Меню

Электрическая цепь переменного тока лекция

ЛЕКЦИЯ 7. 1. Основные законы цепей переменного тока

АНАЛИЗ ЦЕПИ С ПОСЛЕДОВАТЕЛЬНЫМ СОЕДИНЕНИЕМ ПРИЕМНИКОВ

1. Основные законы цепей переменного тока

2. Построение векторной диаграммы

3. Треугольники сопротивлений и мощностей

4. Резонанс напряжений

1. Основные законы цепей переменного тока

В цепях переменного тока закон Ома выполняется для всех значений,

законы Кирхгофа – только для мгновенных и комплексных, которые учиты-

вают фазные соотношения.

Первый закон Кирхгофа. Алгебраическая сумма мгновенных значений

, либо алгебраическая сумма комплексных значений токов в узле равна нулю:

Второй закон Кирхгофа. Алгебраическая сумма мгновенных значений напряжений на приемниках в контуре равна алгебраической сумме мгновен-

ных значений ЭДС, действующих в этом же контуре:

, либо алгебраическая сумма комплексных значений напряжений на приемниках в контуре равна алгебраической сумме комплексных значений ЭДС в том же контуре:

Уравнения, составленные по законам Кирхгофа, называют уравнения-

ми электрического состояния.

Схема замещения цепи с последовательным соединением приемников представлена на рис. 7.1.

Для анализа процессов в схеме воспользуемся уравнением на основании второго закона Кирхгофа в комплексной форме:

Подставим в это уравнение значения напряжений, выраженные по закону Ома:

где Ż – комплексное сопротивление цепи.

Очевидно, что Ż = R + j (X L − XC ) = R + j X ,

где R – активное сопротивление, Х – реактивное сопротивление.

Закон Ома в комплексной форме для цепи с последовательным соединением приемников: Ů = Ż Ỉ.

Реактивное сопротивление Х может быть положительным и отрицательным.

Реактивное сопротивление Х > 0, если X L > XC . В этом случае цепь имеет индуктивный характер.

Реактивное сопротивление X XC и X > 0 , приведено на рис. 7.2.

Входное напряжение складывается из напряжений на трех идеальных элементах при учете сдвига фаз. Напряжение на резисторе совпадает с током по фазе. Напряжение на индуктивном элементе опережает ток на 90°, на емкостном – отстает на 90° .

Полученный при построении векторной диаграммы треугольник ОАВ (рис. 7.3.) дает возможность оперировать действующими значениями, для которых законы Киргофа не выполняются:

Угол φ = ψu − ψi – угол сдвига фаз тока и полного напряжения.

3. Треугольники сопротивлений и мощностей.

Если разделить все стороны треугольника напряжений на ток I, можно получить подобный ему треугольник сопротивлений (рис. 7.4), где Z – полное со-

противление цепи, R – активное сопротивление, Х – реактивное сопротивле-

ние, X L = L ⋅ω – индуктивное сопротивление, XC =1/Cω – емкостное сопротивление.

Закон Ома для действующих значений при последовательном соедине-

нии приемников имеет вид : U=Z I.НИКОВ

Из свойств треугольника сопротивлений можно получить соотношения:

; R = Z ⋅ cosϕ; X = Z ⋅ sin ϕ.

Угол ϕ зависит от соотношения сопротивлений цепи.

Сравнение формул полного и комплексного сопротивлений позволяет

сделать вывод, что полное сопротивление является модулем комплексного.

Из треугольника сопротивлений видно, что аргументом комплексного сопро-

тивления является угол ϕ. Поэтому можно записать: Z = R + jX = Z e j ϕ .

Полное сопротивление любого количества последовательно соединенных приемников

Умножением всех сторон треугольника напряжений на ток можно получить

треугольник мощностей (рис. 7.5).

Активная мощность P =UR ⋅ I = R ⋅ I 2 =U ⋅ I ⋅ cosϕ

характеризует энергию, которая передается в одном направлении от генера-

тора к приемнику. Она связана с резистивными элементами.

