Меню

Диапазон токов срабатывания расцепителя короткого замыкания

Выбор защитного автомата

Защитные автоматы

Когда нужно выбрать автомат для дома, как правило, многие руководствуются подсчетами суммарной мощности приборов, подключаемых к ветке/зоне и накидывают приличный запас по току, дабы оградить себя от ложных срабатываний автомата. Про ВТХ (время-токовая характеристика) знает не всякий электрик, не говоря уже о домашнем мастере. В этой статье мы немного углубимся в теорию, рассмотрим некоторые важные моменты и выведем из всего сказанного простейшую таблицу, руководствуясь которой, мы будем уверены в надежном и своевременном срабатывании защитного автомата.

От чего должен защищать автомат?

В первую очередь автомат предназначен для защиты проводки от возгорания и разрушения. Электроприборы, как правило, автомат не защищает, не защищает и человека от удара током — эту функцию выполняет дифференциальный выключатель (УЗО в народе) или дифференциальный автомат (совмещает в себе УЗО и защитный автомат). Так вот, раз защищает проводку, значит номинал не должен быть завышен для исключения лишних срабатываний — если проводке угрожает возгорание или разрушение, ни о каком запасе по мощности не должно быть и речи! Простая мудрость: если хочешь надежную защиту и минимум срабатываний — увеличь сечение токопроводящих жил проводов, в разумных пределах естественно.

Существует заблуждение, что если проводка выдерживает ток, равный номиналу автомата, то все в порядке и пожара никогда не случится. Это далеко не так. В прошлой статье мы поверхностно затронули тему проводки и автоматов, но главное мы познакомились с таблицей, в которой указаны токи для различных сечений проводов. Теперь мы воспользуемся этой таблицей и увидим, какие провода номиналом какого автомата можно защищать.

При каком токе сработает автомат?

В современных автоматах встроенно две защиты: электромагнитный расцепитель и тепловой, каждый выполняет свою важную функцию. Электромагнитный расцепитель призван защищать от коротких замыканий , иногда от неисправных электроприборов. Ток короткого замыкания очень большой и очень опасен для проводки, приборов учета, поэтому необходимо моментальное срабатывание автомата, как правило время срабатывания электромагнитного расцепителя не превышает 0,1 секунды или меньше (зависит от класса токоограничения автомата), зависит от конкретного прибора. Ток срабатывания такого расцепителя превышает номинальный в 5-10 раз! Естественно, от незначительной перегрузки он не защитит. Для защиты от перегрузок предназначен тепловой расцепитель. Время его срабатывания значительно дольше чем у магнитного, однако срабатывает тепловой расцепитель даже от незначительных перегрузок. Тепловой расцепитель может сработать и за секунду, а может «думать» целый час. Так вот, если 5-10 кратные перегрузки КЗ в течение 0,1 секунды провод переживет, то целый час «висеть» под током, в 1,5 раза превышающем номинал автомата способен не всякий провод!

Поэтому давайте обратим внимание на более медленную, но более чувствительную защиту — тепловой расцепитель автомата.

При каком токе срабатывает тепловой расцепитель?

Конкретной цифры, соответствующей номиналу автомата нет, есть лишь время-токовая характеристика от производителя автомата. Графики мы рассматривать сегодня не будем, дабы не вносить еще большей путаницы, рассмотрим лишь две важные величины: ток условного нерасцепления 1,13in и ток условного расцепления 1,45in. Ток условного нерасцепления — это ток, при котором автомат гарантированно проработает не меньше часа (для автоматов с номиналом менее 63А). Равен он номиналу автомата, умноженному на коэффициент 1,13, для номинала 16А это 16*1,13=18,08А, автомат 16А гарантированно проработает час при токе 18 ампер! Ток условного расцепления — это ток, при котором автомат гарантированно сработает через час, для номинала 16А это 16*1,45=23,2А. Вот на ток условного расцепления и следует обращать внимание при выборе номинала автомата или сечения провода. Если ветка защищена автоматом 16А, то проводка в этой ветке должна выдерживать 23А, ведь такой ток возможен при перегрузках, пока не сработает автомат, а сработать он может и через час! Стоит отметить, что, как правило, приведенные цифры справедливы к автоматам с характеристикой «В» и «С», и более точную информацию вы найдете в паспорте к прибору. Важно подбирать проводку, выдерживающую полтора номинала автомата!

Если вы внимательный читатель, то вы заметите некоторые противоречия в этой и прошлой статье: там я рекомендую защищать провод сечением 1,5 мм2 автоматом не более 16А. Ведь медный провод 1,5 мм2 выдерживает ток не более 19А. Объясняю: данный провод я рекомендовал использовать для освещения, а не для розеток, в освещении перегрузку в 19А представить сложно, только КЗ, а доли секунд короткого замыкания провод выдержит. Другое дело если использовать провод 1,5 мм2 для розеток: в розетки можно понавтыкать множество приборов и те самые 23А очень даже не исключены, для розеток такой провод использовать крайне не желательно! Для этих целей предназначен провод 2,5 мм2.

