Меню

Что такое небаланс токов

ТОКИ НЕБАЛАНСА В ДИФФЕРЕНЦИАЛЬНОЙ ЗАЩИТЕ

Выразив в (10.2) вторичные токи через первичные, с учетом погрешности ТТ получим Iнб в реле:

где IIнам и IIIнам – токи намагничивания, отнесенные ко вторичным обмоткам ТТ (ТАI и ТАII). Так как при внешнем КЗ, сквозных токах нагрузки и качаний первичные токи в начале и конце ЛЭП одинаковы, II = III, (из 10.5) получим

Это выражение показывает, что значение тока небаланса определяется различием значений токов намагничивания ТТ. Следовательно, для уменьшения тока небаланса необходимо выравнивать токи намагничивания IIнам и IIIнам по значению и фазе. Ток намагничивания ТТ (см. §3.2) зависит от магнитной индукции Вm,а также от вторичной ЭДС ЕвТТ (рис.10.2, а). Из сопоставления характеристик 1 и 2 на рис.10.2, а следует, что ток небаланса будет равен нулю при совпадении характеристик намагничивания 1 и 2 TAIи ТАII(рис.10.2, а) и равенстве вторичных ЭДС Евв режиме сквозных токов. Ток небаланса возрастает с увеличением магнитной индукции В,которая, в свою очередь, повышается при увеличении первичного тока КЗ Iк и вторичной нагрузки Zн. Ток Iнб особенно возрастает при работе в области насыщения ТТ, так как небольшое расхождение в их характеристиках намагничивания вызывает большое различие в токах намагничивания даже при одинаковых значениях вторичных ЭДС Ев(Вm) [см. рис.10.2, а при Вm(Ев) вточке С]. Поэтому стремятся к тому, чтобы при максимальном токе внешнего КЗ магнитопроводы ТТ не насыщались и работали в линейной части характеристики. Когда различие их Iнам невелико, погрешность ТТ е не превышает допустимых значений (10%).

Для выполнения этого условия применяются ТТ, насыщающиеся при возможно больших значениях Ев. Этому требованию наилучшим образом удовлетворяют ТТ класса Р,специально изготовляемые для дифференциальных РЗ (рис.10.2, б).

Принимаются также меры для ограничения значения Ев, от которого зависит значение магнитной индукции Вm,а следовательно, Iнам.

Чтобы избежать насыщения и увеличения Iнб, необходимо иметь Ев

17 Сентябрь, 2011 21924 ]]> Печать ]]>

Источник



Ток небаланса

date image2015-01-21
views image4491

facebook icon vkontakte icon twitter icon odnoklasniki icon

В действительных условиях трансформаторы тока имеют погрешность, а именно при равенстве первичных токов, вторичные токи при внешних КЗ и нормальной работе не равны по величине и не совпадают по фазе, то есть в реле появляется ток небаланса Iн.б.

таким образом, ток небаланса определяется токами намагничивания , которые для любых двух трансформаторов тока (TAI, TAII) не равны, вследствии не идентичности их характеристик намагничивания (см. рис. 2.19). С увеличением первичного тока разница в токах намагничивания, а следовательно и ток небаланса возрастает. Для выбора Iс.р, необходимо знать максимально возможное значение тока небаланса при внешних КЗ. Расчетные методы определения максимального тока небаланса Iн.б. max. расч., основаны на предварительном определении токов намагничивания. Значительная величина тока намагничивания при переходных процессах во вторичных цепях трансформатора тока обусловлена наличием в токе КЗ плохо трансформируемой апериодической составляющей, которая приводит к насыщению сердечника и увеличению тока намагничивания, что ухудшает трансформацию периодической составляющей тока КЗ, следовательно, ток намагничивания еще больше растет. Поэтому максимальный ток небаланса в схеме дифференциальной защиты, имеет место если повреждение возникло в момент, когда апериодическая составляющая наибольшая. Наряду с апериодической составляющей на величину токов намагничивания сильно влияет величина и знак остаточной индукции сердечника (т. к. остаточная индукция по знаку может совпадать с индукцией от апериодической составляющей тока КЗ), следовательно, ток намагничивания в переходном режиме может сильно возрасти).

