Меню

Что такое импульсный стабилизатор тока

Импульсный стабилизатор напряжения – принцип работы стабилизатора

Линейные стабилизаторы имеют общий недостаток – это малый КПД и высокое выделение тепла. Мощные приборы, создающие нагрузочный ток в широких пределах имеют значительные габариты и вес. Чтобы компенсировать эти недостатки, разработаны и используются импульсные стабилизаторы.

Устройство, поддерживающее в постоянном виде напряжение на потребителе тока с помощью регулировки электронным элементом, действующим в режиме ключа. Импульсный стабилизатор напряжения, так же как и линейный существует последовательного и параллельного вида. Роль ключа в таких моделях исполняют транзисторы.

Так как действующая точка стабилизирующего устройства практически постоянно расположена в области отсечки или насыщения, проходя активную область, то в транзисторе выделяется немного тепла, следовательно, импульсный стабилизатор имеет высокий КПД.

Стабилизация осуществляется с помощью изменения продолжительности импульсов, а также управления их частотой. Вследствие этого различают частотно-импульсное, а другими словами широтное регулирование. Импульсные стабилизаторы функционируют в комбинированном импульсном режиме.

В устройствах стабилизации с регулированием широтно-импульсным частота импульсов имеет постоянную величину, а продолжительность действия импульсов является непостоянным значением. В приборах с регулированием частотно-импульсным продолжительность импульсов не изменяется, меняют только частоту.

На выходе устройства напряжение представлено в виде пульсаций, соответственно оно не годится для питания потребителя. Перед подачей питания на нагрузку потребителя, его нужно выровнять. Для этого на выходе импульсных стабилизаторов монтируют выравнивающие емкостные фильтры. Они бывают многозвенчатыми, Г-образными и другими.

Средняя величина напряжения, поданная на нагрузку, вычисляется по формуле:

Импульсный стабилизатор напряжения

  • Ти – продолжительность периода.
  • tи – продолжительность импульса.
  • Rн – значение сопротивления потребителя, Ом.
  • I(t) – значение тока, проходящего по нагрузке, ампер.

Ток может перестать протекать по фильтру к началу следующего импульса, в зависимости от индуктивности. В этом случае идет речь о режиме действия с переменным током. Ток также может дальше протекать, тогда имеют ввиду функционирование с постоянным током.

При повышенной чувствительности нагрузки к импульсам питания, выполняют режим постоянного тока, не смотря со значительными потерями в обмотке дросселя и проводах. Если размер импульсов на выходе прибора незначителен, то рекомендуется функционирование при переменном токе.

Принцип работы

В общем виде импульсный стабилизатор включает в себя импульсный преобразователь с устройством регулировки, генератор, выравнивающий фильтр, снижающий импульсы напряжения на выходе, сравнивающее устройство, подающее сигнал разности входного и выходного напряжения.

Схема основных частей стабилизатора напряжения показана на рисунке.

Импульсный стабилизатор напряжения

Напряжение на выходе прибора поступает на сравнивающее устройство с базовым напряжением. В результате получают пропорциональный сигнал. Его подают на генератор, предварительно усилив его.

При регулировании в генераторе разностный аналоговый сигнал модифицируют в пульсации с постоянной частотой и переменной продолжительностью. При регулировании частотно-импульсном продолжительность импульсов имеет постоянное значение. Она меняет частоту импульсов генератора в зависимости от свойств сигнала.

Образованные генератором управляющие импульсы проходят на элементы преобразователя. Транзистор регулировки действует в режиме ключа. Изменяя частоту или интервал импульсов генератора, есть возможность менять нагрузочное напряжение. Преобразователь модифицирует значение напряжения на выходе в зависимости от свойств управляющих импульсов. По теории в приборах с частотной и широтной регулировкой импульсы напряжения на потребителе могут отсутствовать.