Реактивная мощность Q =│ UL −UC │ ⋅ I = X ⋅ I 2 =U I sinϕ характеризует

часть энергии, непрерывно циркулирующей в цепи и не совершающей по-

лезной работы. Она связана с реактивными элементами.

Полная (кажущаяся) мощность S =U ⋅ I = .

Активную мощность измеряют в ваттах (Вт), реактивную – вольт-амперах реактивных (вар), полную – вольт-амперах (В⋅А ).

4. Резонанс напряжений.

Индуктивная катушка и конденсатор – взаимоподавляющие антиподы.

Когда они полностью компенсируют действие друг друга, в цепи наблюдается резонансный режим. Резонанс напряжений возникает при последовательном соединении индуктивных катушек и конденсаторов. Условие резонанса напряжений: входноереактивное сопротивление Х равно нулю.

Рассмотрим режим резонанса для цепи, схема замещения которой

представлена на рис. 7.1.

При резонансе X = X L − XC = 0. Отсюда X L = XC . Так как XL = Lω, а

XC = 1/Cω, то при резонансе Lω =1/Cω . Тогда LCω 2 =1

Отсюда следует, что добиться резонанса напряжений в схеме на рис. 7.1 можно изменением индуктивности L, емкости С и частоты ω.

Циклическая резонансная частота .

Тогда частота f = .

При резонансе полное сопротивление . Цепь имеет xисто активный характер.

При резонансной частоте ω = ω X = 0 , X L = XC , ,

Цепь имеет чисто активный характер.

Значение резонанса напряжений:

1. В электроэнергетических устройствах в большинстве случаев явление нежелательное, связанное с появлением перенапряжений.

2. В электротехнике связи (радиотехнике, проволочной телефонии), в автоматике явление резонанса напряжений широко используют для настройки цепи на определенную частоту.

АНАЛИЗ ЦЕПИ С ПАРАЛЛЕЛЬНЫМ СОЕДИНЕНИЕМ ПРИЕМНИКОВ

1. Основные законы

2. Построение векторной диаграммы

3. Треугольники проводимостей и мощностей

4. Резонанс токов

1. Основные законы

Схема замещения цепи с параллельным соединением приемников изображена на рис. 8.1.

Для анализа цепи применим уравнение по первому закону Киргофа для комплексных значений:

Далее подставим в это уравнение значения токов, выраженных по закону

Введем обозначения: – комплексная проводимость; индуктивная проводимость индуктивного элемента;

– емкостная проводимость емкостного элемента;

1/R=G – активная проводимость резистивного элемента.ЛЕКЦИЯ 8. АНА

Используя введенные обозначения, можно записать:

где В – реактивная проводимость.

2. Построение векторной диаграммы

Построение векторной диаграммы начинаем с вектора напряжения, которое является одинаковым для всех элементов схемы. Векторная диаграмма для

случая, когда X L — j ϕ = G − jB .

Полная проводимость любого количества параллельно соединенных приемников

Умножив все стороны треугольника токов на напряжение, можно получить

треугольник мощностей (рис. 8.5 а).

Получим соотношения для активной и реактивной проводимостей ветви. Все

резистивные элементы ветви можно заменить одним эквивалентным сопро-

тивлением. Все реактивные элементы также можно заменить одним эквива-

лентным, индуктивным или емкостным. Схема замещения любой ветви в общем виде приведена на рис. 8.5 b.

Комплексная проводимость – это величина, обратная комплексному сопротивлению: .

