Меню

Что такое ток разрядки конденсатора

Что такое конденсатор и для чего он нужен в схемах

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.

Обозначается на схеме двумя параллельными линиями.
Что такое конденсатор

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.

Как работает конденсатор

Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Принцип работы конденсатора

Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

Как работает конденсатор в схеме

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Конденсатор и постоянный ток

Добавим в схему лампочку. Она загорится только во время зарядки.

Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

По мере зарядки, лампочка начинает тусклее светиться.

Принцип работы конденсатора в цепи постоянного тока

Лампочка затухает при полной зарядке.

Почему конденсатор не пропускает постоянный ток

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.

Конденсатор и переменный ток

Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.

Как работает конденсатор при переменном токе

Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.

В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.
Назначение конденсатора в схеме

Как работает конденсатор в схеме

С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.

Зачем конденсатор нужен в усилителе

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.

Источник



Заряд и разряд конденсатора

Для того чтобы зарядить конденсатор, необходимо включить его в цепь постоянного тока. На рис. 1 показана схема заряда конденсатора. Конденсатор С присоединен к зажимам генератора. При помощи ключа можно замкнуть или разомкнуть цепь. Рассмотрим подробно процесс заряда конденсатора.

Генератор обладает внутренним сопротивлением. При замыкании ключа конденсатор зарядится до напряжения между обкладками, равного э. д. с. генератора: Uс = Е. При этом обкладка, соединенная с положительным зажимом генератора, получает положительный заряд (+ q ), а вторая обкладка получает равный по величине отрицательный заряд ( -q ). Величина заряда q прямо пропорциональна емкости конденсатора С и напряжению на его обкладках: q = CUc

Схема заряда конденсатора

P ис. 1 . Схема заряда конденсатора

Для того чтобы обкладки конденсатора зарядились, необходимо, чтобы одна из них приобрела, а другая потеряла некоторое количество электронов. Перенос электронов от одной обкладки к другой совершается по внешней цепи электродвижущей силой генератора, а сам процесс перемещения зарядов по цепи есть не что иное, как электрический ток, называемый зарядным емкостным током I зар.

Читайте также:  Область пониженного давления с восходящими токами воздуха

Зарядный ток в цени протекает обычно тысячные доли секунды до тех пор, пока напряжение на конденсаторе достигнет величины, равной э. д. с. генератора. График нарастания напряжения на обкладках конденсатора в процессе его заряда представлен на рис. 2,а, из которого видно, что напряжение Uc плавно увеличивается, сначала быстро, а затем все медленнее, пока не станет равным э. д. с. генератора Е. После этого напряжение на конденсаторе остается неизменным.

Графики напряжения и тока при заряде конденсатора

Рис. 2. Графики напряжения и тока при заряде конденсатора

Пока конденсатор заряжается, по цепи проходит зарядный ток. График зарядного тока показан на рис. 2,б. В начальный момент зарядный ток имеет наибольшую величину, потому что напряжение на конденсаторе еще равно нулю, и по закону Ома io зар = E/ R i , так как вся э. д. с. генератора приложена к сопротивлению R i.

По мере того как конденсатор заряжается, т. е. возрастает напряженно на нем, для зарядного тока уменьшается. Когда напряженно па конденсаторе уже имеется, падение напряжения на сопротивление будет равно разности между э. д. с. генератора и напряжением на конденсаторе, т. е. равно Е — U с. Поэтому i зар = (E-Uс)/R i

Отсюда видно, что с увеличением Uс уменьшается i зар и при Uс = E зарядный ток становится равным нулю.

Про закон Ома подробнее смотрите здесь: закон Ома для участка цепи

Продолжительность процесса заряда конденсатора зависит от двух величии:

1) от внутреннего сопротивления генератора R i ,

2) от емкости конденсатора С.

На рис. 2 показаны графики нарядных токов для конденсатора емкостью 10 мкф: кривая 1 соответствует процессу заряда от генератора с э. д. с. Е = 100 В и с внутренним сопротивлением R i = 10 Ом, кривая 2 соответствует процессу заряда от генератора с такой же э. д. с, но с меньшим внутренним сопротивлением: R i = 5 Ом.

