Меню

Достоинство двигателя постоянного тока с независимым возбуждением

Приводы и двигатели постоянного тока

Принцип работы

Двигатели постоянного тока

На статоре находится индукторная обмотка (обмотка возбуждения), на которую подаётся постоянный ток — в результате создаётся постоянное магнитное поле (поле возбуждения). В двигателях с постоянными магнитами поле возбуждения создаётся постоянными магнитами.

В обмотку ротора (якорная обмотка) также подаётся постоянный ток, на который со стороны магнитного поля статора действует сила Ампера — создаётся вращающий момент, который поворачивает ротор на 90 электрических градусов, после чего щёточно-коллекторный узел коммутирует обмотки ротора – вращение продолжается.

По способу возбуждения двигатели постоянного тока делятся на четыре группы:

  • С независимым возбуждением — обмотка возбуждения питается от независимого источника
  • С параллельным возбуждением — обмотка возбуждения включается параллельно источнику питания обмотки якоря
  • С последовательным возбуждением — обмотка возбуждения включена последовательно с обмоткой якоря
  • Со смешанным возбуждением — у двигателя есть две обмотки: параллельная и последовательная.

Пуск двигателя постоянного тока

При прямом пуске ток якоря может на порядок превышать номинальный, поэтому при пуске в цепь якоря вводится пусковое сопротивление пусковой реостат. Для плавного пуска реостат делают ступенчатым — в первый момент включаются все ступени (максимальное сопротивление), по мере разгона двигателя растёт противо-ЭДС, ток якоря уменьшается — ступени выключаются одна за другой.

Регулирование скорости вращения двигателя постоянного тока

  • Скорость ниже номинальной регулируется напряжением на якоре (мощность при этом пропорциональна скорости, момент неизменен)
  • Скорость выше номинальной регулируется током обмотки возбуждения — чем слабее поле возбуждения, тем выше скорость (момент падает при постоянной мощности)

Регулирование питания якоря и обмотки возбуждения осуществляется с помощью тиристорных преобразователей (приводов постоянного тока).

Преимущества и недостатки двигателей постоянного тока

Преимущества:

  • Практически линейные характеристики двигателя:
    • механическая характеристика (зависимость частоты от момента)
    • регулировочная характеристика (зависимость частоты от напряжения якоря)
  • Просто регулировать частоту вращения в широких пределах
  • Большой пусковой момент
  • Компактный размер.

Недостатки:

  • Дополнительные расходы на профилактическое обслуживание коллекторно-щёточных узлов
  • Ограниченный срок службы из-за износа коллектора
  • Дороже асинхронных двигателей.

Как выбрать

Выбор двигателя постоянного тока

  • Высота оси
  • Номинальное напряжение якоря
  • Номинальное напряжение возбуждения
  • Номинальная частота вращения
  • Номинальная мощность
  • Номинальный момент
  • Номинальный ток якоря
  • Мощность возбуждения
  • Максимальная частота вращения при понижении поля (выше этой скорости падает мощность)
  • Предельно допустимая рабочая скорость (выше этой скорости начинается механическое разрушение)
  • КПД
  • Момент инерции
  • Степень защиты IP
  • Степень виброустойчивости (прессы и т.п.)
  • Класс изоляции (для работы от преобразователя не ниже F)
  • Температура окружающей среды (для работы при отрицательных температурах в условиях русской зимы требуется специальное исполнение: смазка, вал из специальной стали и т.п.)
  • Высота установки над уровнем моря (выше 1000 метров падают характеристики)
  • Конструктивное исполнение по способу монтажа электродвигателей
    • Маслоуплотнённый фланец для присоединения редуктора
  • Положение клеммной коробки (справа, сверху и т.д.)
  • Тип принудительного охлаждения:
    • Конвекционное: воздушный фильтр, контроль расхода воздуха, встроенный (направление обдува) или внешний (подключение труб) вентилятор
    • Через теплообменник
  • Классификация методов охлаждения электрических двигателей
  • Окраска
  • Подшипники
    • Качения (радиально-упорные)
    • Усиленные подшипники для повышенных радиальных нагрузок на валу
    • С пополнением смазки
    • Для подключения редуктора
  • Вал двигателя
    • Со шпоночным пазом
  • Датчик скорости
    • Тахогенератор
    • Энкодер
  • Тормоз
  • Контроль износа щёток
    • Окошко для визуального контроля
    • Микропереключатель ограничения остаточной длины щёток
  • Контроль нагрева двигателя
    • Термисторная защита – контроль граничных значений (предупреждение, отключение)
    • Непрерывный контроль температуры при помощи датчика KTY
  • Подогрев остановленного двигателя (против образования конденсата)
  • Уровень шума.
Читайте также:  Сила тока все термины

