными примесями.
Пример. В полупроводник (Ge,Si) вводится вещество меньшей валентности (In,Ga).
2) n-типа (электронная проводимость) создается донорными примесями.
Пример. В полупроводник (Ge,Si) вводится вещество большей валентности (P,As).
Замечание. Использование полупроводников: полупроводниковые диоды, транзисторы.

10. Электрический ток в газах

В газах электронно-ионная проводимость.
Виды разрядов в газах:
1) Определение. Несамостоятельный газовый разряд – это разряд, который возникает и протекает только с использованием ионизатора (высокая температура, рентгеновское или космическое излучения).
con-26-39
2) Определение. Самостоятельный газовый разряд – это разряд, который возникает и проходит без сторонних причин (без ионизатора).
Замечание. Самостоятельный разряд может протекать при атмосферном давлении, тогда для этого необходимо сильное электрическое поле, или при слабом электрическом поле при условии низкого давления. Основной механизм, который приводит к самостоятельному разряду, называют ионизацией электронным ударом.
Виды самостоятельных газовых разрядов:

4) Коронный (свечение кончиков острых предметов: громоотводов, антенн; огни Святого Эльма)

11. Электрический ток в вакууме

Электрический ток в вакууме обусловлен движением электронов, поэтому в нем электронная проводимость. Это явление принято рассматривать на примере термоэлектронной эмиссии.
Определение. Термоэлектронная эмиссия – явление вырывания электронов с поверхностей тел под действием высокой температуры.
Замечание. Наиболее показательно явление термоэлектронной эмиссии демонстрируется на принципе работы вакуумного диода и электронно-лучевой трубки.
Вакуумный диод – вакуумная двухэлектродная электронная лампа. Пропускает ток только в одном направлении.

Электронно-лучевая трубка – устройство для формирования остронаправленного электронного пучка для преобразования электрического сигнала в световой.

Источник



Электрический ток в различных средах

Электрический ток в различных средах

Одним из параметров, характеризующих электрический ток, является его проводимость, которая меняется в зависимости от внешних условий. В каждом конкретном случае степень проводимости может меняться, поэтому, для изучения и более глубокого понимания протекающих процессов используется таблица электрического тока в средах. С ее помощью можно более наглядно узнать и представить себе, какими качествами обладает электрический ток в тех или иных случаях.

Читайте также:  Фен мощность сила тока напряжение

электрический ток в средах таблица

Фактически, электрический ток может протекать в пяти разных видах среды:

  1. Металлы.
  2. Вакуум.
  3. Полупроводники.
  4. Жидкости.
  5. Газы.

Электрический ток в металлах

Электрический ток в металлах представляет собой упорядоченное движение электронов, которые перемещаются в указанном направлении под воздействием электрического поля. Многочисленные проведенные опыты показали, что в процессе перетекания токов ионы самого металла остаются на месте и участия в перемещении заряда не принимают. Все металлы, находящиеся в твердом состоянии, обычно имеют кристаллическое строение. Положительные ионы закреплены в узлах кристаллической решетки, а все остальное пространство заполнено свободными электронами.

Электроны никак не связаны с ядрами. При этом ситуация внутри металла уравновешена, так как суммарный отрицательный заряд свободных электронов в нормальном состоянии по своему абсолютному значению равен положительному заряду всех ионов, составляющих структуру решетки. Таким образом металлы в обычном своем состоянии электрически нейтральны, и все свободные электроны внутри структуры осуществляют хаотичное движение.

Как только в металле формируется электрическое поле, свободные электроны начинают, поз воздействием внешних электрических сил, совершать направленное движение. Так появляется электрический ток. Примечательно, что направленное движение этих электронов продолжается в хаотичном порядке.

электрический ток в разных средах

Как только в проводнике возникнет электрическое поле, оно распространяется по всей длине проводника с огромной скоростью (скорость перемещения электрического тока близка к скорости света, а это 300 тысяч км. в секунду)!

Электрический ток в вакуумной среде

Отличительная особенность вакуума – отсутствие заряженных частиц. Фактически – это диэлектрик. Свободные электроны в огромных количествах присутствуют в металлах. Если температура окружающей среды близка к комнатной, электроны (в соответствии с законами кулоновского притяжения) не могут покинуть металл, оставаясь в его структуре. Но как только начинается процесс нагрева металла, из него в больших количествах начинают вылетать электроны. Этот процесс получил название термоэлектронная эмиссия. Чтобы инициировать ее в вакуум в качестве одного из электродов помещают тончайшую проволочную нить, изготовленную из особо тугоплавкого типа металла (это, так называемая, нить накала). При подключении к источнику питания из этой нити начинают вылетать раскаленные электроны, которые попадают в электрическое поле, расположенное между двумя электродами. Начинается упорядоченное движение, создается электрический ток.

