Меню

Двухэлементный счетчик реактивной энергии

Самые распространенные схемы включения однофазных и трехфазных электросчетчиков

В этой статье мы рассмотрим основные схемы включения однофазных и трёхфазных электросчётчиков. Сразу хочу отметить, что схемы включения индукционных и электронных электросчётчиков абсолютно идентичны.

Посадочные отверстия для крепления обоих видов электросчётчиков тоже должны быть абсолютно одинаковы, однако некоторые производители не всегда придерживаются этого требования, поэтому иногда могут возникнуть проблемы с установкой электронного электросчётчика вместо индукционного именно в плане крепления на панели.

Зажимы токовых обмоток электросчётчиков обозначаются буквами Г (генератор) и Н (нагрузка). При этом генераторный зажим соответствует началу обмотки, а нагрузочный — ее концу.

При подключении счетчика необходимо следить за тем, чтобы ток через токовые обмотки проходил от их начал к концам. Для этого провода со стороны источника питания должны подключаться к генераторным зажимам (зажимам Г) обмоток, а провода, отходящие от счетчика в сторону нагрузки, должны быть подключены к нагрузочным зажимам (зажимам Н).

Для счетчиков, включаемых с измерительными трансформаторами, должна учитываться полярность как трансформаторов тока (ТТ), так и трансформаторов напряжения (ТН). Это особенно важно для трехфазных счетчиков, имеющих сложные схемы включения, когда неправильная полярность измерительных трансформаторов не всегда сразу обнаруживается на работающем счетчике.

Если счетчик включается через трансформатор тока, то к началу токовой обмотки подключается провод от того зажима вторичной обмотки трансформаторов тока, который однополярен с выводом первичной обмотки, подключенным со стороны источника питания. При этом включении направление тока в токовой обмотке будет таким же, как и при непосредственном включении. Для трехфазных счетчиков входные зажимы цепей напряжения, однополярные с генераторными зажимами токовых обмоток, обозначаются цифрами 1, 2, 3. Тем самым определяется заданный порядок следования фаз 1-2-3 при подключении счетчиков.

Основные схемы включения однофазных счетчиков

На рисунке 1 изображены принципиальные схемы включения однофазного счетчика активной энергии. Первая схема (а) – непосредственного включения – является наиболее распространенной. Иногда, однофазный электросчётчик включают и полукосвенно – с использованием трансформатора тока (б).

Рисунок 1. Схемы включения однофазного счетчика активной энергии: а — при непосредственном включении; б — при полукосвенном включении. Далее рассмотрим схемы включения трёхфазных электросчётчиков.

Самыми распространёнными являются схемы непосредственного (рис.2) и полукосвенного (рис.3) включения в четырехпроводную сеть:

Рисунок 2. Схема непосредственного включения трёхфазного счетчика активной энергии

Рисунок 3. Схема полукосвенного включения трёхфазного счетчика активной энергии.

При полукосвенном включении используют трансформаторы тока. Выбор трансформаторов тока проводят исходя из потребляемой мощности. Промышленностью выпускаются трансформаторы тока с различным коэффициентом трансформации – 50/5, 100/5 …. 400/5 и т.д.

Подробнее о подключении счетчиков в быту смотрите здесь: Как правильно подключить электрический счетчик

Основные схемы включения трёхфазных электросчётчиков

Кроме полукосвенной схемы, часто применяется и схема косвенного включения трёхфазных электросчётчиков. При этой схеме используют не только трансформаторы тока, но и трансформаторы напряжения.

На рисунке 4 показана схема включения с тремя однофазными трансформаторами напряжения в трёхпроводную сеть, первичные и вторичные обмотки которых соединены в звезду. При этом общая точка вторичных обмоток в целях безопасности заземляется. Это же относится и к вторичным обмоткам трансформаторов тока.

Здесь необходимо обратить внимание на наличие обязательной связи нулевого проводника сети с нулевым зажимом счетчика, т.к. отсутствие такой связи может вызывать дополнительную погрешность при учете энергии в сетях с несимметрией напряжений.

Рисунок 4. Схема косвенного включения трёхфазного счетчика активной энергии в трёхпроводную сеть

Помимо трёхэлементных трёхфазных электросчётчиков, используют и двухэлементные. Принципиальные схемы включения трехфазного двухэлементного счетчика активной энергии типа САЗ (САЗУ) приведены на рисунке 5.

Здесь особо отметим, что к зажиму с цифрой 2 обязательно подключается средняя фаза, т.е. та фаза, ток которой к счетчику не подводится. При включении счетчика с трансформаторами напряжения зажим этой фазы заземляется.

На схеме заземлены зажимы со стороны источника питания (т.е. зажимы И1 трансформаторов тока), но можно было бы заземлять зажимы и со стороны нагрузки.