Как ни странно, зачастую в новостройках электрики игнорируют эти самые ВТХ автоматов, ведь 1,5 мм2 согласно таблице выдерживают до 4-х киловатт (220вольт*19А=4180ватт) и плевать, что автомат отключится только на нагрузке в 5 киловатт, и то через целый час! Так же часто вижу как группы розеток защищают автоматами с номиналом 25А, при проводе 2,5 мм2 — по сути автоматы защищают только от КЗ. И все это на фоне того, что производители проводов сплошь и рядом занижают реальное сечение проводов. Ну пусть данное явление останется на совести проверяющих органов, теперь мы знаем — так делать не следует.

Какой автомат выбрать, B или C?

Защитные автоматы характеристики B и CТип время-токовой характеристики указывается перед значением номинального тока на автомате.

Как мы выяснили из всего вышесказанного, нужно руководствоваться характеристикой, равной полуторному значению от номинала автомата. Это позволит грамотно подобрать автомат для защиты от перегрузки. Для защиты от КЗ имеет значение «В» или «С», эти буквы пишутся перед значением тока на автоматах. Например «В16А» читается «автомат на 16 ампер с характеристикой бэ» или «С25А» — «автомат на 25 ампер с характеристикой цэ». В автоматах с характеристикой «В» электромагнитный расцепитель срабатывает при превышении тока в 3-5 раз от номинального, в автоматах с характеристикой «С» — при превышении тока в 5-10 раз от номинального. Естественно лучше выбрать прибор, который сработает при меньшем токе, то есть с характеристикой «В». Между прочим, данная характеристика справедлива по отношению и к дифференциальным автоматам.

Дифавтомат характеристики CДифавтомат совмещает в себе УЗО и автомат, поэтому для него аналогично указывается характеристика.

Существует заблуждение, что С-ешки следует ставить там, где имеются приборы с повышенными пусковыми токами, такими как холодильники, нагревательные приборы и т.д. Это не более чем домыслы от незнания — пусковые токи данных приборов не превышают 3-х кратные значения рабочих токов. Данное утверждение относится к мощным асинхронным двигателям, которые используются в станках, если у вас дома есть станок — тогда да, лучше защитить его С-ешкой.

Итак, какую характеристику все-таки выбрать? В большинстве случаев обе время-токовые характеристики применимы для защиты. Характеристика «C» ничуть не хуже проявляет свои защитные свойства там, где ток короткого замыкания в несколько раз превышает номинальное значение, помноженное на 10 (10-кратное превышение). Простыми словами, там где сеть не просажена и напряжение близко к 220 В — про тип автомата можно не переживать. В дачных же поселениях, там где напряжение сети порой может проседать до 160 В и ниже, лучше применить «B».

Стоит заметить, что применив «B»-шку в любой ситуации, вы не прогадаете. Если вышеприведенные высказывания вас не устраивают и вы привыкли оперировать точными цифрами — нужно померить ожидаемый ток короткого замыкания, «козу», как это называется у электриков. И сравнить десятикратный ток «C»-шки с полученным результатом. Как измерять «козу» мы рассмотрим в последующих публикациях.

Применение обеих характеристик на вводе (C) и ветках (B) обычно не приводит к селективности защиты, когда при КЗ отключается только проблемная ветка, а вводной автомат включен. Если подобные случаи и имеют место быть, то в большей мере это можно списать на случайность, нежели на селективность.

Действительной, эффективной селективности можно добиться только путем установки дорогих аппаратов, в технических описаниях которых производитель указывает тип и класс токоограничения вводных, и групповых автоматов.

Таблица сечений медных проводов и автоматов к ним

А вот и обещанная таблица. Вы можете и самостоятельно рассчитать автомат, для этого нужно знать максимальный ток защищаемого провода, он должен быть не менее номинала автомата, помноженного на коэффициент 1,45.

Источник



Автоматические выключатели. Обзор.

Автоматический выключатель (автомат) — это коммутационный аппарат предназначенный для защиты электрической сети от сверхтоков, т.е. от коротких замыканий и перегрузок.

Читайте также:  Потери от токов фуко

Определение «коммутационный» означает, что данный аппарат может включать и отключать электрические цепи, другими словами производить их коммутацию.

Автоматические выключатели бывают с электромагнитным расцепителем защищающим электрическую цепь от короткого замыкания и комбинированным расцепителем — когда дополнительно с электромагнитным расцепителем применяется тепловой расцепитель защищающий цепь от перегрузки.

Примечание:В соответствии с требованиями ПУЭ бытовые электросети должны быть защищены как от коротких замыканий, так и от перегрузки, поэтому для защиты домашней электропроводки следует применять автоматы именно с комбинированным расцепителем.

Автоматические выключатели делятся на однополюсные (применяются в однофазных сетях), двухполюсные (применяются в однофазных и двухфазных сетях) и трехполюсные (применяются в трехфазных сетях), так же бывают четырехполюсные автоматические выключатели (могут применяться в трехфазных сетях с системой заземления TN-S).