Выбор преобразователя постоянного тока

  • Режим работы:
    • Одноквадрантный (1Q) — нереверсивный
    • Четырёхквадрантный (4Q) — реверсивный.

    Выход:

  • Номинальное постоянное напряжение (якоря двигателя)
  • Номинальный постоянный ток якоря
  • Перегрузочная способность по току
  • Номинальная мощность
  • Мощность потерь (рассеиваемая мощность) при номинальном токе
  • Номинальное постоянное напряжение обмотки возбуждения (напряжение поля)
  • Номинальный постоянный ток обмотки возбуждения (ток поля)
  • Панель оператора (съёмная, хранение параметров, поддержка русского языка)
  • Коммуникационный интерфейс для обмена данными с PLC, HMI (PROFIBUS и др.)
  • Точность регулирования
  • Встроенные ПИД-регуляторы
  • Встроенные функции логического контроллера
  • Сигнальные (дискретные и аналоговые) входы-выходы.

Источник



Двигатель постоянного тока независимого возбуждения (ДПТ НВ)

ads

Двигатель постоянного тока независимого возбуждения (ДПТ НВ) В этом двигателе (рисунок 1) обмотка возбуждения подключена к отдельному источнику питания. В цепь обмотки возбуждения включен регулировочный реостат rрег, а в цепь якоря — добавочный (пусковой) реостат Rп. Характерная особенность ДПТ НВ — его ток возбуждения Iв не зависит от тока якоря Iя так как питание обмотки возбуждения независимое.

Схема двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Механическая характеристика двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Уравнение механической характе­ристики двигателя постоянного тока независимого возбуждения имеет вид

Уравнение механической характе­ристики двигателя постоянного тока независимого (параллельного) воз­буждения

где: n — частота вращения вала двигателя при холостом ходе. Δn — изменение частоты вращения двигателя под действием механической нагрузки.

Из этого уравнения следует, что механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ) прямолинейны и пересекают ось ординат в точке холостого хода n (рис 13.13 а), при этом изменение частоты вращения двигателя Δn, обусловленное изменением его механической нагрузки, пропорционально сопротивлению цепи якоря Rа =∑R + Rдоб. Поэтому при наименьшем сопротивлении цепи якоря Rа = ∑R, когда Rдоб = 0, соответствует наименьший перепад частоты вращения Δn. При этом механическая характеристика становится жесткой (график 1).

Механическая характеристика двигателя постоянного тока независимого возбуждения ДПТ

Механические характеристики двигателя, полученные при номинальных значениях напряжения на обмотках якоря и возбуждения и при отсутствии добавочных сопротивлений в цепи якоря, называют естественными рисунок 13.13, а (график 1 Rдоб = 0 ).

Если же хотя бы один из перечисленных параметров двигателя изменен (напряжение на обмотках якоря или возбуждения отличаются от номинальных значений, или же изменено сопротивление в цепи якоря введением Rдоб), то механиче­ские характеристики называют искусственными .

Искусственные механические характеристики, полученные введением в цепь якоря добавочного сопротивления Rдоб, называют также реостатными (графики 2 и 3).