Счетчики типа САЗ применяются главным образом с измерительными трансформаторами (НТМИ), и поэтому приведенная схема является основной при учете активной энергии в электрических сетях 6 кВ и выше.

Читайте также:  Счетчик моточасов 228чп технические условия

Рисунок 5. Схема полукосвенного включения трёхфазного двухэлементного счетчика активной энергии в трёхпроводную сеть

Необходимо отметить один момент, который я упустил раньше. Рабочее напряжение индукционных электросчётчиков, включаемых по схеме непосредственного и полукосвенного включения, равно 220/380 В. В схемах косвенного включения, т.е. с трансформаторами напряжения, применяют электросчётчики на рабочее напряжение 100 В. Некоторые электронные электросчётчики имеют диапазон входного напряжения 100-400 В, что теоретически позволяет использовать их в схемах с любым типом включения.

При монтаже учётов электроэнергии по схеме полукосвенного или косвенного включения, очень большое значение имеет правильное чередование фаз. Для определения чередования фаз применяют различные приборы, например Е-117 «Фаза-Н».

Схемы включения счетчиков реактивной энергии

Довольно часто, вместе с индукционными электросчётчиками активной энергии, применяют электросчётчики реактивной энергии.

На рисунке 6 приведены схемы полукосвснного включения счетчиков в четырехпроводную сеть (380/220 В). Эта схема требует для монтажа меньшего количества провода или контрольного кабеля. При ее сборке значительно уменьшается риск неправильного включения счетчиков, так как исключается несовпадение фаз (А, В, С) тока и напряжения.

Проверить правильность схемы можно упрощенными способами без снятия векторной диаграммы. Для этого достаточным является измерение фазных напряжений, определение порядка следования фаз и проверка правильности включения токовых цепей с помощью поочередного вывода двух элементов счетчиков из работы и фиксацией при этом правильного вращения диска.

Рисунок 6. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с совмещенными цепями тока и напряжения.

Недостаток схемы заключается в том, что проверка правильности включения токовых цепей вызывает необходимость трижды отключать потребителей и принимать особые меры по технике безопасности при производстве работ, так как вторичные цепи трансформаторов тока находятся под потенциалами фаз первичной сети.

Другим серьезным недостатком рассматриваемой схемы является то, что необходимо зануление или заземления вторичных обмоток измерительных трансформаторов.

В отличие от предыдущей схема на рисунке 7 имеет раздельные цепи тока и напряжения, поэтому она позволяет производить проверку правильности включения счетчиков и их замену без отключения потребителей, так как в этой схеме цепи напряжения могут быть отсоединены. Кроме этого, в ней соблюдены требования ПУЭ к занулению и заземлению вторичных обмоток трансформаторов тока.

Рисунок 7. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с раздельными цепями тока и напряжения.

И в заключение рассмотрим схему косвенного включения двухэлементных электросчётчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ. Принципиальная схема данного включения приведена на рисунке 8.

Рисунок 8. Схема косвенного включения двухэлементных счетчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ.

В данной схеме в качестве счетчика реактивной энергии принят двухэлементный электросчетчик с разделенными последовательными обмотками. Так как в средней фазе сети отсутствует трансформатор тока, то вместо тока Ib к соответствующим токовым обмоткам этого счетчика подведена геометрическая сумма токов Ia +Ic равная — Id.

На рисунке была показана схема включения с использованием трехфазного трансформатора напряжения типа НТМИ. На практике может применяться трехфазный трансформатор напряжения и с заземлением вторичной обмотки фазы В. Вместо трехфазного трансформатора напряжения также могут применяться два однофазных трансформатора напряжения, включенных по схеме открытого треугольника.

Как правило, схема включения счетчика обычно нанесена на крышке клеммной коробки. Однако, в условиях эксплуатации, крышка может оказаться снятой со счетчика другого типа. Поэтому необходимо всегда убедиться в достоверности схемы путем ее сверки с типовой схемой и с разметкой зажимов.

Монтаж цепей напряжения электросчётчика полукосвенного и косвенного включения должен выполняться в соответствии с ПУЭ — медным проводом сечением не менее 1,5 мм, а токовых цепей – сечением не менее 2,5 мм.

При монтаже электросчётчиков непосредственного включения, монтаж должен быть выполнен проводом, рассчитанным на соответствующий ток.

На этом обзор схем включения электросчётчиков будем считать оконченным. Разумеется, нами были рассмотрены далеко не все существующие схемы, а только те, которые наиболее часто используются на практике.

Источник

Двух- и трехэлементные индукционные счетчики

Двухэлементные счетчики используются для учета активной энергии в трехфазных трехпроводных цепях переменного тока.