Из сравнения этих кривых видно, что при меньшем внутреннем сопротивлении генератора сила нарядного тока в начальный момент больше, и поэтому процесс заряда происходит быстрее.

Графики зарядных токов при разных сопротивлениях

Рис. 2. Графики зарядных токов при разных сопротивлениях

На рис. 3 дается сравнение графиков зарядных токов при заряде от одного и того же генератора с э. д. с. Е = 100 В и внутренним сопротивлением R i = 10 ом двух конденсаторов разной емкости: 10 мкф (кривая 1) и 20 мкф (кривая 2).

Величина начального зарядного тока io зар = Е/ Ri = 100/10 = 10 А одинакова для обоих конденсаторов, по так как конденсатор большей емкости накапливает большее количество электричества, то зарядный его ток должен проходить дольше, и процесс заряда получается более длительным.

Графики зарядных токов при разных емкостях

Рис. 3. Графики зарядных токов при разных емкостях

Отключим заряженный конденсатор от генератора и присоединим к его обкладкам сопротивление.

На обкладках конденсатора имеется напряжение U с, поэтому в замкнутой электрической цепи потечет ток, называемый разрядным емкостным током i разр.

Ток идет от положительной обкладки конденсатора через сопротивление к отрицательной обкладке. Это соответствует переходу избыточных электронов с отрицательной обкладки на положительную, где их недостает. Процесс рам ряда происходит до тех пор, пока потенциалы обеих обкладок не сравняются, т. е. разность потенциалов между ними станет равном нулю: Uc=0 .

На рис. 4, а показан график уменьшения напряжения на конденсаторе при разряде от величины Uc о =100 В до нуля, причем напряжение уменьшается сначала быстро, а затем медленнее.

На рис. 4,б показан график изменения разрядного тока. Сила разрядного тока зависит от величины сопротивления R и по закону Ома i разр = Uc / R

Графики напряжения и токов при разряде конденсатора

Рис. 4. Графики напряжения и токов при разряде конденсатора

В начальный момент, когда напряжение па обкладках конденсатора наибольшее, сила разрядного тока также наибольшая, а с уменьшением Uc в процессе разряда уменьшается и разрядный ток. При Uc=0 разрядный ток прекращается.

Продолжительность разряда зависит:

1) от емкости конденсатора С

2) от величины сопротивления R , на которое конденсатор разряжается.

Чем больше сопротивление R , тем медленнее будет происходить разряд. Это объясняется тем, что при большом сопротивлении сила разрядного тока невелика и величина заряда на обкладках конденсатора уменьшается медленно.

Это можно показать на графиках разрядного тока одного и того же конденсатора, имеющего емкость 10 мкф и заряженного до напряжения 100 В, при двух разных величинах сопротивления (рис. 5): кривая 1 — при R = 40 Ом, i оразр = Uc о/ R = 100/40 = 2,5 А и кривая 2 — при 20 Ом i оразр = 100/20 = 5 А.

Графики разрядных токов при разных сопротивлениях

Рис. 5. Графики разрядных токов при разных сопротивлениях

Разряд происходит медленнее также тогда, когда емкость конденсатора велика. Получается это потому, что при большей емкости на обкладках конденсатора имеется большее количество электричества (больший заряд) и для стекания заряда потребуется больший промежуток времени. Это наглядно показывают графики разрядных токов для двух конденсаторов раиной емкости, заряженных до одного и того же напряжения 100 В и разряжающихся на сопротивление R =40 Ом (рис. 6 : кривая 1 — для конденсатора емкостью 10 мкф и кривая 2 — для конденсатора емкостью 20 мкф).

Графики разрядных токов при разных емкостях

Рис. 6. Графики разрядных токов при разных емкостях

Из рассмотренных процессов можно сделать вывод, что в цепи с конденсатором ток проходит только в моменты заряда и разряда, когда напряжение на обкладках меняется.

Объясняется это тем, что при изменении напряжения изменяется величина заряда на обкладках, а для этого требуется перемещение зарядов по цепи, т. е. по цепи должен проходить электрический ток. Заряженный конденсатор не пропускает постоянный ток, так как диэлектрик между его обкладками размыкает цепь.