Чтобы избавиться от мнимости в знаменателе, домножим числитель и знаменатель на сопряженный знаменателю комплекс:

Источник



Лекция №20. Переменный электрический ток

Лекции Электрический ток

Лекция №20. Переменный электрический ток

1. Переменный электрический ток

2. Действующее значение переменного тока

3. Электрическая цепь с резистором

4. Электрическая цепь с катушкой индуктивности

5. Электрическая цепь с конденсатором

6. Закон Ома для цепи переменного тока

7. Мгновенная мощность

8. Резонанс в электрических цепях. Резонанс напряжений

Переменный электрический ток

Установившиеся вынужденные электромагнитные колебания в цепи с резистором, катушкой индуктивности и конденсатором можно рассматривать как переменный электрический ток. Если подводимые к контуру внешняя ЭДС или напряжение периодически изменяются по гармоническому закону, то переменный ток называют синусоидальным (рис. 20.1):

где – мгновенное значение силы тока, то есть значение тока для каждого момента времени; – амплитудное значение силы тока.

При частоте (промышленная частота) период электромагнитных колебаний составляет .

Ввиду того, что в течение периода сила переменного тока изменяется, о величине такого тока судят не по мгновенным значениям, а по действующему или эффективному значению . При этом действие переменного тока оценивают по тепловому эффекту, который сравнивают с тепловым эффектом постоянного тока.

Действующее значение переменного тока

Действующим (эффективным) значением переменного тока называют такую величину, которая равна силе постоянного тока, выделяющего в проводнике такое же количество теплоты, что и данный переменный ток за одно и то же время. Действующее значение переменного синусоидального тока связано с его амплитудным значением соотношением

Для мгновенных значений синусоидальных токов выполняются закон Ома и правила Кирхгофа.

Рассмотрим цепи, содержащие резистор, катушку индуктивности, конденсатор и все три элемента, соединенные последовательно, на зажимах которых приложено переменное напряжение

где – амплитудное значение напряжения.

Электрическая цепь с резистором

Сила тока, протекающего через резистор (рис. 20.2), определяется законом Ома

где – амплитуда силы тока. Очевидно, что при чисто активном (R) характере цепи сдвиг фаз колебаний тока и напряжения равен нулю (рис.

Электрическая цепь с катушкой индуктивности

В катушке без потерь ( ) будет протекать ток, если напряжение на ее выводах компенсирует ЭДС самоиндукции (рис. 20.4), то есть

Постоянная интегрирования А=0, так как ток изменяется по гармоническому закону, то есть не имеет постоянной составляющей. Очевидно, что амплитуда тока в цепи с катушкой

где – индуктивное сопротивление, зависящее от частоты. При (при протекании постоянного тока) .

Таким образом, в цепи с катушкой индуктивности колебания силы тока отстают по фазе на от колебаний напряжения (рис. 20.5).

Электрическая цепь с конденсатором

Читайте также:  Закон ома для последовательной rlc цепи переменного тока

Если пренебречь активным сопротивлением соединительных проводов и обкладок конденсатора (рис. 20.6), то напряжение на конденсаторе будет равно напряжению на зажимах цепи, то есть

откуда заряд конденсатора

Сила тока в цепи конденсатора

где , — емкостное сопротивление цепи. Чем меньше частота , тем больше . Поэтому в цепи постоянного тока ( ) и конденсатор не проводит электрический ток.

Таким образом, в цепи с конденсатором колебания силы тока опережают по фазе на колебания напряжения (рис. 20.7).

Закон Ома для цепи переменного тока

Рассмотрим теперь электрическую цепь из последовательно соединенных резистора, катушки индуктивности и конденсатора (рис. 20.8).

По второму правилу Кирхгофа для мгновенных значений напряжение на зажимах цепи равно сумме напряжений на отдельных элементах

Построим векторную диаграмму цепи с учетом полученных ранее фазовых соотношений: а) напряжение на резисторе совпадает по фазе с током; б) напряжение на катушке индуктивности опережает по фазе ток на ; в) напряжение на конденсаторе отстает по фазе от тока на (рис. 20.9).

Из векторной диаграммы найдем модуль действующего значения напряжения

где – реактивная составляющая напряжения.

Учитывая, что , , , получим:

где Z – полное сопротивление цепи. Выражение

называется законом Ома для цепи переменного тока.