Читайте также:  Контроль за счетчиками по свету

Трехэлементными счетчиками учитывается активная и реактивная энергия в трехфазных четырехпроводных цепях переменного тока. Кроме того, трехэлементные счетчики применяются также для учета реактивной энергии в трехфазных трехпроводных цепях переменного тока.

В качестве вращающих элементов как в двухэлементных, так и в трехэлементных счетчиках используются вращающие элементы одноэлементных индукционных счетчиков.

Как в двухэлементных, так и в трехэлементных счетчиках диски вращающих элементов укрепляются на одной оси. Это позволяет получать общий вращающий момент подвижной части счетчика, равный алгебраической сумме вращающих моментов отдельных элементов. Таким образом, независимо от количества применяемых вращающих элементов в счетчиках устанавливается один счетный механизм.

На рис. 12.5, а показано принципиальное конструктивное выполнение двухэлементного счетчика, а на рис. 12.5, б — трехэлементного счетчика.

Для двух- и трехэлементных счетчиков введены следующие обозначения:

САЗ — счетчики для учета активной энергии в трехфазной трехпроводной цепи;

СА4 — счетчики для учета активной энергии в трехфазной четырехпроводной цепи;

СР4 — счетчики для учета реактивной энергии в трехфазных трех- и четырехпроводных цепях.

В некоторых случаях к обозначению счетчиков добавляется буква У (универсальный). Например: САЗУ, СА4У, СР4У. Эти счетчики предназначены для работы с измерительными трансформаторами тока и измерительными трансформаторами напряжения с любыми коэффициентами трансформации.

Источник

Счётчик реактивной энергии

Многие слышали о реактивной электрической энергии. Учитывая сложность понимания этого термина, сначала необходимо детально разобрать отличия между активной и реактивной энергиями. Приступить необходимо с осознания того факта, что реактивная энергия проявляет себя только в сетях переменного тока. В цепях, где течёт постоянный ток, реактивной энергии не существует. Это обусловлено самой природой её появления.

Переменный ток поступает к потребителю от генерирующих мощностей через ряд понижающих трансформаторов, конструкция которых предусматривает разделение обмоток высокого и низкого напряжения. То есть, в трансформаторе нет прямого физического контакта между обмотками, а ток, тем не менее, течёт. Объяснение этому довольно простое. Электрическая энергия передаётся через воздух, являющийся хорошим диэлектриком, с помощью электромагнитного поля. Его составляющая — переменное магнитное поле, появляющееся в одной из обмоток трансформатора, постоянно пересекает другую обмотку, не имеющей с первой прямого электрического контакта, наводя в её витках электродвижущую силу.

КПД современных трансформаторов очень велик, поэтому потери электроэнергии составляют незначительную величину и вся мощность переменного тока, протекающего в первичной обмотке, переходит в цепь вторичной обмотки. Такая же картина повторяется в конденсаторе. Только за счёт электрического поля. И индуктивность, и емкость порождают реактивную энергию, периодически возвращая источнику переменного тока часть энергии. Запасание и возврат энергии (реактивной её части) мешают течению активной энергии, которая и выполняет всю полезную работу в сетях — она преобразуется в механическую, тепловую и иные виды работы.

Для компенсации противодействия реактивной энергии потребители, у которых много индуктивной нагрузки применяют специально устанавливаемые емкости (конденсаторы). Это позволяет минимизировать негативное влияние появляющейся реактивной энергии. Как уже отмечено, реактивная мощность оказывает существенное влияние на величину потерь электрической энергии в сети. Помимо этого, большой объём реактивной энергии может снизить уровень электромагнитной совместимости оборудования. Из-за этого величину этой негативной энергии необходимо постоянно контролировать и лучший способ для этого – организация её учёта.

Промышленные предприятия (где, в основном, озабочены проблемой реактивной энергии) часто ставят отдельные приборы учёта для реактивной и активной энергии. Счётчики реактивной энергии ведут её учёт в трёхфазных сетях по двум составляющим (индуктивной и емкостной) в вольт-амперах реактивных часов. Как правило, счётчик реактивной энергии — это аналого-цифровое устройство, преобразующее мощность в аналоговый сигнал, который потом превращается в частоту следования электрических импульсов, сложение которых позволяет судить о величине потребляемой энергии. Конструкция счётчика предусматривает пластмассовый корпус, в котором установлены три трансформатора тока и печатная плата с блоком учёта. На внешней стороне прибора размещены светодиоды и (или) жидкокристаллический экран.