В процессе заряда конденсатор накапливает энергию, получая ее от генератора. При разряде конденсатора вся энергия электрического поля переходит в тепловую энергию, т. е. идет на нагрев сопротивления, через которое разряжается конденсатор. Чем больше емкость конденсатора и напряжение на его обкладках, тем больше будет энергия электрического поля конденсатора. Величина энергии, которой обладает конденсатор емкостью С, заряженный до напряжения U, равна: W = W с = С U 2 /2

Пример. Конденсатор С=10 мкф заряжен до напряжении U в = 500 В. Определить энергию, которая выделится в вило тепла на сопротивлении, через которое разряжается конденсатор.

Решение. Пpи разряде вся энергия, запасенная конденсатором, перейдет в тепловую. Поэтому W = W с = С U 2 /2 = (10 х 10 -6 х 500)/2 = 1,25 дж.

Источник

Зарядка, разрядка и саморазрядка конденсатора

Если конденсатор с сопротивлением (утечки) R и емкостью С подключить к источнику с постоянным напряжением U (замыка­нием ключа А), то в цепи (рис. 20.3а) появится ток зарядки конденсатора (см. (11.16)):

(12)

где ис — напряжение на конденсаторе в любой момент времени переходного процесса.

По второму закону Кирхгофа для цепи зарядки конденсатора (рис. 20.3а) можно записать уравнение

(13)

где произведение RC имеет размерность времени, обозначается буквой т и называется постоянной времени переходного процесса в RС-цепи, т. е.

(14)

([τ] = [RС] = Ом·Ф=Ом·Кл/В=Кл/А=А·с/A=c)

Уравнение (20.13) можно записать в виде

(15)

Если в уравнении (15) разделить переменные, проинтегриро­вать, а затем спотенцировать, то получится выражение

(20.16)

где U — установившееся напряжение щ RC-цепи; (—Ue — t /τ c ) — свободная составляющая напряжения исв на конденсаторе; т.е.

Читайте также:  Ампер это сила тока проходящего

Следовательно, напряжение на заряжающемся конденсаторе в любой момент времени t переходного процесса определяется вы­ражением

(17)

По (20.17), пользуясь Приложением 9, можно определить, что за время tс конденсатор зарядится до напряжения ис= 0,63U, а за время t=4,6τс — до напряжения uc = 0,99U.

Теоретически зарядка конденсатора длится бесконечно долго, а практически конденсатор считается заряженным, когда напря­жение на нем достигает 99 % напряжения источника U.

Таким образом, и в RС-цепи, чем больше постоянная време­ни τс, тем больше времени t тратится на зарядку конденсатора, т. е. и в данном случае постоянная времени τс характеризует дли­тельность зарядки и разрядки конденсатора.

Ток i при зарядке конденсатора (см. (20.13)) уменьшается по за­кону

(20.18)

где I=U/R максимальный ток, который имеет место в начальный момент t=0 зарядки конденсатора (момент коммутации).

За время tс ток в цепи заряжающегося конденсатора умень­шится до 0,37I, а за время t=4,6τс — до 0,01I, при котором пере­ходный процесс можно считать законченным.

Графики изменения напряжения на конденсаторе и тока в цепи зарядки конденсатора изображены на рис. 20.3б.

Если конденсатор емкостью С, заряженный предварительно до напряжения U, разряжать через резистор с сопротивлением R (рис. 20.4а), то напряжение ис на конденсаторе и ток в цепи раз­рядки будут уменьшаться по закону

(19)

(20)

где U — напряжение на конденсаторе до начала разрядки (при t=0), а I=U/R максимальный ток в начальный момент разрядки (при t=0), τс= RC — постоянная времени в цепи разрядки кон­денсатора.

За время t=τc напряжение и ток уменьшатся до 37 % своих максимальных значений. Изменение напряжения и тока на раз­ряжающемся конденсаторе показаны на рис. 20.4б (в разных мас­штабах).

Если конденсатор емкостью С, заряженный до напряжения U, отсоединить от источника, то он будет разряжаться через свой диэлектрик. Напряжение на нем будет уменьшаться по зако­ну ис= Ue — t / τc . Процесс разрядки конденсатора через свой ди­электрик называется саморазрядом.