Читайте также:  Работа индукционного тока в замкнутом проводнике

Для предотвращения неправильной работы дифференциальной защиты Iс.р. выбирается с учетом Iн.б.мах расч.; т. е.

При определении Iнб.max.расч., исходя из того что трансформатор тока в схеме выбраны так, что полная погрешность ε не превышает 10%, при заданной вторичной нагрузке; Капер.=2 – коэффициент апериодичности, учитывает влияние апериодической составляющей тока КЗ на величину тока небаланса; Кодн.=0,5÷1 – коэффициент однотипичности трансформаторов тока.

Коэффициент чувствительности, представляет собой отношение минимального значения тока в точке КЗ Iк.з.min, при повреждении в зоне, к току срабатывания защиты Iс.з. коэффициент чувствительности должен быть не меньше 2.

Одним из способов повышения чувствительности защита, (т.е. уменьшения Iс.з.) является отстройка от переходных значений тока небаланса по времени. однако этот способ не эффективен, т. к. он не дает использовать в полной мере основное свойство дифференциальной защиты – быстродействие. Поэтому для повышения чувствительности дифференциальных защит применяют следующие способы:

— включение токового реле через промежуточный быстронасыщающийся трансформатор тока (БНТ).

— применение дифференциальных реле с торможением.

Источник

Большая Энциклопедия Нефти и Газа

Ток — небаланс

Ток небаланса обусловливается погрешностью трансформаторов тока и неравенством сопротивлений параллельных линий. [1]

Ток небаланса определяется согласно § 6 — 3 а как разность вторичных токов при наибольшей разбалан-сир О Вке дифференциальной защиты при регулировании напряжения переключением ответвлений трансформатора. [2]

Ток небаланса в нулевови проводе содержит в основном первую и третью гармоники. [3]

Ток небаланса создает магнитный поток, имеющий направление, обратное магнитному потоку включающей катушки. Когда ток небаланса в силовой цепи включения дифференциального реле ( рис. 222) достигнет установленной величины, усилие, удерживающее якорь от результирующего магнитного потока в зоне зазора б, уменьшается на столько, что под действием выключающей пружины якорь отпадает. Перемещение якоря вызывает размыкание блокировочных контактов, которые разрывают цепь удерживающей катушки БВ или прерывают питание катушек контактора КВЦ. При этом прерывается цепь, в которой было короткое замыкание. [5]

Читайте также:  Эталон единицы напряжения переменного электрического тока

Токи небаланса в рассматриваемой защите часто больше, чем для защит трансформаторов с двумя группами ТА. Это прежде всего определяется возможными повышенными кратностями токов сквозных КЗ за счет прохождения через ТА, распоюженные со стороны внешнего КЗ, суммы токов других сторон ( например, трехобмоточного трансформатора с тремя выключателями) и отсутствия ограничения слагающих токов реактивностью защищаемого элемента при присоединении к шинам со стороны питания через несколько ( например, два) выключателей. Поэтому защиты, как правило, имеют торможение от токов плеч. [7]

Ток небаланса в обмотке реле при использовании реле РНТ ( ДЗТ) измеряется с помощью миллиамперметра, включенного последовательно с обмоткой самого реле в цепь вторичной обмотки промежуточного насыщающего трансформатора — к зажимам 11, 12, перемычка между которыми снимается. [8]

Токи небаланса в рассматриваемой защите часто больше, чем для защит трансформаторов с двумя группами ТА. Это прежде всего определяется возможными повышенными кратностями токов сквозных КЗ за счет прохождения через ТА, расположенные со стороны внешнего КЗ, суммы токов других сторон ( например, трехобмоточного трансформатора с тремя выключателями) и отсутствия ограничения слагающих токов реактивностью защищаемого элемента при присоединении к шинам со стороны питания через несколько ( например, два) выключателей. Поэтому защиты, как правило, имеют торможение от токов плеч. [10]