Разность называют реактивным сопротивлением. Из векторной диаграммы следует, что угол сдвига фаз между током и напряжением для рассматриваемой схемы

Если , цепь имеет индуктивный характер, ; если , цепь имеет емкостный характер, ; если , то реактивное сопротивление цепи , и цепь имеет активный характер даже при наличии в ней L и C.

Мгновенная мощность

Мгновенная мощность, развиваемая в цепи переменного тока, равна произведению мгновенных значений силы тока и напряжения:

Среднее за период значение мгновенной мощности называют активной мощностью

Из-за наличия сдвига фаз знаки у тока и напряжения в данный момент времени могут быть разные. Поэтому мгновенная мощность может быть отрицательной в некоторые доли периода переменного тока, что означает возвращение энергии из цепи источнику тока.

На рис.20.10 приведены графики изменения мгновенной мощности при различных углах сдвига фаз между колебаниями напряжения и тока.

При в любой момент времени мощность положительна, она расходуется в цепи на совершение различных видов работы. При в отдельные промежутки времени мощность отрицательна. Это объясняется тем, что при наличии в цепи катушки индуктивности возрастание тока приводит к созданию в ней магнитного поля, которое обладает запасом энергии. При уменьшении силы тока магнитное поле исчезает и запасенная в нем энергия возвращается к источнику тока (генератору). Аналогичный процесс происходит при наличии в цепи конденсатора: в течение той четверти периода, когда происходит зарядка конденсатора, энергия в нем запасается, а когда конденсатор разряжается, он отдает в цепь запасенную энергию.

При положительная мощность равна отрицательной мощности, работа тока за период равна нулю, следовательно, средняя мощность также равна нулю. При этом периодически энергия запасается в магнитном и электрическом полях, а затем снова передается генератору. Последний случай возможен лишь при R=0.

Подставив (20.12) в (20.13) и выполнив преобразования, найдем среднее значение мощности переменного тока:

где – косинус угла сдвига фаз, который называется коэффициентом мощности.

Формула (20.14) показывает, что развиваемая в цепи переменного тока мощность зависит не только от силы тока и напряжения, но и от сдвига фаз между напряжением и током.

Коэффициент мощности характеризует потери энергии в цепи и, следовательно, является важнейшей технико-экономической характеристикой при проектировании электрооборудования переменного тока. Если нагрузки в цепи имеют большие емкостные и индуктивные сопротивления, то и может быть много меньше единицы. В этих случаях для передачи требуемой активной мощности Р (при заданном напряжении) необходимо увеличивать силу тока, что приводит к выделению в цепи большого количества теплоты. Поэтому приходится либо увеличивать сечение проводов (R

1/S), либо распределять реактивные нагрузки так, чтобы был по возможности ближе к единице.

Резонанс в электрических цепях. Резонанс напряжений

Резонансом в электрической цепи называется режим участка, содержащего индуктивный и емкостный элементы, при котором угол сдвига фаз колебаний напряжения и тока равен нулю. Резонанс характеризуется рядом особенностей, которые обусловили его широкое применение в радиотехнике, электротехнике, измерительной технике и других областях.

Различают несколько видов резонанса: резонанс напряжений (при последовательном соединении элементов), резонанс токов (при параллельном соединении элементов), резонанс в магнитно-связанных цепях и др.

Резонанс напряжений. Из выражения (1) следует, что при последовательном соединении ток в цепи приобретает максимальное значение при , то есть при Этому условию удовлетворяет частота

В этом случае , , падения напряжения на катушке индуктивности и конденсаторе одинаковы по величине и противоположны по фазе (рис. 20.11). Таким образом, при резонансе напряжений

где Q – добротность контура. Так как добротность колебательных контуров больше единицы, то напряжение, как на катушке индуктивности, так и на конденсаторе превышает напряжение U, приложен-ное к цепи. Из выражения (20.16) следует, что доброт-ность контура показывает, во сколько раз при резонансе напряжение на реактивных элементах больше по величине входного напряжения.