Постоянная времени саморазряда зависит от физических свойств диэлектрика

(21)

где ρ — удельное сопротивление диэлектрика; ε — электрическая постоянная; ε r — диэлектрическая проницаемость диэлектрика (относительная). Для определения напряжения, тока, ЭДС в любой момент пе­реходного процесса RL-цети и RС-цепи можно воспользоваться таблицей показательных функций (Приложение 9).

Пример 1

Катушка электромагнита с параметрами R=11 Ом и L = 0,11 мГн подключена к сети постоянного тока с напряже­нием U= 110 В. Определить время t, за которое ток в катушке i увеличится от нуля до 8 А. Определить, какого значение достиг­нет ЭДС самоиндукции eL за время t.

Решение

Установившийся ток I=U/R=110/11=10 А.

Постоянная времени для катушки τL =L/R=0,11·10 -3 /11=10 -5 c/

Подставляем значение величин в (20.10):

8 = 10(1 –e — t / τ L ), откуда е — t / τ L =(10-8)/10= 0,2.

По Приложению 9 определяется Х=t/τ= 1,6, откуда

ЭДС самоиндукции за время 1,6 10 -5 с уменьшается со 110 В до значения

eL=Ue –t/τL =110е -1,6·10 -5 /10 -5 = 110e -1, 6 =110·0,2 = 22В.

Пример 2

К зажимам катушки индуктивности с параметрами RK= 100 Ом, Lк= 10 Гн подключен вольтметр V (рис. 20.26) электродинамиче­ской системы. Сопротивление вольтметра RV=5000 Ом. Напря­жение на клеммах источника U= 200 В.

Определить напряжение на зажимах вольтметра и ток в обмот­ках прибора (обмотки соединены последовательно) при t=0, если размыкание рубильника К произойдет мгновенно и дуги не воз­никнет.

Решение

До размыкания рубильника через катушку проходил ток

В момент размыкания рубильника (t= 0) весь этот ток проходит по обмоткам вольтметра. При этом на вольтметре напряжение станет равным

Такого напряжения (10 кВ) и такого тока (2 А) обмотка вольт­метра (обычно подвижная обмотка электродинамического прибо­ра рассчитана на ток порядка десятков, максимум, сотен милли­ампер) не выдержит и сгорит.

При размыкании рубильника с конечной скоростью между расходящимися контактами рубильника К (рис. 20.2б) возникнет электрическая дуга. Это приведет к тому, что увеличение напряже­ния на вольтметре и тока через обмотки вольтметра будет меньше, чем в рассмотренном выше случае (мгновенное размыкание руби­льника). Однако меры предосторожности для сохранения вольт­метра и рубильника, описанные выше, нужно соблюдать.

Пример 3

Конденсатор емкостью С=2 мкФ через сопротивление R = 500 кОм подключается к источнику с постоянным напряже­нием U= 220 В.

Определить напряжение на конденсаторе ис и ток в цепи за­ряда конденсатора i через 2 с от начала заряда конденсатора (t=2 с), а также время t`, за которое этот конденсатор зарядится до напряжения Uc= 150 В. Решение

Постоянная времени заряда конденсатора

τc=RC=500·10 3 ·2·10 -5 =1 с.

Напряжение на конденсаторе через 2 с от начала заряда

ис= U(1-е –t/τc ) = 220(1 -е — 2/ 1 ) = 220-0,865 =190 В.

Ток в цепи заряда конденсатора через 2 с от начала заряда

i=Ie – t / τ c =44·10 -5 ·0,135 = 5,94·10 -5 А,

так как I=U/R=220/(500·10 3 )= 44·10 -5 А. R 500 10 3

Время t’ заряда конденсатора до напряжения 150 В определяет­ся по формуле (20.17):

150 = 220(1 – е — t `/τс ).

Откуда e — t ` / τ c =(220-150)/220=0,318В.

Из таблицы показательных функций (Приложение 9) находят t’=1,14с.

Пример 4

Параметры цепи, изображен­ной на рис. 20.5, следующие: R1 = = 6 Ом; R2 = 200 кОм; R3 = 60 Ом; L = 3 Гн; С= 10 мкФ и U= 120 В.

Определить значение токов в ветвях через время t= 2 с после за­мыкания ключа К.

Решение

Для ветви (1) с индуктивностью

определяются: установившийся ток I1=U/R1=120/6=20A

и постоянная времени τL=L/R=3/6 = 0,5 с.