Устройство и принцип работы автоматического выключателя.

На рисунке ниже представлено устройство автоматического выключателя с комбинированным расцепителем, т.е. имеющий и электромагнитный и тепловой расцепитель.

printsip raboty avtomaticheskogo vyklyuchatelya

  • 1 — корпус;
  • 2,3 — нижняя и верхняя винтовые клеммы для подключения провода;
  • 4 — неподвижный контакт;
  • 5 — подвижный контакт;
  • 6 — дугогасительная камера;
  • 7 — гибкий проводник (применяется для соединения подвижных частей автоматического выключателя);
  • 8 — механизм взвода и расцепления
  • 9 — катушка электромагнитного расцепителя;
  • 10 — рычаг управления;
  • 11 — тепловой расцепитель (биметаллическая пластина);
  • 12 — регулировочный винт;

Синими стрелками на рисунке показано направление протекания тока через автоматический выключатель.

Основными элементами автоматического выключателя являются электромагнитный и тепловой расцепители:

Электромагнитный расцепитель обеспечивает защиту электрической цепи от токов короткого замыкания. Он представляет из себя катушку с находящимся в ее центре сердечником который установлен на специальной пружине, ток в нормальном режиме работы проходя по катушке согласно закону электромагнитной индукции создает электромагнитное поле которое притягивает сердечник внутрь катушки, однако силы этого электромагнитного поля не хватает что бы преодолеть сопротивление пружины на которой установлен сердечник.

При коротком замыкании ток в электрической цепи мгновенно возрастает до величины в несколько раз превышающей номинальный ток автоматического выключателя, этот ток короткого замыкания проходя по катушке электромагнитного расцепителя увеличивает электромагнитное поле воздействующее на сердечник до такой величины, что его силы втягивания хватает на то что бы преодолеть сопротивление пружины, перемещаясь внутрь катушки сердечник размыкает подвижный контакт автоматического выключателя обесточивая цепь:

printsip raboty avtomaticheskogo vyklyuchatelya 2

При коротком замыкании (т.е. при мгновенном возрастании тока в несколько раз) электромагнитный расцепитель отключает электрическую цепь за доли секунды.

Тепловой расцепитель обеспечивает защиту электрической цепи от токов перегрузки. Перегрузка может возникнуть при включении в сеть электрооборудования общей мощностью превышающей допустимую нагрузку данной сети, что в свою очередь может привести к перегреву проводов разрушению изоляции электропроводки и выходу ее из строя.

Тепловой расцепитель представляет из себя биметаллическую пластину. Биметаллическая пластина — эта пластина спаянная из двух пластин различных металлов (металл «А» и металл «В» на рисунке ниже) имеющих разный коэффициент расширения при нагреве.

printsip raboty avtomaticheskogo vyklyuchatelya 3

При прохождении по биметаллической пластине тока превышающего номинальный ток автоматического выключателя пластина начинает нагреваться, при этом металл «B» имеет больший коэффициент расширения при нагреве, т.е. при нагреве он расширяется быстрее чем металл «A», что приводит к искривлению биметаллической пластины, искривляясь она воздействует на механизм расцепителя, который размыкает подвижный контакт. В простой схеме это выглядит так:

printsip raboty avtomaticheskogo vyklyuchatelya 4

Время срабатывания теплового расцепителя зависит от величины превышения тока электросети номинального тока автомата, чем больше это превышение тем быстрее сработает расцепитель.

Как правило тепловой расцепитель срабатывает при токах в 1,13-1,45 раз превышающих номинальный ток автоматического выключателя, при этом токе превышающем номинальный в 1,45 раза тепловой расцепитель отключит автомат через 45 мин — 1 час.

Время срабатывания автоматических выключателей определяется по их время-токовым характеристикам (ВТХ)

При любом отключении автоматического выключателя под нагрузкой на подвижном контакте образуется электрическая дуга которая оказывает разрушающее воздействие на сам контакт, причем чем выше отключаемый ток, тем мощнее электрическая дуга и тем большее ее разрушающее воздействие. Для сведения к минимуму ущерба от электрической дуги в автоматическом выключателе она направляется в дугогасительную камеру, которая состоит из отдельных, параллельно установленных пластин, попадая между этих пластин электрическая дуга дробится и затухает.

Маркировка и характеристики автоматических выключателей.

printsip raboty avtomaticheskogo vyklyuchatelya 6

ВА63 — тип и серия автоматического выключателя

Номинальный ток — максимальный ток электрической сети при котором автоматический выключатель способен длительно работать без аварийного отключения цепи.

Стандартные значения номинальных токов автоматических выключателей: 1; 2; 3; 4; 5; 6; 8; 10; 13; 16; 20; 25; 32; 35; 40; 50; 63; 80; 100; 125; 160; 250; 400; 630; 1000; 1600; 2500; 4000; 6300, Ампер.