Явление резонанса напряжений используется в радиотехнике и электронике для усиления колебаний напряжения какой-либо определенной частоты. В электроэнергетике явление резонанса напряжений необходимо учитывать при выборе изоляции высоковольтного оборудования, так как иначе может произойти ее пробой.

Источник

Лекция по теме: » Переменный ток»

Учебная дисциплина ОП.03 Электротехника и электроника

« ОБЩАЯ ХАРАКТЕРИСТИКА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА. НЕРАЗВЕТВЛЁННАЯ ЦЕПЬ ПЕРЕМЕННОГО ТОКА С АКТИВНО-ИНДУКТИВНЫМ, ЕМКОСТНЫМ СОПРОТИВЛЕНИЕМ. ВЕКТОРНЫЕ ДИАГРАММЫ. МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА. КОЭФФИЦИЕНТ МОЩНОСТИ ».

План лекции:

1.Переменный ток и его значение.

2. Характеристики переменного тока.

3.Максимакльное (амплитудное) и действующее (мгновенное) значение напряжения и силы тока.

4. Преобразование переменного тока в постоянный.

5.Основные элементы цепи переменного тока.

6. Резистор в цепи переменного тока.

7.Конденсатор в цепи переменного тока.

8.Катушка индуктивности в цепи переменного тока.

9. Мощность переменного тока. Коэффициент мощности.

10. Полное сопротивление в цепи переменного тока, содержащей резистор, конденсатор и катушку.

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным.

А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного?

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Переменный токэлектрический ток , который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя свое направление в электрической цепи неизменным.

Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.

Для чего нужен такой “переменчивый “ переменный ток , почему не использовать только постоянный?

Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов .

Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.

На рисунке обратное направление – это область графика ниже нуля.

hello_html_m1924ce78.jpg

Характеристики переменного тока:

Период — это время одного полного колебания.

Т – период, с

Амплитуда – это наибольшее положительное или отрицательное значение силы тока или напряжения.

Частота — это времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц).

Читайте также:  Амперметр постоянного тока с шунтами

В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. В США частота промышленного тока 60 Гц.

Эта величина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока.

Амплитуда – характеризует состояние переменного тока с течением времени.

Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами ( e, i, u, p ).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Е m , напряжения — U m , тока — I m .

Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.

Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в hello_html_m16692f20.jpgраз.

hello_html_5a4e029c.jpg

hello_html_m8bbad8d.jpg

hello_html_m41c499.jpg

Преобразование переменного тока в постоянный.

Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель” .

Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

hello_html_m7e8c9f90.jpg

hello_html_23aab47a.jpg

hello_html_m1f5c0fe7.jpg

hello_html_620361b1.jpg

Колебания силы тока в цепи резистора совпадают по фазе с колебаниями напряжения.

hello_html_m4795a48e.jpg

hello_html_m6817a23b.jpg

hello_html_m4b53575c.jpg

hello_html_m10080772.jpg

hello_html_m6e03a215.jpg

hello_html_7faa1aaf.jpghello_html_51f415cc.jpg

hello_html_abfd77f.jpg

Видео по теме:«Переменный электрический ток. Получение переменного тока» см. по ссылке:

Вопросы для самоконтроля:

1.Что такое переменный электрический ток?
2. Почему переменный ток получил такое широкое распространение?
3. Поясните, почему передача электроэнергии осуществляется с использованием переменного тока?
4.Что такое период, частота и фаза переменного тока?

5.Что называется действующим значением переменного тока? Какова связь действующих значений ЭДС, напряжения и тока с их амплитудными значениями?

6.По какой формуле определяется индуктивное сопротивление цепи переменному току?

7.По какой формуле определяется емкостное сопротивление цепи переменному току?

8.По какой формуле определяется сдвиг фаз между током и напряжением в цепях переменного тока?

