Меню

Электрический ток в газах с рисунками

Презентация по физике на тему «Электрический ток в газах» (10 класс)

Электрический ток в газах Урок изучения нового материала 10 класс

Описание презентации по отдельным слайдам:

Электрический ток в газах Урок изучения нового материала 10 класс

При обычных условиях все газы не проводят электрического тока (состоят из нейтральных атомов) Этим свойством объясняется широкое использование воздуха в качестве изолирующего вещества. Принцип действия выключателей и рубильников: размыкая их металлические контакты, мы создаем между ними прослойку воздуха, не проводящую ток. Газы — диэлектрики

Прохождение тока через газы называют газовым разрядом Газовый разряд Пламя, внесенное в пространство между двумя металлическими дисками, приводит к тому, что гальванометр отмечает появление тока. Отсюда следует: газ, нагретый до высокой темпера-туры, является проводником электрического тока. Электрический ток в газах представляет собой упорядоченное движение свободных электронов и положительных ионов

Минимальная энергия, которую необходимо затратить, чтобы оторвать электрон от атома, называется энергией ионизации Ионизация газа Ионизация – процесс расщепления атомов на положительные ионы и электроны Виды ионизации газа: — электронный удар — термическая ионизация — фотоионизация — радиоактивность Ионизаторы – источники, вызывающие ионизацию газа Ионизаторы газа: — пламя (высокая температура) — рентгеновское, ультрафиоле-товое, гамма – излучения — источники быстрых заряжен-ных частиц (катодные лучи) +

Если прекратить действие ионизатора, то начинает преобладать обратный процесс объединения электронов и ионов в нейтральные атомы – рекомбинация В процессе рекомбинации газ снова приобретает диэлектрические свойства Таким образом электрические свойства газов сильно зависят от действия внешних ионизаторов Рекомбинация газа

Виды газового разряда Несамостоятельный Самостоятельный В зависимости то способа получения заряженных частиц в газе газовые разряды делятся на два вида.

Несамостоятельный газовый разряд Несамостоятельный газовый разряд – явление протекания электрического тока через газ под воздействием внешнего ионизатора. Ток прекращается после окончания действия ионизатора

Самостоятельный газовый разряд Самостоятельный газовый разряд – процесс протекания электрического тока в газе, происходящий при отсутствии постоянно действующего внешнего ионизатора. Заряженные частицы в газе создаются под действием электрического поля, существующего между электродами

Виды самостоятельного газового разряда 1. Тлеющий разряд Условия возникновения: низкие давления (доли мм рт.ст.) высокая напряженность электрического поля Техническое применение: — в лампах дневного света в рекламе: неоновые лампы, рекламные трубки в медицине: ртутные ультрафиолетовые лампы на производстве, в быту: неоновые лампы (индикация и стабилизация напряжения) в исследованиях: газовые лазеры

Тлеющий разряд При сильно пониженном давлении самостоятельный разряд сопровождается свечением. Положительные ионы, ударяясь о катод, вызывают вторичную электронную эмиссию При увеличении напряжения между электродами трубки, заполненной газом, энергия движущихся ионов и электронов возрастает, возникает явление выбивания ионами из нейтральных молекул электронов – ударная ионизация, которая приводит к лавинному увеличению числа носителей заряда и резкому возрастанию тока Такой разряд не нуждается в действии ионизатора I U

Цвета тлеющих разрядов в различных газах Гелий Неон Аргон Криптон Ксенон

Виды самостоятельного газового разряда 2. Дуговой разряд Условия возникновения: Большая сила тока (10 -100 А при малой напряженности электрического поля) Техническое применение Дуговые ртутные лампы, источники света: прожектора. Сварка и резка металлов. Получение инструментальной стали (90%) в дуговых печах

Электрическая дуга В 1802 году русский физик В.В.Петров установил, что если к полюсам большой электрической батареи присоединить два кусочка угля и привести их в соприкосновение а затем раздвинуть, то между концами углей образуется яркое пламя, а сами концы углей раскаляются добела, испуская ослепительный свет. Электрическая дуга является мощным источником тепла, света, ультрафиолетового излучения При атмосферном давлении температура катода приблизительно равна 3900 К. По мере горения дуги катод заостряется, а на аноде образуется углубление — кратер — являющийся наиболее горячим местом дуги. В.В. Петров (1761-1834)

Виды самостоятельного газового разряда 3.Коронный разряд Условия возникновения: Атмосферное и более высокое давление Сильное неоднородное электрическое поле, напряжённость = 3000000 В/м Техническое применение: Электроочистительные фильтры газовых смесей Медицина Счетчики элементарных частиц: позволяют любые заряженные, быстро движущиеся частицы Из-за огромной напряженности электрического поля прилежащий воздух ионизируется и происходит стекание заряда в виде маленьких искр, образующих корону

Коронный разряд Сопровождается слабым свечением и небольшим шумом. Коронный разряд на ключе Коронный разряд на линии электропередач приводит к потере электроэнергии Коронный разряд на концах мачт «Огни Святого Эльма» Коронный разряд на острие громоотвода Молния ударяет в громоотвод и заряды уходят в Землю, не причиняя вреда зданию.