Номинальное напряжение — максимальное напряжение сети на которое рассчитан автоматический выключатель.

ПКС — предельная отключающая способность автоматического выключателя. Данная цифра показывает максимальный ток короткого замыкания который способен отключить данный автоматический выключатель сохранив при этом свою работоспособность.

В нашем случае ПКС указан 4500 А (Ампер), это значит что при токе короткого замыкания (к.з.) меньшем, либо равном 4500 А автоматический выключатель способен разомкнуть электрическую и остаться в исправном состоянии, в случае если ток к.з. превысит данную цифру возникает возможность оплавления подвижных контактов автомата и их привариванию друг к другу.

Характеристика срабатывания — определяет диапазон срабатывания электромагнитного расцепителя автоматического выключателя.

Например в нашем случае представлен автомат с характеристикой «C» его диапазон срабатывания от 5·Iн до 10·Iн включительно. (Iн— номинальный ток автомата), т.е. от 5*32=160А до 10*32+320, это значит что наш автомат обеспечит мгновенное отключение цепи уже при токах 160 — 320 А.

Характеристики-автоматических-выключателей

Примечание:

  • Стандартными характеристиками срабатывания (предусмотренными ГОСТ Р 50345-2010) являются характеристики «B», «C» и «D»;
  • Область применения указана в таблице согласно установившейся практике, однако она может быть иной в зависимости от индивидуальных параметров конкретных электрических сетей.

Выбор автоматического выключателя

Выбор автомата осуществляется по следующим критериям:

— По количеству полюсов: одно- и двухполюсные применяются для однофазной сети, трех- и четырехполюсные — в трехфазной сети.

— По номинальному напряжению: Номинальное напряжение автоматического выключателя должно быть больше либо равно номинальному напряжению защищаемой им цепи: Uном. АВ Uном. сети

— По номинальному току: Определить необходимый номинальный ток автоматического выключателя можно одним из следующих способов:

  • Калькулятор мощности автоматического выключателя по номинальному току
  • С помощью одной из следующих таблиц:

Подбор автоматического выключателя по мощности:

Вид подключения Однофазное Однофазное вводный Трехфазное треугольником Трехфазное звездой
Полюсность автомата Однополюсный автомат Двухполюсный автомат Трехполюсный автомат Четырехполюсный автомат
Напряжение питания 220 Вольт 220 Вольт 380 Вольт 220 Вольт
Автомат 1А 0.2 кВт 0.2 кВт 1.1 кВт 0.7 кВт
Автомат 2А 0.4 кВт 0.4 кВт 2.3 кВт 1.3 кВт
Автомат 3А 0.7 кВт 0.7 кВт 3.4 кВт 2.0 кВт
Автомат 6А 1.3 кВт 1.3 кВт 6.8 кВт 4.0 кВт
Автомат 10А 2.2 кВт 2.2 кВт 11.4 кВт 6.6 кВт
Автомат 16А 3.5 кВт 3.5 кВт 18.2 кВт 10.6 кВт
Автомат 20А 4.4 кВт 4.4 кВт 22.8 кВт 13.2 кВт
Автомат 25А 5.5 кВт 5.5 кВт 28.5 кВт 16.5 кВт
Автомат 32А 7.0 кВт 7.0 кВт 36.5 кВт 21.1 кВт
Автомат 40А 8.8 кВт 8.8 кВт 45.6 кВт 26.4 кВт
Автомат 50А 11 кВт 11 кВт 57 кВт 33 кВт
Автомат 63А 13.9 кВт 13.9 кВт 71.8 кВт 41.6 кВт

Подбор автоматического выключателя по сечению жил кабеля:

Сечение кабеля, кв.мм Номинальный ток автомата, А Мощность 1-фазной нагрузки при 220В, кВт Мощность 3-фазной нагрузки при 380В, кВт
Медь Алюминий
1 2.5 6 1.3 3.2
1.5 2.5 10 2.2 5.3
1.5 2.5 16 3.5 8.4
2.5 4 20 4.4 10.5
4 6 25 5.5 13.2
6 10 32 7 16.8
10 16 40 8.8 21.1
10 16 50 11 26.3
16 25 63 13.9 33.2

— Выбираем характеристику срабатывания: зачастую характеристику срабатывания автоматического выключателя выбирают исходя из назначения защищаемой им сети (согласно таблице характеристик срабатывания выше) однако автомат выбранный таким образом может не обеспечить своевременное отключение цепи при коротком замыкании, характеристику срабатывания необходимо определять по методике приведенной здесь.

Источник

Время-токовые характеристики (ВТХ) автоматических выключателей

Введение

Как известно автоматические выключатели могут иметь следующие виды расцепителей обеспечивающих защиту электрической цепи от сверхтоков: электромагнитный — защищающий сеть от коротких замыканий, тепловой — обеспечивающий защиту от токов перегрузки и комбинированный представляющий собой совокупность электромагнитного и теплового расцепителя (подробнее читайте статью «автоматические выключатели«).