Тогда ток через 2 с будет равен

i1= I1(1 –e – t / τ L ) = 20(1-e -2/0 ,5 ) = 20(1 — τ — 4 ) = 20(1-0,018)= 19,64 А.

Для ветви (2) с емкостью определяются: максимальный установившийся ток по окончании переходного процесса

и постоянная времени τс=R2С=200·10 3 ·10·10 -6 = 2 с.

Тогда ток зарядки через 2 с будет равен

i2=I2e –t/τc =0,6·10 -3 e— 2/2 =0,6·10 -3 ·0,37=0,22·10 -3 А.

Для ветви (3) с активным сопротивлением R3 определяется

Постоянная времени х3 = 0, так как отсутствуют L и С.

Через 2 с значение тока будет таким же, т. е. i3 = I3= 2 А.

Источник

Конденсаторы: электролитические и керамические, ёмкость и заряд

Конденсатор (capacitor, cap) — это маленький «аккумулятор», который быстро заряжается при наличии напряжения вокруг него и быстро разряжается обратно, когда напряжения недостаточно для удержания заряда.

Основной характеристикой конденсатора является ёмкость. Она обозначается символом C, единица её измерения — Фарад. Чем больше ёмкость, тем больший заряд может удерживать конденсатор при заданном напряжении. Также чем больше ёмкость, тем меньше скорость зарядки и разрядки.

Типичные значения, применяемые в микроэлектронике: от десятков пикофарад (pF, пФ = 0,000000000001 Ф) до десятков микрофарад (μF, мкФ = 0,000001 Ф). Самые распространённые типы конденсаторов: керамический и электролитический. Керамические меньше по размеру и обычно имеют ёмкость до 1 мкФ; им всё равно какой из контактов будет подключен к плюсу, а какой — к минусу. Электролитические конденсаторы имеют ёмкости от 100 пФ и они полярны: к плюсу должен быть подключен конкретный контакт. Ножка, соответствующая плюсу, делается длинее.

Конденсатор представляет собой две пластины, разделённые слоем диэлектрика. Пластины скапливают заряд: одна положительный, другая отрицательный; тем самым внутри создаётся напряжение. Изолирующий диэлектрик не даёт внутреннему напряжению превратиться во внутренний ток, который бы уравнял пластины.

Читайте также:  Физическая сущность тока короткого замыкания

Зарядка и разрядка

Рассмотрим такую схему:

Пока переключатель находится в положении 1, на конденсаторе создаётся напряжение — он заряжается. Заряд Q на пластине в определённый момент времени расчитывается по формуле:

$ Q = C V_<in data-lazy-src=

Как видно, заряд растёт не равномерно, а обратно-экспоненциально. Это связанно с тем, что по мере того, как заряд копится, он создаёт всё большее и большее обратное напряжение Vc, которое «сопротивляется» Vin.

$ V_c = \frac<Q data-lazy-src=

Теперь, когда система находится в равновесии, поставим переключатель в положение 2.

На пластинах конденсатора заряды противоположных знаков, они создают напряжение — появляется ток через нагрузку (Load). Ток пойдёт в противоположном направлении, если сравнивать с направлением источника питания. Разрядка тоже будет происходить наоборот: сначала заряд будет теряться быстро, затем, с падением напряжения создаваемого им же, всё медленее и медленее. Если за Q обозначить заряд, который был на конденсаторе изначально, то:

$ Q = Q_0 \cdot e^<\frac<-t data-lazy-src=

Опять же, через некоторое время система придёт в состояние покоя: весь заряд потеряется, напряжение исчезнет, течение тока прекратится.

Если снова воспользоваться переключателем, всё начнётся по кругу. Таким образом конденсатор ничего не делает кроме как размыкает цепь когда напряжение постоянно; и «работает», когда напряжение резко меняется. Это его свойство и определяет когда и как он применяется на практике.

Применение на практике

Среди наиболее распространённых в микроэлектронике можно выделить такие шаблоны:

Резервный конденсатор

Многие схемы расчитаны на получение постоянного, стабильного питания. Например 5 В. Их им поставляет источник питания. Но идеальных систем не существует и в случае резкого изменения потребления тока устройством, например когда включается компонент, источник питания не успевает «отреагировать» моментально и происходит кратковременный спад напряжения. Кроме того, в случаях когда провод от источника питания до схемы достаточно длинный, он начинает работать как антенна и тоже вносить нежелательный шум в уровень напряжения.