Виды самостоятельного газового разряда 4. Искровой разряд Условия возникновения: Высокое напряжение до 109 В при атмосферном давлении, имеет вид светящегося канала с разветвлениями в течение 10-7 с. Техническое применение: Используется при обработке металлов, в системе зажигания двигателей внутреннего сгорания. Кратковременная искра — пробой газа, обусловленный ионизацией молекул сильным электрическим полем

Искровой разряд Гигантский искровой разряд — природная молния — разряд между грозовым облаком и Землей Искровой разряд в ДВС применяется для воспламенения горючей смеси Для образования мощной искры на свечу зажигания подается напряжение 20 – 30 кВ Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск. Искровой разряд в ДВС Искровой разряд на трансформаторе Тесла Искра в виде ярко светящегося тонкого со сложным образом изогнутого и разветвленного канала (стримера)

Читайте также:  Как рассчитывается мощность постоянного тока

Плазма Четвёртое состояние вещества было открыто У. Круксом в 1879году Впервые термин «плазма» был использован в 1923 г. американскими физиками Ленгмюром и Тонксом, которые стали с его помощью обозначать особое состояние ионизированного газа. Плазма- наиболее распространенное состояние вещества во Вселенной (99% вещества) В природе известны 4 состояния вещества газообразное твердое жидкое плазма

Плазма При температурах выше 10 000°С все вещества находятся в состоянии плазмы. Плазма — сильно ионизированный газ, в котором концентрации положительных и отрицательных зарядов практически одинаковы (в целом плазма нейтральна)

Плазма Виды плазмы: 1. В зависимости от степени ионизации Слабо ионизированная (ионизированы доли % молекул) Умеренно ионизированная (ионизировано несколько % молекул) Полностью ионизированная 2. В зависимости от скорости движения заряженных частиц Низкотемпературная (T 105 К)

Холодная плазма Виды плазмы Тлеющий разряд Пламя Северное сияние Дуговой разряд Молния Межзвездная среда

Горячая плазма Виды плазмы Солнце Звезды Солнце

Полярные сияния возникают вследствие бомбардировки верхних слоёв атмосферы заряженными частицами, движущимися к Земле из области околоземного космического пространства, называемой плазменным слоем. Проекция плазменного слоя вдоль геомагнитных силовых линий на земную атмосферу имеет форму колец, окружающих северный и южный магнитные полюса Полярные сияния

Концентрация положительных и отрицательных частиц в плазме практически одинакова Высокая электропроводность. При высокой t°плазма приближается к сверхпроводникам Сильное взаимодействие с электрическим и магнитным полями Каждая заряженная частица плазмы взаимодействует с большим числом заряженных частиц Свечение Эти свойства определяют качественное своеобразие плазмы, позволяющее считать ее особым, четвертым состоянием вещества. Свойства плазмы

Применение плазмы Плазма возникает во всех видах газового разряда – газоразрядная плазма В светотехнике в газоразрядных лампах, освещающих улицы, и лампах дневного света, используемых в помещениях. В газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц. В газовых лазерах – квантовых источниках света В плазмотронах для резки, сварки металлов. В плазменных двигателях в космических кораблях В магнитогидродинамических электростанциях.

Токамак (ТОроидальная КАмера с МАгнитными Катушками) Это устройство, способное формировать долгоживущую горячую плазму высокой плотности. При достижении определенных параметров плазмы в ней начинается термоядерная реакция синтеза ядер гелия из изотопов водорода (дейтерия и трития). Первый токамак был разработан в Институте атомной энергии имени Курчатова в Москве и продемонстрирован в1968 в Новосибирске. Токамак считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза Токамак представляет полый тор, на который намотан проводник, образующий магнитное поле. Основное магнитное поле в камере-ловушке, содержащей горячую плазму, создается тороидальными магнитными катушками.