Примечание: Современные автоматические выключатели предназначенные для защиты электрических сетей до 1000 Вольт имеют, как правило, комбинированные расцепители.

Расцепители автоматических выключателей — это исполнительные механизмы которые обеспечивают отключение (расцепление) электрической цепи при возникновении в ней тока выше допустимого, причем чем больше это превышение тем быстрее должно произойти расцепление.

Зависимость времени расцепления автоматического выключателя от величины проходящего через него тока и называется время-токовой характеристикой или сокращенно — ВТХ.

Условия и значения ВТХ

ВТХ автоматов определяются следующими значениями:

1) Ток мгновенного расцепления — минимальное значение тока, вызывающее автоматическое срабатывание выключателя без преднамеренной выдержки времени. (ГОСТ Р 50345-2010, п. 3.5.17)

Примечание: срабатывание без преднамеренной выдержки времени обеспечивается электромагнитным расцепителем автомата.

Ток мгновенного расцепления определяется так называемой «характеристикой расцепления» или как ее еще называют — характеристика срабатывания.

Согласно ГОСТ Р 50345-2010 существуют следующие типы характеристик срабатывания автоматических выключателей:

стандартные характеристики срабатывания (расцепления) автоматов

Примечание: существуют так же и другие, нестандартные типы характеристик, о них мы говорили в статье «автоматические выключатели«.

Как видно из таблицы выше ток мгновенного расцепления указывается в виде диапазона значений, например характеристика «B» предполагает, что автомат обеспечит мгновенное расцепление при протекании через него тока в 3 — 5 раз превышающего его номинальный ток, т.е. если автоматический выключатель с данной характеристикой имеет номинальный ток 16 Ампер, то он обеспечит мгновенное расцепление при токе от 48 до 80 Ампер.

Определить характеристику срабатывания автоматического выключателя, как правило, можно по маркировке нанесенной на его корпусе:

маркировка характеристики срабатывания на автоматическом выключателе

2) Условный ток нерасцепления — установленное значение тока, который автоматический выключатель способен проводить, не срабатывая, в течение заданного (условного) времени*. (ГОСТ Р 50345-2010, п. 3.5.15) Согласно пункту 8.6.2.2 ГОСТ Р 50345-2010 условный ток нерасцепления равен 1,13 номинального тока автомата.
3) Условный ток расцепления — установленное значение тока, которое вызывает срабатывание автоматического выключателя в течение заданного (условного) времени*. (ГОСТ Р 50345-2010, п. 3.5.16) Согласно пункту 8.6.2.3 ГОСТ Р 50345-2010 условный ток расцепления равен 1,45 номинального тока автомата.

* Условное время равно 1 ч для выключателей с номинальным током до 63 А включительно и 2 ч с номинальным током свыше 63 А. (ГОСТ Р 50345-2010, п.8.6.2.1)

Время-токовая характеристика автоматического выключателя определяется условиями и значениями приведенными в таблице 7 ГОСТ Р 50345-2010:

значения ВТХ автоматов таблица 7 ГОСТ Р 50345-2010

Примечание: Таблица действительна для автоматов, смонтированных в соответствии с условиями испытаний приведенными ниже работающих при температуре 30 +5 °С

Графики ВТХ

Для удобства производителями в паспортах на автоматические выключатели время-токовые характеристики указываются в виде графика где по оси X откладывается кратность тока электрической цепи к номинальному току автомата (I/In), а по оси Y время срабатывания расцепителя.

Для подробного рассмотрения в качестве примера возьмем график ВТХ для автоматического выключателя с характеристикой «B»

ПРИМЕЧАНИЕ: Все приведенные ниже графики предоставлены в качестве примера. У различных производителей графики ВТХ могут отличаться (смотрите в паспорте автомата), однако они в любом случае должны соответствовать требованиям ГОСТ Р 50345-2010 и в частности значениям указанным в таблице 7 приведенной выше.

расшифровка графика ВТХ автомата

Как видно график ВТХ представлен двумя кривыми: первая кривая (красная) — это характеристика автомата в так называемом «горячем» состоянии, т.е. автомата находящегося в работе, вторая (синяя) — характеристика автомата в «холодном» состоянии, т.е. автомата через который только начал протекать электрический ток.

При этом синяя кривая имеет дополнительно штриховую линию, эта линия показывает характеристику автомата (его теплового расцепителя) с номинальным током до 32 Ампер, это различие в характеристиках автоматов с номиналами до и выше 32 Ампер обусловлено тем, что в автоматах с большим номинальным током биметаллическая пластина теплового расцепителя имеет большее сечение и соответственно ей необходимо больше времени что бы разогреться.

Кроме того каждая кривая имеет два участка: первый — показывающий плавное изменение времени срабатывания в зависимости от тока электрической цепи является характеристикой теплового расцепителя, второй — показывающий резкое снижение времени срабатывания (при токе от 3 In в горячем состоянии и от 5 In в холодном состоянии ), является характеристикой электромагнитного расцепителя автоматического выключателя.