При релейном принципе действия сигнал, который управляется стабилизатором, образуется с помощью триггера. При поступлении постоянного напряжения в прибор транзистор, работающий в качестве ключа, открыт, и повышает напряжение на выходе. сравнивающее устройство определяет сигнал разности, который достигнув некоторого верхнего предела, поменяет состояние триггера, и произойдет коммутация регулирующего транзистора на отсечку.

Напряжение на выходе станет уменьшаться. При падении напряжения до нижнего предела сравнивающее устройство определяет сигнал разности, переключающий снова триггер, и транзистор опять войдет в насыщение. Разность потенциалов на нагрузке прибора станет повышаться. Следовательно, при релейном виде стабилизации напряжение на выходе повышается, тем самым выравнивается. Предел срабатывания триггера настраивают с помощью корректировки амплитуды значения напряжения на сравнивающем устройстве.

Стабилизаторы релейного типа имеют повышенную скорость реакции, в отличие от приборов с частотным и широтным регулированием. Это является их преимуществом. В теории при релейном виде стабилизации на выходе прибора всегда будут импульсы. Это является их недостатком.

Повышающий стабилизатор

Импульсные повышающие стабилизаторы применяют вместе с нагрузками, разность потенциалов которых выше, чем напряжение на входе приборов. В стабилизаторе нет гальванической изоляции сети питания и нагрузки. Импортные повышающие стабилизаторы называются boost converter. Основные части такого прибора:

Импульсный стабилизатор напряжения

Транзистор вступает в насыщение, и ток проходит по цепи от положительного полюса по накопительному дросселю, транзистору. При этом накапливается энергия в магнитном поле дросселя. Нагрузочный ток может создать только разряд емкости С1.

Отключим выключающее напряжение с транзистора. При этом он вступит в положение отсечки, а следовательно на дросселе появится ЭДС самоиндукции. Оно будет коммутировано последовательно с напряжением входа, и подключено по диоду к потребителю. Ток пойдет по цепи от положительного полюса к дросселю, по диоду и нагрузке.

В этот момент магнитное поле индуктивного дросселя выдает энергию, а емкость С1 резервирует энергию для поддержки напряжения на потребителе после вхождения транзистора в режим насыщения. Дроссель является для резерва энергии и не работает в фильтре питания. При повторной подаче напряжения на транзистор, он откроется, и весь процесс пойдет заново.

Стабилизаторы с триггером Шмитта

Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.

Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.

Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.

Понижающий стабилизатор

Стабилизаторы импульсного типа, функционирующие с понижением напряжения, являются компактными и мощными приборами питания электрическим током. При этом они имеют низкую чувствительность к наводкам потребителя постоянным напряжением одного значения. Гальваническая изоляция выхода и входа в понижающих устройствах отсутствует. Импортные приборы получили название chopper. Выходное питание в таких устройствах постоянно находится меньше входного напряжения. Схема импульсного стабилизатора понижающего типа изображена на рисунке.

Импульсный стабилизатор напряжения

Подключим напряжение для управления истоком и затвором транзистора, который войдет в положение насыщения. По нему будет проходить ток по цепи от положительного полюса по выравнивающему дросселю и нагрузке. В прямом направлении ток по диоду не протекает.

Отключим управляющее напряжение, которое выключает ключевой транзистор. После этого он будет находиться в положении отсечки. ЭДС индукции выравнивающего дросселя будет преграждать путь для изменения тока, который пойдет по цепи через нагрузку от дросселя, по общему проводнику, диод, и опять придет на дроссель. Емкость С1 будет разряжаться и будет удерживать напряжение на выходе.

При подаче отпирающей разницы потенциалов между истоком и затвором транзистора, он перейдет в режим насыщения и вся цепочка вновь повторится.

Инвертирующий стабилизатор

Импульсные стабилизаторы инвертирующего типа используют для подключения потребителей с постоянным напряжением, полюсность которого имеет противоположное направление полюсности разности потенциалов на выходе устройства. Его значение может быть выше сети питания, и ниже сети, в зависимости от настройки стабилизатора. Гальваническая изоляция сети питания и нагрузки отсутствует. Импортные приборы инвертирующего типа называются buck-boost converter. На выходе таких приборов напряжение всегда ниже.