Учитывая растущую конкуренцию, промышленные предприятия всё чаще устанавливают универсальные приборы учёта электрической энергии, способные измерять количество активной и реактивной энергии. Кроме того, что приборы совмещают в себе функции двух и более устройств, потребитель снижает затраты на обслуживание системы учёта (вместо двух счётчиков содержится один) и может сэкономить на цене покупки. Эти устройства на базе микропроцессоров способны измерять мгновенные значения напряжений и токов и вычислять реактивную и активную мощности. Прибор фиксирует уровень потребления энергии и отражает информацию на дисплее тремя сменяющимися кадрами (объём активной энергии, индуктивная составляющая реактивной энергии и её ёмкостная составляющая). Новые модели могут учитывать энергию в двух направлениях, предавать полученные данные по инфракрасному цифровому каналу, лучше защищены от воздействия магнитных полей и от хищений энергии. Высокая точность измерений и малое энергопотребление также выгодно отличают их от предшественников.

Читайте также:  Счетчики электроэнергии однофазные гранит

Источник

Учет электроэнергии двухэлементным счетчиком в сетях 6 — 35 кВ

Учет электроэнергии и измерение мощности в сетях 6 — 35 кВ чаще всего производится двухэлементными счетчиками и ваттметрами, токовые обмотки которых присоединены к трансформаторам тока, установленным в фазах А и С, а на обмотки напряжения поданы линейны напряжения UАВ и UВС (схема Арона) (рис. 1).

Рис. 1. Схема включения двухэлементного счетчика в трехпроводную сеть

В этой измерительной схеме суммарная мощность присоединения определяется следующим выражением:

  • РАВ, РСВ – мощности, измеряемые каждым из измерительных элементов;
  • ϕАВ – угол сдвига между линейным напряжением UАВ и фазным током IА;
  • ϕСВ – угол сдвига между линейным напряжением UСВ и фазным током IС;

Измерение электроэнергии в такой схеме основано на измерении мгновенной мощности, которую, учитывая связь фазных и линейных напряжений, можно выразить следующим образом:

где:
UзА, UзВ, UзС – фазные напряжения относительно земли.

В нормальном режиме работы трехпроводной сети, когда ток нулевой последовательности отсутствует, выражение (1) приобретает вид:

Следовательно, в таком режиме двухэлементный счетчик обеспечивает достоверный учет электроэнергии, что соответствует выводу работы [1] о необходимости при измерении энергии в n-проводной линии иметь n-1 измерительных элементов.

Однако в сетях 6 — 35 кВ могут длительно существовать несимметричные режимы работы линий, когда осуществляется электроснабжение и учет электроэнергии. Это режимы однофазных замыканий на землю, продолжительность которых обычно измеряется часами, а иногда даже сутками.

1. Дрехслер Д. Измерение и оценка качества электроэнергии при несимметричной и нелинейной нагрузке. Пер. с чешск. – М.:Энергоатомиздат. 1985 г.

Источник



Двухэлементный счетчик реактивной энергии

Для измерения энергии в цепях трехфазного тока применяются трехфазные счетчики индукционной системы с двумя и тремя элементами.

Двухэлементный трехфазный счетчик состоит из двух пар электромагнитов и двух алюминиевых дисков, расположенных на одной оси вертикально друг над другом (рис. 1).

Рис. 1 Двухэлементный трехфазный счетчик

Трехэлементный трехдисковый трехфазный счетчик состоит из трех пар электромагнитов А1Б1, А2Б2, А3Б3 и трех алюминиевых дисков Д1, Д2, Д3, расположенных на одной оси вертикально друг над другом (рис. 2, а).

Трехэлементный двухдисковый трехфазный счетчик состоит из трех пар электромагнитов А1Б1, А2Б2, А3Б3 и двух алюминиевых дисков Д1, Д2, расположенных на одной оси вертикально друг над другом (рис. 2, б).

Двухэлементный счетчик включается в трехпроводную трехфазную сеть, а трехэлементный – в четырехпроводную.

Рис. 3 Включение двухэлементного счетчика в трехпроводную трехфазную сеть

В трехфазных двухэлементных счетчиках генераторными зажимами являются 1, 3 и 5, а нагрузочными – 2, 4 и 6 (рис. 3).

На лицевой стороне счетчика указывается число оборотов диска, соответствующее 1 кВт·ч электроэнергии: например, 1 кВт·ч – 1250 оборотов диска. По данным величинам можно определить постоянную счетчика

которая называется номинальной постоянной счетчика. В действительности же при данном количестве энергии, прошедшей через счетчик, диск может совершить другое количество оборотов, тогда постоянная

называется действительной постоянной счетчика.

Относительная погрешность счетчика

Индукционные счетчики имеют невысокий класс точности с погрешностями 1,0; 2,0; 2,5 и низкую чувствительность.

К положительным качествам приборов этой системы можно отнести: большой вращающий момент; малую чувствительность к внешним магнитным полям; устойчивость к перегрузкам.

Источник