чтение графика ВТХ автомата

Как видно, на графике ВТХ отмечены основные значения характеристик автомата согласно ГОСТ Р 50345-2010 при 1.13In (Условный ток нерасцепления) автомат не сработает в течении 1-2 часов, а при токе в 1,45 In (Условный ток расцепления) автомат отключит цепь за время менее 50 секунд (из горячего состояния).

Как уже было сказано выше ток мгновенного расцепления определяется характеристикой срабатывания автомата, у автоматических выключателей с характеристикой «B» он составляет от 3In до 5In, при этом согласно вышеуказанному ГОСТу (таблице 7) при 3In автомат не должен сработать за время менее 0,1 секунды из холодного состояния, но должен отключиться за время менее 0,1 секунды из холодного состояния при токе в цепи 5In и как мы можем увидеть из графика выше данное условие выполняется.

Так же по время-токовой характеристике можно определить время срабатывания автомата при любых других значениях тока, например: в цепи установлен автомат с характеристикой «B» и номинальным током 16 Ампер, при работе в данной цепи произошла перегрузка и ток вырос до 32 ампер, определяем время срабатывания автомата следующим образом:

  1. Делим ток протекающий в цепи на номинальный ток автомата

32А/16А=2

Определив что ток в цепи в два раза больше номинала автомата, т.е. составляет 2In откладываем данное значение по оси X графика и поднимая от нее условную линию вверх смотрим где она пересекается с кривыми графика:

срабатывание автомата при двукратном токе в цепи

Как мы видим из графика при токе 32 Ампера автомат с номинальным током 16 Ампер разомкнет цепь за время менее 10 секунд — из горячего состояния и за время менее 5 минут — из холодного состояния.

Приведем примеры ВТХ автоматических выключателей всех стандартных характеристик срабатывания (B, C, D):

время-токовая характеристика автомата типа B

время-токовая характеристика автомата типа C

время-токовая характеристика автомата типа D

ПРИМЕЧАНИЕ: Время-токовые характеристики согласно ГОСТ Р 50345-2010 указываются для автоматов работающих при температуре +30 +5 о C смонтированных в соответствии с определенными условиями:

Условия испытания. Поправочные коэффициенты.

Согласно ГОСТ Р 50345-2010 При испытаниях выключатели устанавливают отдельно, вертикально, на открытом воздухе в месте, защищенном от чрезмерного внешнего нагрева или охлаждения.

испытания автоматических выключателей проводят при любой температуре воздуха, а результаты корректируют по температуре +30 °С на основании поправочных коэффициентов, предоставленных изготовителем.

При этом в любом случае отклонение испытательного тока от указанного в таблице 7 не должно превышать 1,2% на 1 °С изменения температуры калибровки.

Изготовитель должен подготовить данные по изменению характеристики расцепления для температур калибровки, отличных от контрольного значения.

Таким образом, что бы точно узнать время отключения автоматических выключателей, эксплуатируемых при условиях отличающихся от условий испытания необходимо воспользоваться поправочными коэффициентами которые должен предоставить изготовитель данных выключателей.

Приведем пример таких поправочных коэффициентов (обычно их всего 2):

  • Температурный коэффициент (Кt)

Температурный коэффициент учитывает отличие температуры окружающей среды при которой автоматический выключатель испытывался от фактической температуры окружающей среды при которой он эксплуатируется:

поправочный температурный коэффициент автоматического выключателя

Как видно из графика, чем ниже температура окружающей среды тем выше данный коэффициент. Объясняется это просто — чем ниже температура окружающей среды, тем больший ток должен протекать через автоматический выключатель что бы нагреть расцепитель до температуры необходимой для его срабатывания.

  • Коэффициент, учитывающий количество установленных рядом автоматов (Кn)

Как было сказано выше, автоматические выключатели при их испытании устанавливаются отдельно, однако на практике они устанавливаются в электрических щитах в один ряд с другими автоматами, что соответственно ухудшает их охлаждение за счет ухудшения циркуляции воздуха и тепла от установленных рядом выключателей:

поправочный коэффициент учитывающий количество автоматических выключателей

Соответственно, как и можно увидеть из графика, чем больше рядом установлено автоматов, тем меньше данный коэффициент.

Зная поправочные коэффициенты можно скорректировать номинальный ток автомата в зависимости от условий его эксплуатации.

Например: имеется автоматический выключатель с номинальным током 16 Ампер установленный в щитке с 5 другими автоматами при температуре окружающего воздуха +10 о C.