Импульсный стабилизатор напряжения

Подключим управляющую разность потенциалов, которое откроет транзистор между истоком и затвором. Он откроется, и ток пойдет по цепи от плюса по транзистору, дросселю к минусу. При таком процессе дроссель резервирует энергию с помощью своего магнитного поля. Отключим разность потенциалов управления от ключа на транзисторе, он закроется. Ток пойдет от дросселя по нагрузке, диоду, и возвратится в первоначальное положение. Резервная энергия на конденсаторе и магнитном поле будет расходоваться для нагрузки. Снова подадим питание на транзистор к истоку и затвору. Транзистор опять станет насыщаться и процесс повторится.

Преимущества и недостатки

Как и все приборы, модульный импульсный стабилизатор не идеален. Поэтому ему присущи минусы и плюсы. Разберем основные из преимуществ:

  • Простое достижение выравнивания.
  • Плавное подключение.
  • Компактные размеры.
  • Устойчивость выходного напряжения.
  • Широкий интервал стабилизации.
  • Повышенный КПД.
  • Сложная конструкция.
  • Много специфических компонентов, снижающих надежность устройства.
  • Необходимость в использовании компенсирующих устройств мощности.
  • Сложность работ по ремонту.
  • Образование большого количества помех частоты.

Допустимая частота

Функционирование импульсного стабилизатора возможно при значительной частоте преобразования. Это является основной отличительной чертой от устройств, имеющих трансформатор сети. Увеличение этого параметра дает возможность получить наименьшие габариты.

Для большинства приборов интервал частот будет равен 20-80 килогерц. Но при выборе ШИМ и ключевых приборов необходимо учесть высокие гармоники токов. Верхняя граница параметра ограничена определенными требованиями, которые предъявляются к радиочастотным приборам.

Источник



Стабилизатор тока светодиода

Стабилизатор тока светодиода

Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока.

Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально. По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро. При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает.

Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов — 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше — 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод.

Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс. Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение — это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток. Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени). Следовательно, включать светодиоды без устройств выравнивания тока — нежелательно. Различные способы выравнивания тока рассмотрены отдельно. В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток — стабилизаторы тока.

Читайте также:  Внешняя обратная связь по току

Типы стабилизаторов тока

Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.

Стабилизатор тока светодиода

Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода. В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным. Также существуют более экономичные устройства — стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера). Они называются импульсными, поскольку внутри себя прокачивают мощность порциями — импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно.

Линейный стабилизатор тока

Линейный стабилизатор тока греется тем больше, чем больше приложено к нему напряжение. Это его основной недостаток. Однако, он имеет ряд преимуществ, например:

  • Линейный стабилизатор не создаёт электромагнитных помех
  • Прост по конструкции
  • Имеет низкую стоимость в большинстве применений

Поскольку импульсный преобразователь не бывает абсолютно эффективным, существуют приложения, когда линейный стабилизатор имеет сравнимую или даже большую эффективность — когда входное напряжение лишь немного превышает напряжение на светодиоде. Кстати, при питании от сети, часто используется трансформатор, на выходе которого устанавливается линейный стабилизатор тока. То есть, сначала напряжение снижается до уровня, сравнимого с напряжением на светодиоде, а затем, с помощью линейного стабилизатора устанавливается необходимый ток.

В другом случае, можно приблизить напряжение светодиода к напряжению питания — соединить светодиоды в последовательную цепочку. Напряжение на цепочке будет равняться сумме напряжений на каждом светодиоде.