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Номер материала: ДБ-080205

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник



Электрический ток в газах — причины появления и применение

Процесс ионизации

При стандартных условиях газообразные вещества являются диэлектриками. Это объясняется отсутствием в их структуре большого числа свободных частиц с разными зарядами. Стать электропроводным газ может лишь при условии его ионизации. Это явление представляет собой расщепление молекул на положительно и отрицательно заряженные частицы.

Ионизация возможна только под воздействием внешних факторов. Причины, влияющие на этот процесс, называются ионизаторами. Электроны, лишенные атомных связей, могут захватываться частицами с нейтральным зарядом, благодаря чему образуются положительные ионы. В электрическом газе, подвергшемся ионизации, в качестве носителей заряда присутствуют электроны, положительные и отрицательные ионы. Существует 3 типа ионизации:

  1. Термо. Наблюдается при столкновении частиц газообразных веществ при высоких температурах. Их кинетическая энергия движения должна превосходить показатель молекулярной связи электронов в атомах.
  2. Фото. Этот процесс протекает под воздействием электромагнитного излучения. Требуемая для отделения электронов энергия передается молекулам квантами излучения.
  3. Ударная. Заряженные частицы появляются благодаря столкновению нейтральных частиц с быстро движущимися электронами. При этом они должны обладать большим показателем кинетической энергии.

Также необходимо рассмотреть еще одно явление, протекающее в ионизированных газах, — рекомбинацию. Ее суть сводится к восстановлению нейтральных ионов из разнозаряженных частиц. Процесс сопровождается выделением определенного количества энергии, показатель которой соответствует значению, израсходованному на ионизацию.

В результате могут проявляться различные явления, например, свечение. Это говорит о том, что возникновение электрического тока в газах обусловлено упорядоченным движением частиц с определенными зарядами. Это явление наблюдается лишь под воздействием внешнего поля. Можно сказать, что газ и электричество при определенных условиях являются вполне сочетаемыми понятиями.

Газовые разряды

Если поместить ионизированный газ в электрополе, то на свободные заряды начнут воздействовать электрические силы. Они всегда направлены параллельно линиям напряженности. В результате движение заряженных частиц из хаотичного становится упорядоченным — отрицательные движутся в направлении анода, а положительные — к катоду. После контакта с электродами частицы становятся нейтральными, так как отдали либо приняли электроны. В результате цепь замыкается, и появляется электроток.

Процесс прохождения электронного тока через газообразное вещество называют разрядом. В газообразных веществах сочетаются два вида проводимости — электронная и ионная.

Несамостоятельный и самостоятельный ток

Описанный кратко механизм возникновения тока в газах под воздействием внешнего поля представляет собой несамостоятельный разряд. После снятия внешнего воздействия электроток в газообразном веществе исчезает. Чтобы исследовать зависимости силы тока от напряжения, предстоит использовать стеклянную трубку, в которую впаяны электроды.

Читайте также:  Как протекает переменный ток по проводнику

Если начать воздействовать на это устройство с помощью ионизатора, например, рентгеновского излучения, то в газе каждую секунду будет появляться некоторое количество пар свободных частиц с определенным зарядом. При отсутствии на клеммах электродов напряжения сила тока окажется равной нулю. Создав небольшую разницу потенциалов, можно заставить заряженные частицы упорядочено перемещаться, что приведет к появлению газового разряда.

Но из-за рекомбинации не все образованные в результате процесса ионизации ионы смогут дойти до электродов. Часть этих частиц приобретет нейтральный заряд. При увеличении разности потенциалов число заряженных ионов и электронов будет возрастать. При достижении определенного напряжения все заряженные частицы доберутся до электродов. Это позволяет говорить о том, что электроток достиг насыщения.

В результате вольт-амперная характеристика при появлении несамостоятельного тока становится нелинейной. Говоря проще, закон Ома в газах работает лишь при небольшой разнице потенциалов.

Если после достижения насыщения тока продолжить увеличивать напряжение на электродах, то при большой разнице потенциалов его сила начнет стремительно возрастать. Это связано с тем, что в газообразном веществе образуются дополнительные заряженные частицы сверх тех, что появляются под воздействием ионизатора. В определенный момент необходимость использования внешнего поля для поддержания разряда отпадет.

Такой электрический ток называется самостоятельным. Величина, при которой несамостоятельный ток становится самостоятельным, называется напряжением пробоя. Электроны, получая ускорение от электрополя, сталкиваются на траектории своего движения с нейтральными частицами.