Обычно отклонение от идеального напряжения не превышает тысячной доли вольта и это являние абсолютно незначительно, если речь идёт о питании, например, светодиодов или электродвигателя. Но в логических цепях, где переключение логического нуля и логической единицы происходит на основе изменения малых напряжений, шумы питания могут быть ошибочно приняты за сигнал, что приведёт к неверному переключению, которое по принципу домино поставит систему в непредсказуемое состояние.

Для предотвращения таких сбоев, непосредственно перед схемой ставят резервный конденсатор

В моменты, когда напряжение полное, конденсатор заряжается до насыщения и становится запасом резервного заряда. Как только уровень напряжения на линии падает, резервный конденсатор выступает в роли быстрой батарейки, отдавая накопленный ранее заряд, чтобы заполнить пробел пока ситуация не нормализуется. Такая помощь основному источнику питания происходит огромное количество раз ежесекундно.

Если рассуждать с другой точки зрения: конденсатор выделяет из постоянного напряжения переменную составляющую и пропуская её через себя, уводит её с линии питания в землю. Именно поэтому резервный конденсатор также называют «bypass capacitor».

В итоге, сглаженное напряжение выглядит так:

Типичный конденсаторы, который используется для этих целей — керамические, номиналом 10 или 100 нФ. Большие электролитические слабо подходят на эту роль, т.к. они медленее и не смогут быстро отдавать свой заряд в этих условиях, где шум обладает высокой частотой.

В одном устройстве резервные конденсаторы могут присутствовать во множестве мест: перед каждой схемой, представляющей собой самостоятельную единицу. Так, например, на Arduino уже есть резервные конденсаторы, которые обеспечивают стабильную работу процессора, но перед питанием подключаемого к нему LCD экрана должен быть установлен свой собственный.

Фильтрующий конденсатор

Фильтрующий конденсатор используется для снятия сигнала с сенсора, который передаёт его в форме изменяющегося напряжения. Примерами таких сенсоров являеются микрофон или активная Wi-Fi антенна.

Рассмотрим схему подключения электретного микрофона. Электретный микрофон — самый распространённый и повсеместный: именно такой применяется в мобильных телефонах, в компьютерных аксессуарах, системах громкой связи.

Для своей работы микрофон требует питания. В состоянии тишины, его сопротивление велико и составляет десятки килоом. Когда на него воздействует звук, затвор встроенного внутри полевого транзистора открывается и микрофон теряет внутреннее сопротивление. Потеря и восстановление сопротивления происходит много раз ежесекундно и соответствует фазе звуковой волны.

На выходе нам интересно напряжение только в те моменты, когда звук есть. Если бы не было конденсатора C, на выход всегда бы дополнительно воздействовало постоянное напряжение питания. C блокирует эту постоянную составляющую и пропускает только отклонения, которые и соответствуют звуку.

Слышимый звук, который нам и интересен, находится низкочастотном диапазоне: 20 Гц — 20 кГц. Чтобы выделить из напряжения именно сигнал звука, а не высокочастотные шумы питания, в качестве C используется медленный электролитический конденсатор номиналом 10 мкФ. Если был бы использован быстрый конденсатор, например, на 10 нФ, на выход прошли бы сигналы, не связанные со звуком.

Обратите внимание, что выходной сигнал поставляется в виде отрицательного напряжения. То есть при соединении выхода с землёй, ток потечёт из земли к выходу. Пиковые значения напряжения в случае с микрофоном составляют десятки милливольт. Чтобы перевернуть напряжение обратно и увеличить его значение, выход Vout обычно подключают к операционному уселителю.

Соединение конденсаторов

Если сравнивать с соединением резисторов, расчёт итогового номинала конденсаторов выглядит наоборот.

При параллельном соединении суммарная ёмкость суммируется:

$ C_t = C_1 + C_2 + \hdots + C_N $

При последовательном соединении, итоговая ёмкость расчитывается по формуле:

$ C_t = \frac1<\frac1<C_1 data-lazy-src=