Схемы линейных стабилизаторов тока

Самая простая схема стабилизатора тока — на одном транзисторе (схема «а»). Поскольку транзистор — это усилитель тока, то его выходной ток (ток коллектора) больше тока управления (ток базы) в h21 раз (коэффициент усиления). Ток базы можно установить с помощью батарейки и резистора, или с помощью стабилитрона и резистора (схема «б»). Однако такую схему трудно настраивать, полученный стабилизатор будет зависеть от температуры, кроме того, транзисторы имеют большой разброс параметров и при замене транзистора, ток придётся подбирать снова. Гораздо лучше работает схема с обратной связью «в» и «г». Резистор R в схеме выполняет роль обратной связи — при увеличении тока, напряжение на резисторе возрастает, тем самым запирает транзистор и ток снижается. Схема «г», при использовании однотипных транзисторов, имеет бóльшую температурную стабильность и возможность максимально уменьшить номинал резистора, что снижает минимальное напряжение стабилизатора и выделение мощности на резисторе R.

Линейный стабилизатор

Стабилизатор тока можно выполнить на базе полевого транзистора с p-n переходом (схема «д»). Напряжение затвор-исток устанавливает ток стока. При нулевом напряжении затвор-исток, ток через транзистор равен начальному току стока, указанному в документации. Минимальное напряжение работы такого стабилизатора тока зависит от транзистора и достигает 3 вольт. Некоторые производители электронных компонентов выпускают специальные устройства — готовые стабилизаторы с фиксированным током, собранные по такой схеме — CRD (Current Regulating Devices) или CCR (Constant Current Regulator) . Некоторые называют его диодным стабилизатором, поскольку в обратном включении он работает как диод.

Компания On Semiconductor выпускает линейный стабилизатор серии NSIxxx, например NSIC2020B, который имеет два вывода и для увеличения надежности, имеет отрицательный температурный коэффициент — при увеличении температуры, ток через светодиоды снижается.

NSIxxx линейный драйвер светодиодов

Импульсный стабилизатор тока

Стабилизатор тока на базе импульсного преобразователя по конструкции очень похож на стабилизатор напряжения на базе импульсного преобразователя, но контролирует не напряжение на нагрузке, а ток через нагрузку. При снижении тока в нагрузке, он подкачивает мощность, при увеличении — снижает. Наиболее распространённые схемы импульсных преобразователей имеют в своём составе реактивный элемент — дроссель, который с помощью коммутатора (ключа) подкачивается порциями энергии от входной цепи (от входной ёмкости) и в свою очередь передаёт её нагрузке. Кроме очевидного преимущества экономии энергии, импульсные преобразователи обладают рядом недостатков, с которыми приходится бороться различными схемотехническими и конструктивными решениями:

  • Импульсный конвертер производит электрические и электромагнитные помехи
  • Имеет как правило сложную конструкцию
  • Не обладает абсолютной эффективностью, то есть тратит энергию для собственной работы и греется
  • Имеет чаще всего бóльшую стоимость, по сравнению, например, с трансформаторными плюс линейными устройствами

Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.

Схемы импульсных преобразователей

Поскольку стабилизатор тока основан на импульсном преобразователе, рассмотрим основные схемы импульсных преобразователей. Каждый импульсный преобразователь имеет ключ, элемент, который может находиться только в двух состояниях — включенном и выключенном. В выключенном состоянии, ключ не проводит ток и, соответственно, на нём не выделяется мощность. Во включенном состоянии, ключ проводит ток, но имеет очень малое сопротивление (в идеале — равное нулю), соответственно на нём выделяется мощность, близкая к нулю. Таким образом, ключ может передавать порции энергии от входной цепи к выходной практически без потерь мощности. Однако, вместо стабильного тока, какой можно получить от линейного источника питания, на выходе такого ключа будет импульсное напряжение и ток. Для того, чтобы получить снова стабильные напряжение и ток, можно поставить фильтр.