тема электрический ток в различных средах

Данное явление послужило основой для работы электронных ламп, диодов, триодов, работающих в вакууме.

Электрический ток в средах-полупроводниках

Полупроводники – это вещества, находящиеся в некоем среднем состоянии между проводниками и диэлектриками. (Типичный пример – кристаллы кремния или германия). Здесь при соединении атомов друг с другом существует ковалентная связь. Эта связь нарушается в момент нагревания материала, а атомы ионизируются. В результате появляется все больше свободных электронов, а также свободных мест («дырок») положительного заряда.

электрический ток в различных средах

Подобным образом «дырки» появляются и в соседних атомах. Более того, эти дырки, наряду со свободными электронами начинают свободно перемещаться по кристаллу. В результате, после помещения кристалла в электрическое поле, начинается упорядоченное движение вышеперечисленных частиц, возникает электрический ток.

Электрический ток в различных средах: жидкости

Жидкими проводниками второго типа считаются растворы солей, оснований и кислот. Отметим, что в данном перечне отсутствует вода. Дело в том, что в чистом виде молекулы в воде имеют полярность, что присуще диэлектрикам. Таким образом для создания условий существования электрического тока в жидкости необходимо привнести извне вещество, которое и предоставит свободные носители для перемещения заряда.

электрический ток в различных средах таблица

Электрический ток в различных средах: газы

В нормальных стандартных условиях гады представляют собой нейтральные молекулы, которые по сути являются диэлектриками. Чтобы получить ток, необходимо оторвать молекулы от атома, «ионизировать» среду. Это достигается как методом нагрева, так и различными способами облучения. В результате, формируется три типа носителей зарядов

  • положительные ионы;
  • отрицательные ионы;
  • электроны.

Упорядоченное движение этих частиц также начинается под воздействием внешнего электрического поля. Но здесь наблюдается разнонаправленное движение, одни движутся к катоду, другие – к аноду.

электрический ток в средах

Общие выводы

Таким образом, рассматривая тему как распространяется электрический ток в разных средах, можно отметить: в газах упорядоченное движение начинается под воздействием электрического поля.

Электрический ток в различных средах – растворы и расплавы электролитов. Многие электролиты в обычном своем состоянии являются диэлектриками. Но после растворения их в воде, эти вещества становятся проводниками. Данный процесс получил название электролитической диссоциации. Электрический ток в разных средах раствором протекает под воздействием внешнего электрополя. При этом одни ионы движутся к катоду, а другие – к аноду.

Читайте также:  Можно ли зарядить автомобильный аккумулятор меньшим током 1

Подведем итог

Наиболее наглядно помогает увидеть, как протекает электрический ток в различных средах таблица. Очевидно, что условия протекания зависят от структуры материала, но процесс всегда начинается под воздействием внешним.

Источник

Электрический ток в различных средах

Конспект по физике для 8 класса «Электрический ток в различных средах». Что представляет собой электрический ток в металлах, электролитах и газах.

Электрический ток в различных средах

Электрический ток может проходить через различные вещества: металлы, растворы и расплавы некоторых веществ и при определённых условиях через газы. Для возникновения электрического тока в какой-либо среде необходимо, чтобы в ней имелись заряженные частицы, которые будут перемещаться под действием электрического поля. Этими частицами могут быть как электроны, так и ионы.

ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ

Металлы в твёрдом состоянии имеют кристаллическое строение. Частицы в металлах располагаются в определённом порядке, образуя кристаллическую решётку. В узлах кристаллической решётки металла расположены положительные ионы, а в пространстве между ними хаотично движутся свободные электроны.

Если в металле создать электрическое поле, то свободные электроны начнут двигаться упорядоченно в направлении действия электрических сил. Возникнет электрический ток. Итак, электрический ток в металлах представляет собой упорядоченное движение свободных электронов.

Доказательство того, что ток в металлах создают именно свободные электроны, было получено в опытах, поставленных в 1913 г. российскими физиками Л. И. Мандельштамом и Н. Д. Папалекси и в 1916 г. английскими физиками Р. Толменом и Т. Стюартом.