  1. По графикам выше найдем поправочные коэффициенты:
  • Кt=1,05
  • Кn=0,8
  1. Зная поправочные коэффициенты скорректируем номинальный ток автомата:

In / = In* Кt* Кn=16*1.05*0.8=13.44 Ампер

Соответственно при эксплуатации автоматического выключателя в вышеуказанных условиях для определения времени его срабатывания необходимо принимать ток не 16 Ампер, а 13,44 Ампера.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник

Основные характеристики автоматического выключателя

Материал из Руководство по устройству электроустановок

Содержание

  • 1 Номинальное рабочее напряжение (Ue)
  • 2 Номинальный ток (In)
  • 3 Номинальный ток выключателя при использовании расцепителей с разными диапазонами уставок
  • 4 Уставка реле перегрузки по току отключения (Irth или Ir)
  • 5 Уставка по току отключения при коротком замыкании (Im)
  • 6 Гарантированное разъединение
  • 7 Номинальная отключающая способность при коротком замыкании (Icu или Icn)
  • 8 Примечания

Основными характеристиками автоматического выключателя являются:

  • номинальное напряжение Ue;
  • номинальный ток In;
  • диапазоны регулировки уровней тока отключения для защиты от перегрузки Ir [1] или Irth [1] и защиты от короткого замыкания
    Im [1] ;
  • отключающая способность при коротком замыкании (Icu – для промышленных автоматических выключателей и Icn – для бытовых автоматических выключателей).

Номинальное рабочее напряжение (Ue)

Это то напряжение, при котором данный выключатель работает в нормальных условиях.

Для автоматического выключателя устанавливаются и другие значения напряжения, соответствующие импульсным перенапряжениям (см. подраздел Другие характеристики автоматического выключателя).

Номинальный ток (In)

Это – максимальная величина тока, который автоматический выключатель, снабженный специальным отключающим реле максимального тока, может проводить бесконечно долго при температуре окружающей среды, оговоренной изготовителем, без превышения установленных значений максимальной температуры токоведущих частей.

Пример
Автоматический выключатель с номинальным током In = 125 А при температуре окружающей среды 40 °C, оснащенный отключающим реле максимального тока, откалиброванного соответствующим образом (настроенным на ток 125 А). Этот же автоматический выключатель может использоваться при более высоких температурах окружающей среды, но за счет занижения номинальных параметров. Например, при окружающей температуре 50 °C этот выключатель сможет проводить бесконечно долго 117 А, а при 60 °C – лишь 109 А при соблюдении установленных требований по допустимой температуре.

Уменьшение номинального тока автоматического выключателя производится путем уменьшения уставки его теплового реле. Использование электронного расцепителя, который может работать при высоких температурах, обеспечивают возможность эксплуатации автоматических выключателей (с пониженными уставками по току) при окружающей температуре 60 °С
или даже 70 °С.

Примечание: в автоматических выключателях, соответствующих стандарту МЭК 60947-2, ток In равен обычно Iu для всего распределительного устройства, где Iu обозначает номинальный длительный ток.

Номинальный ток выключателя при использовании расцепителей с разными диапазонами уставок

Автоматическому выключателю, который может быть оборудован расцепителями, имеющими различные диапазоны уставок по току, присваивается номинальное значение, соответствующее номинальному значению расцепителя с наивысшим уровнем уставки по току отключения.

Пример:
Автоматический выключатель NS630N может быть оснащен четырьмя электронными расцепителями с номинальными токами от 150 до 630 А. В таком случае номинальный ток данного автоматического выключателя составит 630 А.

Уставка реле перегрузки по току отключения (Irth или Ir)

За исключением небольших автоматических выключателей, которые легко заменяются, промышленные автоматические выключатели оснащаются сменными, т.е. заменяемыми реле отключения максимального тока. Для того чтобы приспособить автоматический выключатель к требованиям цепи, которой он управляет, и избежать необходимости устанавливать кабели большего размера, отключающие реле обычно являются регулируемыми. Уставка по току отключения Ir или Irth (оба обозначения широко используются) представляет собой ток, при превышении которого данный автоматический выключатель отключит цепь. Кроме того, это максимальный ток, который может проходить через автоматический выключатель без отключения цепи. Это значение должно быть обязательно больше максимального тока нагрузки Iв, но меньше максимально допустимого тока в данной цепи Iz (см. Практические значения для схемы защиты).

Термореле обычно регулируются в диапазоне 0,7-1,0 In, но в случае использования электронных устройств этот диапазон больше и обычно составляет 0,4-1,0 In.

Пример (рис. H30):
Автоматический выключатель NS630N, оснащенный расцепителем STR23SE на 400 А, который отрегулирован на 0,9 In, будет иметь уставку тока отключения:
Ir = 400 x 0,9 = 360 А.

Примечание: для цепей, оборудованных нерегулируемыми расцепителями, Ir = In.
Пример: для автоматического выключателя C60N на 20 А Ir = In = 20 А.

Рис H30.jpg

Рис. H30: Пример автоматического выключателя NS630N с расцепителем STR23SE, отрегулированным на 0,9In (Ir = 360 А)

Уставка по току отключения при коротком замыкании (Im)

Расцепители мгновенного действия или срабатывающие с небольшой выдержкой времени предназначены для быстрого выключения автоматического выключателя в случае возникновения больших токов короткого замыкания. Порог их срабатывания Im:

  • для бытовых автоматических выключателей регламентируется стандартами, например МЭК 60898;
  • для промышленных автоматических выключателей указывается изготовителем согласно действующим стандартам, в частности МЭК 60947-2.