Импульсный преобразователь

С помощью обычного RC фильтра можно получить результат, однако, эффективность такого преобразователя не будет лучше линейного, поскольку вся избыточная мощность выделится на активном сопротивлении резистора. Но если использовать вместо RC — LC фильтр (схема «б»), то, благодаря «специфическим» свойствам индуктивности, потерь мощности можно избежать. Индуктивность обладает полезным реактивным свойством — ток через неё возрастает постепенно, подаваемая на него электрическая энергия преобразуется в магнитную и накапливается в сердечнике. После выключения ключа, ток в индуктивности не пропадает, напряжение на индуктивности меняет полярность и продолжает заряжать выходной конденсатор, индуктивность становится источником тока через обводной диод D. Такая индуктивность, предназначенная для передачи мощности, называется дросселем. Ток в дросселе правильно работающего устройства присутствует постоянно — так называемый неразрывный режим или режим непрерывного тока (в западной литературе такой режим называется Constant Current Mode — CCM). При снижении тока нагрузки, напряжение на таком преобразователе возрастает, энергия, накапливаемая в дросселе снижается и устройство может перейти в разрывный режим работы, когда ток в дросселе становится прерывистым. При таком режиме работы резко повышается уровень помех, создаваемых устройством. Некоторые преобразователи работают в пограничном режиме, когда ток через дроссель приближается к нулю (в западной литературе такой режим называется Border Current Mode — BCM). В любом случае, через дроссель течет значительный постоянный ток, что приводит к намагничиванию сердечника, в связи с чем, дроссель выполняется особой конструкции — с разрывом или с использованием специальных магнитных материалов.

Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема «а»). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема «б»), включенного последовательно с нагрузкой.

Импульсный преобразователь

Ключ преобразователя, в зависимости от сигнала регулятора, включается с различной скважностью. Есть два распространённых способа управления ключом — широтно-импульсная модуляция (ШИМ) и токовый режим. В режиме ШИМ, сигнал ошибки управляет длительностью импульсов при сохранении частоты следования. В токовом режиме, измеряется пиковый ток в дросселе и изменяется интервал между импульсами.

В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.

Понижающий преобразователь

Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.

Импульсный преобразователь

Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.

Повышающий преобразователь

Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.

Импульсный преобразователь

В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.

Инвертирующий преобразователь

Еще одна схема импульсного преобразователя работает аналогично — когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС будет иметь обратный знак и на нагрузке появится отрицательное напряжение.

Импульсный преобразователь

Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.

Прямоходовой и обратноходовой преобразователи

Наиболее часто блоки питания изготавливаются по схеме, использующей в своем составе трансформатор. Трансформатор обеспечивает гальваническую развязку вторичной цепи от источника питания, кроме того, эффективность блока питания на основе таких схем может достигать 98% и более. Прямоходовой преобразователь (схема «а») передаёт энергию от источника в нагрузку в момент включенного состояния ключа. Фактически — это модифицированный понижающий преобразователь. Обратноходовой преобразователь (схема «б») передаёт энергию от источника в нагрузку во время выключенного состояния.

Читайте также:  Как пройти до пострадавшего электрическим током

Импульсный преобразователь

В прямоходовом преобразователе трансформатор работает в обычном режиме и энергия накапливается в дросселе. Фактически — это генератор импульсов с LC фильтром на выходе. Обратноходовой преобразователь накапливает энергию в трансформаторе. То есть трансформатор совмещает свойства трансформатора и дросселя, что создаёт определённые сложности при выборе его конструкции.

В западной литературе прямоходовой преобразователь называется Forward converter. Обратноходовой — Flyback converter.

Применение импульсного конвертера в качестве стабилизатора тока

Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения. Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя. Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.

Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor:

Импульсный стабилизатор тока

Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1. Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора. В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель. При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.

Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201:

Импульсный стабилизатор тока

Для работы устройства мощностью до 7 Ватт необходимо всего 8 компонентов, включая саму микросхему. Импульсный стабилизатор работает в пограничном режиме тока и для его работы требуется небольшой выходной керамический конденсатор. Резистор R3 необходим при питании от 24 Вольт и выше для снижения скорости нарастания входного напряжения, хотя это несколько снижает эффективность устройства. Частота работы превышает 200 кГц и меняется в зависимости от нагрузки и входного напряжения. Это обусловлено методом регулирования — контролем пикового тока дросселя. Когда ток достигает максимального значения, ключ размыкается, когда ток снижается до нуля — включается. Эффективность устройства достигает 94%.