В ситуации, когда кинетическая энергия электронов превышает показатель энергии Wi, наблюдается ионизация молекул. При этом основную работу в образовании самостоятельного разряда выполняют электроны. В физике принято выделять 4 вида самостоятельного тока:

  1. Тлеющий. Создается в газообразных веществах при низком давлении (около 1,33 Па). Тлеющий разряд может быть получен при сравнительно небольшом напряжении. Используется он в газовых лампах, например, в неоновых. Применение различных инертных газов позволяет добиться свечения определенного цвета.
  2. Искровой. Появляется при постепенном повышении напряжения. В природе искровой разряд наблюдается в виде молнии.
  3. Дуговой. Если после возникновения искрового разряда продолжить снижать сопротивление электроцепи, то сила тока в искре начнет быстро увеличиваться. В результате возникнет дуговой разряд.
  4. Коронный. Наблюдается при высоком давлении под воздействием неоднородного электрополя.

Понятие плазмы

Плазма представляет собой полностью либо частично ионизированный газ, в котором плотность противоположно заряженных частиц примерно одинакова. Для определения степени ионизации (α) используется следующая формула: α = Ni / N. Здесь Ni представляет собой число ионизированных атомов, а N — общее количество частиц.

Примером слабо ионизированной плазмы является ионосфера Земли. Звезды, включая Солнце, плотно ионизированы. Плазма обладает рядом уникальных свойств, что делает необходимым рассматривать ее в качестве особого состояния веществ, таких как, например, жидкость.

Сегодня сложно представить человеческую цивилизацию без электричества. С его помощью люди освещают и обогревают дома, отправляют сообщения и т. д. Применение электрического тока в газах многообразно. Например, газовый электроток используется для освещения помещений, при сварке, в металлургии и т. д. Если управлять движением плазмы, то ее можно использовать в качестве рабочего тела. Так, несколько лет назад большой популярностью пользовались плазменные телевизоры.

Источник

Электрический ток в газах

Электропроводность газов

Газы в обычных условиях – диэлектрики. Воздух используют в технике как изолятор:

– между обкладками конденсатора;

– в контактах выключателей.

При высокой температуре и под действием ультрафиолетового, рентгеновского и гамма-излучения (внешних ионизаторов) газы становятся проводниками.

В этом легко убедиться, если взять заряженный плоский воздушный конденсатор с подключенным к нему электрометром, и нагреть воздух между пластинами.

Природа газового разряда

При внесении пламени между пластинами воздушного конденсатора происходит ионизация газа и возникновение ионов и электронов. Под действием электрического поля они начнут упорядоченно двигаться между пластинами.

Протекание тока через газ называется газовым разрядом.

При удалении пламени ток прекращается вследствие того, что положительные ионы и электроны не могут долго существовать раздельно и воссоединяются в нейтральную молекулу. Такой процесс называется рекомбинацией .

Газовый разряд, протекающий под действием ионизатора, называется несамостоятельным.

ионизация газа

С увеличением разности потенциалов между пластинами кинетическая энергия электрона возрастает настолько, что при соударении его с нейтральной молекулой газа происходит выбивание электрона. Такой процесс называется ударной ионизацией молекул газа. Число электронов и ионов растет лавинообразно, что приводит к увеличению разрядного тока.

Читайте также:  Ток измеряемый в данный момент времени

Газовый разряд, протекающий в отсутствии ионизатора, называется самостоятельным.

Интенсивность такого газового разряда зависит от напряженности электрического поля между пластинами и давления газа.

Вольтамперная характеристика газового разряда.

Вольтамперная характеристика газового разряда.

ОА – только часть заряженных частиц доходит до электродов, часть их рекомбинирует;

АВ – ток почти не увеличивается (ток насыщения);

ВС – самостоятельный разряд.

Виды газовых разрядов

Искровой разряд – это прерывистый самостоятельный лавинообразный разряд в газе, вызванный ударной ионизацией и сопровождающийся треском и ярким свечением. Искровой разряд возникает при условии, когда мощность источника недостаточна для поддержания непрерывного разряда.

искровой разряд

Дуговой разряд впервые был получен в 1802 году российским академиком В. В. Петровым. При соприкосновении электродов в цепи возникает сильный ток короткого замыкания, что приводит к сильному нагреванию электродов. Затем электроды постепенно раздвигаются. Ток продолжает идти через межэлектродное пространство, заполненное высокотемпературной плазмой. Концы электродов раскаляются до 3000-4000 градусов и начинают испаряться.

дуговой разряд

Дуговой разряд является самостоятельным разрядом в газе и происходит за счет энергии термоэлектронной эмиссии с катода. Является источником сильного светового и ультрафиолетового излучения.