Для промышленных выключателей имеется большой выбор расцепителей, что позволяет пользователю адаптировать защитные функции автоматического выключателя к конкретным требованиям нагрузки (см. рис. H31, H32 и H33).

— нижняя уставка: 2 — 5 In
— стандартная уставка: 5 — 10 In

1,5 Ir ≤ Im ≤ 10 Ir
Мгновенное срабатывание (I), время не регулируется:
I = 12 — 15 In

[2] 50 In в стандарте МЭК 60898, что по мнению большинства европейских изготовителей является нереально большим значением (M-G = 10-14 In).

[3] Для промышленного использования значения не регламентируются стандартами МЭК. Указанные выше значения соответствуют тем, которые обычно используются.

Рис. H31: Диапазоны токов отключения устройств защиты от перегрузки и короткого замыкания для низковольтных автоматических выключателей

Рис H32.jpg

Рис. H32: Кривая срабатывания термомагнитного комбинированного расцепителя автоматического выключателя

Рис H33.jpg

Ir: уставка по току отключения при перегрузке (тепловое реле или реле с большой выдержкой времени)
Im: уставка по току отключения при коротком замыкании (магнитное реле или реле с малой выдержкой времени)
Ii: уставка расцепителя мгновенного действия по току отключения при коротком замыкании
Icu: отключающая способность

Рис. H33: Кривая срабатывания электронного расцепителя автоматического выключателя

Гарантированное разъединение

Автоматический выключатель пригоден для гарантированного разъединения цепи, если он удовлетворяет всем требованиям, предъявляемым к разъединителю (при его номинальном напряжении) в соответствующем стандарте (см. Функции низковольтной аппаратуры: изолирование (отключение)). В таком случае его называют автоматическим выключателем-разъединителем и на его фронтальной поверхности наносят маркировку в виде символа

Рис H59.jpg

К этой категории относятся все низковольтные коммутационные аппараты компании Schneider Electric: Multi 9, Compact NS и Masterpact.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного автоматического выключателя связана с коэффициентом мощности (cos φ) поврежденного участка цепи. В ряде стандартов приводятся типовые значения такого соотношения.

Отключающая способность автоматического выключателя – максимальный (ожидаемый) ток, который данный автоматический выключатель способен отключить и остаться в работоспособном состоянии. Упоминаемая в стандартах величина тока представляет собой действующее значение периодической составляющей тока замыкания, т.е. при расчете этой стандартной величины предполагается, что апериодическая составляющая тока в переходном процессе (которая всегда присутствует в наихудшем возможном случае короткого замыкания) равна нулю. Эта номинальная величина (Icu) для промышленных автоматических выключателей и (Icn) для бытовых автоматических выключателей обычно указывается в кА.

Icu (номинальная предельная отключающая способность) и Ics (номинальная эксплуатационная отключающая способность) определены в стандарте МЭК 60947-2 вместе с соотношением Ics и Icu для различных категорий использования A (мгновенное отключение) и B (отключение с выдержкой времени), рассмотренных в подразделе Другие характеристики автоматического выключателя.

Проверки для подтверждения номинальных отключающих способностей автоматических выключателей регламентируются стандартами и включают в себя:

  • коммутационные циклы, состоящие из последовательности операций, т.е. включения и отключения при коротком замыкании;
  • фазовый сдвиг между током и напряжением. Когда ток в цепи находится в фазе с напряжением питания (cos φ = 1), отключение тока осуществить легче, чем при любом другом коэффициенте мощности. Гораздо труднее осуществлять отключение тока при низких отстающих величинах cos φ,при этом отключение тока в цепи с нулевым коэффициентом мощности является самым трудным случаем.

На практике все токи короткого замыкания в системах электроснабжения возникают обычно при отстающих коэффициентах мощности, и стандарты основаны на значениях, которые обычно считаются типовыми для большинства силовых систем. В целом, чем больше ток короткого замыкания (при данном напряжении), тем ниже коэффициент мощности цепи короткого замыкания, например, рядом с генераторами или большими трансформаторами.

В таблице, приведенной на рис. H34 и взятой из стандарта МЭК 60947-2, указано соотношение между стандартными величинами cos φ для промышленных автоматических выключателей и их предельной отключающей способностью Icu.

  • после проведения цикла «отключение – выдержка времени — включение/ отключение» для проверки предельной отключающей способности (Icu) автоматического выключателя выполняются дополнительные испытания, имеющие целью убедиться в том, что в результате проведения этого испытания не ухудшились:

— электрическая прочность изоляции;
— разъединяющая способность;
— правильное срабатывание защиты от перегрузки.

[1] Величины уставок, которые относятся к термомагнитным (комбинированным) расцепителям для защиты от перегрузки и короткого замыкания.zh:断路器的基本特性

Источник