При оценке регулировочных свойств двигателей постоянного тока наибольшее значение имеют механические характеристики n = f(M). При неизменном моменте нагрузки на валу двигателя с увеличением сопротивления резистора Rдоб частота вращения уменьшается. Сопротивления резистора Rдоб для получения искусственной механической характеристики, соответствующей требуемой частоте вращения n при заданной нагрузке (обычно номинальной) для двигателей независимого возбуждения:

Снимок 5

где U — напряжение питания цепи якоря двигателя, В; Iя — ток якоря, соответствующий заданной нагрузке двигателя, А; n — требуемая частота вращения, об/мин; n — частота вращения холостого хода, об/мин.

Читайте также:  Сообщение по физике мощность электрического тока

Частота вращения холостого хода n представляет собой пограничную частоту вращения, при превышении которой двигатель переходит в генераторный режим. Эта частота вращения превышает номинальную nном на столько, на сколько номинальное напряжение Uном подводимое к цепи якоря, превышает ЭДС якоря Ея ном при номинальной нагрузки двигателя.

Снимок 7

Снимок 8

На форму механических характеристик двигателя влияет величина основного магнитного потока возбуждения Ф. При уменьшении Ф (при возрастании сопротивления резистора rpeг) увеличивается частота вращения холостого хода двигателя n и перепад частоты вращения Δn. Это приводит к значительному изменению жесткости механической характеристики двигателя (рис. 13.13, б). Если же изменять напряжение на обмотке якоря U (при неизменных Rдоб и Rрег), то меняется n, a Δn остается неизменным [см. (13.10)]. В итоге механические характеристики смещаются вдоль оси ординат, оставаясь параллельными друг другу (рис. 13.13, в). Это создает наиболее благоприятные условия при регулировании частоты вращения двигателей путем изменения напряжения U, подводимого к цепи якоря. Такой метод регулирования частоты вращения получил наибольшее распространение еще и благодаря разработке и широкому применению регулируемых тиристорных преобразователей напряжения.

Используемая литература: — Кацман М.М. Справочник по электрическим машинам

Источник

Общие сведения по ДПТ НВ, достоинства и недостатки

date image2015-03-20
views image2484

facebook icon vkontakte icon twitter icon odnoklasniki icon

Электропривода с ДПТ НВ являлись до недавнего времени основным видом регулируемого ЭП с достаточно высокими показателями качества.

Наиболее распространенной серией двигателя постоянного тока остается серия – 2П в диапазоне мощностей от 0,13 до 200 кВт различного исполнения. Усовершенствование двигателей привело к разработке новой серии – 4П с улучшенными удельными показателями, где по сравнению с серией 2П снижена трудоемкость изготовления в 3 раза при уменьшении расхода меди на 30%. Для крановых механизмов выпускаются двигатели серии Д, для металлорежущих станков серии – ПБСТ, ПГТ.

Схемы включения ДПТ параллельного и независимого возбуждения представлены на рисунке 1.

Рисунок 1 – Схемы подключения ДПТ параллельного и независимого возбуждения

Питание может осуществляться как от общего источника питания, так и независимо.

Способ возбуждения определяет электромеханические свойства двигателя.

ДПТ НВ (шунтовые) при изменении нагрузки на валу в широких пределах мало изменяют свою скорость вращения, поэтому их применяют в тех случаях, когда важно, чтобы рабочая скорость механизма оставалась примерно постоянной (как при холостом ходе, так и нагрузке).

Преимуществом ДПТ НВ является также возможность плавного регулирования частоты вращения в широких пределах.

Двигатели постоянного тока серии – П изготавливались с параллельной и последовательной обмотками возбуждения и могут работать как в режиме с параллельным, так и смешанным возбуждением.

Для изменения направления вращения необходимо изменить полярность или в обмотке возбуждения или в якоре.

Большим недостатком ДПТ является их стоимость, а также необходимость в источнике постоянного тока.