Ток небаланса обусловливается погрешностью трансформаторов тока и неравенством сопротивлений параллельных линий. [11]

Ток небаланса поступает в нуль-орган прибора, где преобразуется в переменный ток и усиливается. [12]

Токи небаланса достигают больших значений в первые периоды КЗ, когда они в результате переходного процесса имеют, как правило, несимметричную форму кривой и поэтому также плохо трансформируются через БНТ. После затухания переходного процесса токи небаланса могут иметь симметричную форму кривой, но их значение к этому времени значительно снижается. [14]

Токи небаланса возникают из-за погрешностей ТТ в коэффициенте трансформации или по углу, приводящих к неравенству вторичных токов ТТ, соединенных в дифференциальную схему. [15]

Читайте также:  Повышенное напряжение электрического тока в электроустановках

Источник

Что такое небаланс токов

Ток срабатывания реле выбирают с учетом тока небаланса

Ток небаланса рассчитывается по формуле

где ε=10% — полная максимально возможная погрешность транс­форматоров тока при заданной вторичной нагрузке и пре­дельной кратности тока КЗ;

=0,5. 1,0. — коэффициентом однотипности. Учитывает разброс параметров трансформаторов тока.

=2.0 – коэффициент апериодичности. Учитывает влияние апериодической составляю­щей тока КЗ на ток небаланса;

должен быть в пределах =1,5…2.

При использовании обычных реле тока чувствительность дифференциальной защиты часто оказывается недостаточной.

Способы повышения чувствительности дифференциальной защиты.

1. Отстройка от переходных токов небаланса по времени.

Недостаток. Не дает использовать главное преимущество дифференциальной защиты — ее быстродействие.

2. Включение добавочных сопротивлений в цепь тока измерительных реле тока.

Применяется редко. Например, в дифференциальных защитах генераторов малой мощности.

3. Исключение апериодической составляющей из переходного тока небаланса.

Этот способ реализован в реле РНТ с насы­щающимся трансформатором тока (НТТ). При синусоидальном токе насыщающийся трансформатор не ока­зывает существенного влияния на работу реле. Если же в токе имеется апериодическая составляющая, то магнитопровод НТТ сильно насыщается, сопротивление намагничивания резко падает, ток намагничивания увеличивается, а вторичный ток уменьшается. Коэффициент трансформации НТТ автоматически увеличивается. Нормальная работа на­сыщающегося трансформатора восстанавливается после ис­чезновения апериодической составляющей.

Защита загрубляется на время существования переходного тока небаланса. При расчете тока небаланса можно не учитываь влияния апериодической состав­ляющей.

4. Использование в дифференциальной защите реле с торможением.

Токи небаланса могут быть большими не только в переходном, но и в установившемся режиме внешнего КЗ. В этом случае апериодическая составляющая отсутствует и реле РНТ непригодно.

Используется реле тока с магнитным торможением типа ДЗТ.

Реле позволяет автоматически с изменением тока внешнего КЗ I ’к.вн. изменять ток срабатывания реле I с.р. Реле имеет тормозную обмотку. Реле включается так, что обеспечивается пропорциональность между тормозным током и током внешнего КЗ I ’к.вн. Ток срабатывания реле определяется условием

Преимущества продольной дифференциальной защиты.

2. Имеет абсолютную селективность.

1.1 Не требует согласования параметров с другими защитами.

1.2 Не имеет выдержки времени. Обеспечивает быстрое отключение поврежденного участка.

3. Для участков небольшой длины проста и надежна.

При увеличении зоны защиты, увеличивается длина соединительных проводов, снижается надежность из-за отказов вспомогательных проводов. Требуется специальное устройство, контролирующее их исправность. Появляется дополнительный ток небаланса. Часто приходится использовать реле с торможением. Возрастает стоимость защиты.

Источник