Источник

Импульсный стабилизатор тока

Довольно часто возникают ситуации, когда характеристики электрического тока в сети не позволяют нормально эксплуатировать различные приборы и оборудование. Для решения этой проблемы используется импульсный стабилизатор тока, конструктивно напоминающий стабилизирующее устройство напряжения, работающего на основе импульсного преобразователя. Основной функцией импульсного стабилизатора является контроль над состоянием тока через нагрузку. В случае снижения тока в нагрузке подкачивается дополнительная мощность, а при повышении тока – мощность понижается.

Устройство импульсного стабилизатора

Схемы импульсных преобразователей, получившие наиболее широкое распространение, оборудуются реактивным элементом – дросселем, к которому энергия подкачивается определенными порциями с помощью специального ключа, еще называемого коммутатором. Подкачка осуществляется от входной цепи и далее поступает на нагрузку. В результате, такой режим работы дает существенную экономию электроэнергии, особенно, если стабилизатор работает на полевом транзисторе.

Однако, несмотря на явные преимущества, у импульсных преобразователей имеется ряд недостатков, для преодоления которых используются различные технические и конструктивные решения. В первую очередь это связано с электромагнитными и другими помехами, возникающими в процессе работы импульсного конвертера, а также сложной конструкцией устройства. Во время эксплуатации невозможно достичь максимального эффекта, поскольку происходит нагрев и энергия затрачивается впустую.

Немаловажное значение имеет высокая стоимость импульсных устройств. Тем не менее, для многих схем экономия электроэнергии выступает на передний план, поэтому негативное влияние недостатков в большинстве случаев удается максимально снизить.

Схемы импульсных преобразователей

Основой каждого стабилизатора тока данного типа является импульсный преобразователь. Кроме того, в схеме предусмотрен ключ, находящийся только в двух позициях – выключенной и включенной. В состоянии «выключено» ток не проводится, поэтому выделение мощности отсутствует. В положении «включено» ключ начинает проводить ток, обладая при этом, незначительным сопротивлением, стремящимся к нулю. Соответственно выделение мощности происходит со значением также близком к нулю.

Порционная передача энергии с помощью ключа от входа к выходу осуществляется без каких-либо потерь мощности. Однако по сравнению с линейным источником питания, ток и напряжение на выходе такого ключа будут импульсными, то есть нестабильными. Для стабилизации этих параметров используются фильтры, хорошо зарекомендовавшие себя для светодиодов.

Лучше всего зарекомендовали себя фильтры, обладающие свойствами индуктивности, что позволяет избежать потерь мощности. Основное полезное свойство индуктивности заключается в постепенном возрастании тока, проходящего через нее. Происходит преобразование электрической энергии в магнитную и ее накапливание в сердечнике. После того как ключ оказывается выключенным, ток в индуктивности остается прежним, а напряжение изменяет полярность.

В результате, зарядка выходного конденсатора продолжается, а сама индуктивность превращается в источник тока. Данная индуктивность, выполняющая передачу мощности, и является дросселем. В правильно работающем устройстве ток в дросселе присутствует постоянно, то есть его работа происходит в так называемом неразрывном режиме.

Если происходит снижение нагрузочного тока, наступает рост напряжения в преобразователе. Снижается энергия, накопленная в дросселе, и устройство начинает работать в разрывном режиме при прерывистом токе. В результате, наблюдается резкий рост магнитных помех, создаваемых устройством. Чтобы избежать помех и намагничивания сердечника, используется особая конструкция дросселя, в которой присутствуют магнитные материалы.

Одним из элементов импульсного стабилизатора тока является устройство для регулировки работы ключа в соответствии с подключенной нагрузкой. Регистрация напряжения на нагрузке производится стабилизатором, изменяющим работу ключа. С помощью стабилизатора тока выполняется измерение тока, проходящего через нагрузку. Обычно для этих целей используется небольшое измерительное сопротивление, включаемого последовательно с нагрузкой.