Источник

Двигатель постоянного тока с параллельным возбуждением – схема работы

Двигатель постоянного тока с параллельным возбуждением – это электродвигатель, у которого обмотки якоря и возбуждения подключаются друг к другу параллельно. Часто по своей функциональности он превосходит агрегаты смешанного и последовательного типов в случаях, если необходимо задать постоянную скорость работы.

Читайте также:  Как правильно подобрать ток для сварки инвертором

Характеристики двигателя постоянного тока с параллельным возбуждением

Формула общего тока, идущего от источника, выводится согласно первому закону Кирхгофа и имеет вид: I = Iя + Iв, где Iя — ток якоря, Iв – ток возбуждения, а I – ток, который двигатель потребляет от сети. Следует отметить, что при этом Iв не зависит от Iя, т.е. ток возбуждения не зависит от нагрузки. Величина тока в обмотке возбуждения меньше тока якоря и составляет примерно 2-5% от сетевого тока.

В целом, данные электродвигатели отличаются следующими весьма полезными тяговыми параметрами:

  • Высокая экономичность (поскольку ток якоря не проходит через обмотку возбуждения).
  • Устойчивость и непрерывность рабочего цикла при колебаниях нагрузки в широких пределах (т.к. величина момента сохраняется даже в случае изменения числа оборотов вала).

При недостаточном моменте пуск осуществляется посредством перехода на смешанный тип возбуждения.

Сферы применения двигателя

Поскольку частота вращения подобных двигателей остается почти постоянной даже при изменении нагрузки, а также может изменяться при помощи регулировочного реостата, они широко применяются в работе с:

  • вентиляторами;
  • насосами;
  • шахтными подъемниками;
  • подвесными электрическими дорогами;
  • станками (токарными, металлорежущими, ткацкими, печатными, листоправильными и пр.).

Таким образом, этот вид двигателей в основном используется с механизмами, требующими постоянства скорости вращения или ее широкой регулировки.

Регулирование частоты вращения

Регулирование скорости – это целенаправленное изменение скорости электродвигателя в принудительном порядке при помощи специальных устройств или приспособлений. Оно позволяет обеспечить оптимальный режим работы механизма, его рациональное использование, а также уменьшить расход энергии.

Существует три основных способа регулирования скорости двигателя:

  1. Изменение магнитного потока главных полюсов. Осуществляется при помощи регулировочного реостата: при увеличении его сопротивления магнитный поток главных полюсов и ток возбуждения Iв уменьшаются. При этом увеличивается число оборотов якоря на холостом ходу, а также угол наклона механической характеристики. Жесткость механических характеристик сохраняется. Однако увеличение скорости может привести к механическим повреждениям агрегата и к ухудшению коммутации, поэтому не рекомендуется увеличивать частоту вращения этим методом более чем в два раза.
  2. Изменение сопротивления цепи якоря. К якорю последовательно подключается регулировочный реостат. Скорость вращения якоря уменьшается при увеличении сопротивления реостата, а наклон механических характеристик увеличивается. Регулировка скорости вышеуказанным способом:
  • способствует уменьшению частоты вращения относительно естественной характеристики;
  • связана с большой величиной потерь в регулировочном реостате, следовательно, неэкономична.
  1. Безреостатное изменение подаваемого на якорь напряжения. В этом случае необходимо наличие отдельного источника питания с регулируемым напряжением, например, генератора или управляемого вентиля.

Двигатель с независимым возбуждением

Двигатель постоянного тока независимого возбуждения как раз и реализует третий принцип регулирования скорости. Его отличие в том, что обмотка возбуждения и магнитное поле главных полюсов подключаются к разным источникам. Ток возбуждения является неизменной характеристикой, а магнитное поле меняется. При этом изменяется число оборотов вала на холостом ходу, жесткость характеристики остается прежней.

Таким образом, принцип работы дпт с независимым возбуждением является достаточно сложным вследствие независимой работы двух источников, тем не менее, его главное преимущество – большая экономичность.

Источник