9.По какой формуле вычисляется мощность переменного тока? Что называется коэффициентом мощности?

10.Как используется диод для выпрямления переменного тока?

Рассмотрим примеры решения задач:

Примеры решения расчетных задач

Задача 1. Определите сдвиг фаз колебаний напряжения и силы тока для электрической цепи, состоящей из последовательно включенных проводников с активным сопротивлением R = 1000 Ом, катушки индуктивностью L = 0,5 Гн и конденсатора емкостью С = 1 мкФ. Определите мощность, которая выделяется в цепи, если амплитуда напряжения U = 100 В, а частота = 50 Гц.

Решение:

Сдвиг фаз между током и напряжением в цепях переменного тока определяется соотношением

здесь = 2 — циклическая частота. Следовательно,

Мощность, которая выделяется в цепи, определится по формуле

Для цепи переменного тока справедливо соотношение

где Z — полное сопротивление (импеданс) цепи:

Следовательно, мощность, которая выделяется в цепи

Подставив численные значения в (1), получим (минус означает, что напряжение отстает по фазе). Тогда . Подставив численные значения в (2), получим P = 0,5 Вт.

Задача 2. Конденсатор неизвестной емкости, катушка с индуктивностью L и сопротивлением R подключены к источнику переменного напряжения (рис. 1). Сила тока в цепи равна . Определите амплитуду напряжения между обкладками конденсатора.

Решение:

Из условия задачи видно, что сила тока и напряжение в цепи меняются синфазно. Это означает, что совпадают индуктивное и емкостное сопротивления.

Напряжение на конденсаторе будет равно

Подставляя (5) в (4), получим:

С учетом (3) соотношение (6) примет вид:

Поэтому амплитудное значение напряжения между обкладками конденсатора будет равно

Задача 3. В электрической цепи из двух одинаковых конденсаторов емкости С и катушки с индуктивностью L , соединенных последовательно, в начальный момент времени один конденсатор имеет заряд q , а второй не заряжен (рис. 2). Как будут изменяться со временем заряды конденсаторов и сила тока в контуре после замыкания ключа К ?

Решение:

Цепь, приведенная на рис. 2, представляет собой колебательный контур. Сила тока в нем будет меняться по закону

Чтобы ответить на вопрос задачи, нужно найти максимальное значение силы тока I и частоту колебаний . Частоту колебаний можно определить по формуле

где С экв — емкость системы из двух последовательно соединенных конденсаторов емкостью С :

Подставляя значение С экв в (8), получим, что частота колебаний в контуре будет равна

Подставим значение частоты (9) в выражение для силы тока (7), тогда получим, что сила тока в цепи будет меняться по закону

Для определения I можно воспользоваться законом сохранения энергии. Пусть в некоторый момент времени заряд одного из конденсаторов равен q 1 , тогда заряд второго конденсатора будет q 2 = q q 1 . В начальный момент времени энергия контура сосредоточена в электрическом поле заряженного конденсатора, в произвольный момент времени она перераспределяется между энергией электрического поля двух заряженных конденсаторов и энергией магнитного поля, сосредоточенного в катушке индуктивности. Следовательно, согласно закону сохранения энергии,

Отсюда можно найти зависимость силы тока от заряда q 1 .

Чтобы найти максимальное значение силы тока, нужно взять производную от I по q 1 и приравнять ее к нулю.

Из последнего выражения видно, что максимальное значение силы тока достигается при . Следовательно,

Подставляя полученное значение для максимального значения силы тока в (10), получим, что сила тока в цепи будет меняться по закону

Чтобы найти закон изменения зарядов на пластинах конденсатора, воспользуемся выражением . Преобразовав его, получим квадратное уравнение для q 1 :

Решая уравнение, получим:

Разные знаки означают, что в начальный момент времени любой конденсатор может либо иметь заряд q , либо быть незаряженным. Пусть

Задача 4. Имеются два колебательных контура с одинаковыми катушками и конденсаторами. В катушку одного из контуров вставили железный сердечник, увеличивший ее индуктивность в n = 4 раза. Найдите отношение резонансных частот контуров и их энергий, если максимальные заряды на конденсаторах одинаковы.