В основе этих опытов лежит предположение о том, что если металлический проводник привести в движение и резко затормозить, то свободные электроны должны по инерции продолжать движение относительно ионной решётки, подобно тому как отклоняются вперёд пассажиры при резком торможении автобуса. Следовательно, в проводнике должен возникнуть кратковременный электрический ток.

Для проведения подобного опыта на катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам. Диски соединяют с чувствительным прибором, называемым гальванометром, который позволяет судить о наличии тока. Катушку приводят в быстрое вращение, а затем резко останавливают. Стрелка гальванометра при торможении катушки отклоняется, что говорит о возникновении кратковременного тока. По направлению отклонения стрелки и устанавливается, что ток создаётся движением именно отрицательно заряженных частиц.

В медной проволоке на каждый атом меди приходится в среднем один свободный электрон. В куске проволоки массой m = 64 г находится примерно 6 • 10 23 свободных электронов.

Неправильно думать, что электроны в электрическом поле движутся прямолинейно. Траектория их движения является сложной из-за взаимодействия с другими частицами. Движение электронов в этом случае напоминает дрейф льдин во время ледохода, когда они, двигаясь беспорядочно и сталкиваясь друг с другом, дрейфуют по течению реки.

ЭЛЕКТРИЧЕСКИЙ ТОК В ЭЛЕКТРОЛИТАХ

Растворы солей, кислот и щелочей также могут проводить электрический ток. Такие растворы называют растворами электролитов.

В сосуд с дистиллированной водой опустим два угольных электрода (стержня) и соединим их с источником тока, лампочкой и ключом. Между электродами возникает электрическое поле, но лампочка не горит. Это означает, что дистиллированная вода не проводит электрический ток. Но если растворить в воде какую-либо соль, например поваренную, то лампочка загорится. Это означает, что в растворе поваренной соли присутствуют свободные заряды, которые создают электрический ток. Что это за частицы?

При растворении в воде солей, кислот и щелочей нейтральные молекулы этих веществ распадаются на положительные и отрицательные ионы. Это явление называется электролитической диссоциацией.

Например, молекулы поваренной соли распадаются на положительный ион натрия и отрицательный ион хлора. Пока электрическое поле отсутствует, ионы совершают беспорядочное тепловое движение. Но в электрическом поле ионы, подобно электронам в металлах, начинают двигаться. Положительные ионы натрия в электрическом поле будут двигаться к электроду, соединённому с отрицательным полюсом источника тока. Такой электрод называют катодом. А отрицательные ионы хлора будут двигаться к электроду, соединённому с положительным полюсом источника тока. Такой электрод называют анодом.

Электрический ток в растворах (или расплавах) электролитов представляет собой перемещение ионов обоих знаков в противоположных направлениях.

При протекании электрического тока через растворы или расплавы электролитов на электродах выделяется чистое вещество. Этот процесс называют электролизом. Электролиз широко используется в современной электрометаллургии — получении металлов путём электролиза. Например, весь алюминий в настоящее время получают электролитически. Хорошим примером также является электролитическое очищение (рафинирование) меди.

Читайте также:  Как найти эдс источника тока зная сопротивление

Посредством электролиза можно покрыть металлические предметы слоем другого металла. Этот процесс называется гальваностегией.

ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗАХ

Укрепим две металлические пластины параллельно друг другу. Соединим одну со стержнем, а другую с корпусом электроскопа. Сообщим им разноимённые заряды.

Опыт показывает, что электроскоп не разряжается. Это означает, что воздух между пластинами не проводит электрический ток.

В обычных условиях газы являются хорошими изоляторами, так как они состоят из нейтральных атомов или молекул. В них нет свободных электрических зарядов, которые могут создавать электрический ток.

Если внести в пространство между пластинами пламя спички или спиртовки, то электроскоп быстро разрядится.

Этот опыт показывает, что под действием пламени газ может стать проводником электрического тока, потому что часть нейтральных атомов и молекул газа превращается в ионы. Электроны могут отрываться от атомов также под действием света.

Вы смотрели Конспект по физике для 8 класса «Электрический ток в различных средах».

Источник

III. Основы электродинамики

Тестирование онлайн

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости. При температурах близких к абсолютному нулю (-273 0 C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.

Применение электрического тока в металлах

Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом.

В «рекламной» неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой «живую плазму».

Между электродами сварочного аппарата возникает дуговой разряд.

Дуговой разряд горит в ртутных лампах — очень ярких источниках света.

Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!

Для коронного разряда характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.

Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum — пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии — испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) — приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток — катод, холодный электрод, собирающий термоэлектроны — анод.

Источник