Тлеющий разряд возникает в разряженном газе при сравнительно невысоком напряжении в виде светящегося газового столба. Тлеющий разряд вызывается ударной ионизацией и выбиванием электронов из катода положительными ионами (вторичная ионизация).

Свечение при тлеющем разряде объясняется тем, что при рекомбинации молекул газа высвобождается энергия в виде светового излучения. Свечение будет иметь разные цвета в зависимости от вида газа.

Коронный разряд возникает в сильно неоднородных электрических полях. Например, вблизи острия напряженность электрического поля настолько велика, что ионизация электронным ударом возможна даже при атмосферном давлении. В этой области возникает характерное сферическое свечение в виде короны.

коронный разряд

Применение газовых разрядов

Искровой разряд используется в технике в системе зажигания двигателей внутреннего сгорания. Катушка зажигания дает напряжение 12-15 тысяч вольт. Это достаточно, чтобы между электродами свечи возникла искра для зажигания горючей смеси.

пример искрового разряда

Разновидностью искрового разряда является молния.

дуговая электросварка

Дуговой разряд применяется в качестве мощных источников света (прожекторов), в электроплавильных печах, для электросварки, для ультрафиолетовых излучателей.

газоразрядные трубки

Тлеющий разряд используется в рекламных газоразрядных трубках, в лампах дневного света, цифровых индикаторах.

полярное сияние

В природе свечение разряженных газов наблюдается в виде полярного сияния.

коронный разряд в лэп

Коронный разряд используется в электрофильтрах для очистки газов от примесей твердых частиц, в работе молниеотвода. В ЛЭП приводит к утечке электроэнергии.

огни святого эльма

В природе «корона» возникает иногда под действием атмосферного электричества на ветках деревьев, верхушках молниеотводов, мачт кораблей (огни святого Эльма).

Источник

Электрический ток в газах

Понятие электрического тока

При грозовом разряде может возникнуть электрический ток, который называют кратковременным. А для поддержания тока в течение длительного времени необходимо наличие электрического поля и свободных носителей электрического заряда.

Электрическое поле создают тела, заряженные разноименно. Силой тока называют отношение заряда, переносимое через поперечное сечение проводника за интервал времени, к этому интервалу времени. Измеряется она в Амперах.

Рис. 1. Формула силы тока

Электрический ток в газах

Молекулы газа в обычных условиях не проводят электрический ток. Они являются изоляторами (диэлектриками). Однако, если изменить условия окружающей среды, то газы могут стать проводниками электричества. В результате ионизации (при нагреве или под действием радиоактивного излучения) возникает электрический ток в газах, который часто заменяют термином «электрический разряд».

Самостоятельные и несамостоятельные газовые разряды

Разряды в газе могут быть самостоятельными и несамостоятельными. Ток начинает существовать, когда появляются свободные заряды. Несамостоятельные разряды существуют пока на него действует сила извне, то есть внешний ионизатор. То есть, если внешний ионизатор перестал действовать, то и ток прекращается.

Самостоятельный разряд электрического тока в газах существует даже после прекращения действия внешнего ионизатора. Самостоятельные разряды в физике подразделяются на тихий, тлеющий, дуговой, искровой, коронный.

  • Тихий– самый слабый из самостоятельных разрядов. Сила тока в нем очень мала (не более 1 мА). Он не сопровождается звуковыми или световыми явлениями.
  • Тлеющий– если увеличить напряжение в тихом разряде, он переходит на следующий уровень – в тлеющий разряд. В этом случае появляется свечение, которое сопровождается рекомбинацией. Рекомбинация– обратный процесс ионизации, встреча электрона и положительного иона. Применяется в бактерицидных и осветительных лампах.

Рис. 2. Тлеющий разряд

  • Дуговой– сила тока колеблется от 10 А до 100 А. Ионизация при этом равна почти 100%. Этот тип разряда возникает, например, при работе сварочного аппарата.

Рис. 3. Дуговой разряд

  • Искровой– можно считать одним из видов дугового разряда. Во время такого разряда за очень короткое время протекает определенное количество электричества.
  • Коронный разряд – ионизация молекул происходит вблизи электродов с малыми радиусами кривизны. Этот вид заряда происходит тогда, когда напряженность электрического поля резко изменяется.

Что мы узнали?

Сами по себе атомы и молекулы газа нейтральны. Они заряжаются при воздействии извне. Если говорить кратко об электрическом токе в газах, то он представляет собой направленное движение частиц (положительных ионов к катоду и отрицательных ионов к аноду). Также важным является, что при ионизации газа, его проводящие свойства улучшаются.

Источник