Решение:

Резонансные частоты контуров могут быть определены по формуле Томсона:

Задача 5. Два сопротивления R 1 и R 2 и два диода подключены к источнику переменного тока с напряжением U так, как показано на рис. 3. Найдите среднюю мощность, выделяющуюся в цепи.

Решение:

Ток половину периода идет через один диод (например, 1). За это время на сопротивлении R 1 выделяется средняя мощность

В течение второго полупериода ток идет через диод 2, выделяя на нем среднюю мощность

Таким образом, за полный период выделяется средняя мощность

Задачи для самостоятельного решения:

№ 1. В ц.п.т. с напряжением 220 В включена активная нагрузка сопротивлением 40 Ом. Определите ток цепи.

№ 2. Определите сопротивление конденсатора емкостью 5 мкФ при частоте 50 Гц.

№ 3. Определите сопротивление катушки индуктивностью 0,01 Гн при частоте 50 Гц.

№ 4. Определите ток, проходящий через катушку, индуктивное сопротивление которой 5 Ом, а активное сопротивление 1 Ом, если напряжение сети переменного тока 12 В.

№ 5. В ц.п.т. с напряжением 220 В включена эл.лампа, по спирали которой течет ток 5 А. Вычислите активную мощность этой лампы.

№ 6. В электрическую цепь напряжением 220 В последовательно включены реостат сопротивлением 5 Ом, катушка с активным сопротивлением 6 Ом и индуктивным сопротивлением 4 Ом, конденсатор с емкостным сопротивлением 3 Ом. Определите ток в цепи. Постройте векторную диаграмму токов и напряжений.

№ 7. В ц.п.т. с напряжением 220 В включены конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите реактивную мощность цепи.

Постройте векторную диаграмму токов и напряжений.

№ 8. В ц.п.т. с напряжением 380 В включены активное сопротивление 50 Ом и конденсатор емкостью 1000 мкФ. Определите полную мощность цепи.

Постройте векторную диаграмму токов, напряжений и мощностей.

№ 9. В ц.п.т. напряжением 110 В последовательно включены активное сопротивление 30 Ом, емкостное – 45 Ом и индуктивное — 50 Ом. Определите полное сопротивление этой цепи.

№ 10. В ц.п.т. с напряжением 220 В включены активное сопротивление 20 Ом, конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите полную мощность цепи. Постройте векторную диаграмму токов, напряжений, мощностей.

Читайте также:  Расчет разветвленных цепей постоянного тока методом эквивалентных преобразований

Домашнее задание:

1.Выучить и законспектировать лекцию.

2. Разобрать и записать в тетрадь примеры решения задач, которые приведены в конце лекции.

3. Ответить на вопросы для самоконтроля.

4. Выполнить на оценку задания в тестовой форме:

hello_html_61a97888.pnghello_html_39ad8b4f.png

hello_html_5e842b30.pnghello_html_m6007d484.png

Ответы (указав фамилию, имя, название теста и группу) прислать по следующему адресу в контакте: http :// vk . com / id216653613

Источник

Физика. 11 класс

Конспект урока

Физика, 11 класс

Урок 8. Переменный электрический ток

Перечень вопросов, рассматриваемых на уроке:

1) Свойства переменного тока;

2) Понятия активного сопротивления, индуктивного и ёмкостного сопротивления;

3) Особенности переменного электрического тока на участке цепи с резистором;

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

𝒾 — мгновенное значение силы тока;

m— амплитудное значение силы тока.

– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:

При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.

Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um — амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение. В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону

Согласно данным нашей задачи:

Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:

2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Напишем закон Ома для переменного тока:

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:

Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:

то после вычислений получаем Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

Источник