Включение ключа преобразователя производится с различной скважностью, в зависимости от сигнала регулятора. Наибольшее распространение получил способ широтно-импульсной модуляции, а также работа в токовом режиме. В первом случае применяется управление длительностью импульсов с сохранением частоты следования. Вторая схема импульсного стабилизатора предполагает измерение пикового тока в дросселе, с одновременным интервалом между импульсами.

На основе импульсного устройства создано несколько видов преобразователей:

  • Понижающий преобразователь. Получил свое название в связи с тем, что напряжение на нагрузке всегда меньше напряжения источника питания. Течение тока в дросселе постоянно происходит в одном направлении, поэтому требования к конденсатору, установленному на выходе, несколько снижены. В некоторых схемах дроссель и выходной конденсатор используются в качестве фильтра. Существуют схемы, где конденсатор вообще отсутствует, например, в стабилизаторах для светодиодов.
  • Повышающий преобразователь. Данная микросхема импульсного стабилизатора тока также содержит дроссель, постоянно подключенный к выходу источника питания. Когда ключ находится в разомкнутом положении, питание на нагрузку поступает через диод и дроссель. При замыкании ключа в дросселе происходит накопление энергии и при размыкании ключа его ЭДС, возникающая на выводах, добавляется к ЭДС источника питания. Это приводит к возрастанию напряжения на нагрузке. В данной схеме, в отличие от предыдущей, для зарядки выходного конденсатора используется прерывистый ток. Поэтому параметры выходного конденсатора должны быть большими, в некоторых случаях может потребоваться установка дополнительного фильтра.
  • Инвертирующий преобразователь. Работает по такой же схеме, что и повышающее устройство.
  • Прямоходовой и обратноходовой преобразователи. Нередко схемы блоков питания содержат такой элемент как трансформатор. С его помощью обеспечивается гальваническая развязка вторичной цепи от источника питания. Благодаря таким схемам эффективность работы устройств достигает 98% и выше. Передача энергии в прямоходовом преобразователе осуществляется от источника в нагрузку при включенном состоянии ключа. Фактически он является модифицированным понижающим преобразователем. Энергия в обратноходовом преобразователе происходит от источника к нагрузке в выключенном состоянии.

Импульсный конвертер как стабилизатор тока

Импульсный стабилизатор тока

Многие импульсные блоки питания оборудованы системой стабилизации выходного напряжения. Подобные схемы, особенно повышенной мощности, помимо обратной связи с выходным напряжением, включают в свой состав систему контроля тока ключевого элемента.

В этом качестве может использоваться резистор с незначительным сопротивлением. Наличие такого контроля обеспечивает работу дросселя в необходимом режиме. Подобные контрольные элементы используются в простейших стабилизаторах тока, сделанных своими руками, и эффективно стабилизируют выходной ток.

Источник

Импульсный стабилизатор напряжения

Импульсный стабилизатор напряжения — это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме [1] , то есть бо́льшую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в режиме насыщения — с минимальным сопротивлением, а значит может рассматриваться как ключ. Плавное изменение напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления им энергии и снижается по мере отдачи её в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить массогабаритные показатели, однако имеет свои особенности.

Содержание

Разновидности

Принцип действия

Важнейшими элементами импульсного источника питания являются ключ — устройство, способное за короткое время изменить сопротивление прохождению тока с минимального на максимальное, и наоборот, и интегратор, напряжение на котором не может измениться мгновенно, а плавно растёт по мере накопления им энергии и так же плавно падает по мере отдачи её в нагрузку. Простейшим примером такого элемента может служить конденсатор, перед которым включено некоторое ненулевое сопротивление (в качестве которого может служить, к примеру, внутреннее сопротивление источника питания) [замечание 1] .

Примечание

  1. Конденсатор взят для наглядности, но в реальных схемах КПД такого преобразователя мал, и не превышает КПД линейных регуляторов, т.к. много энергии рассеивается на упомянутом сопротивлении, или излучается в виде электромагнитной энергии (см. «Two Capacitors Paradox»). Схемы, позволяющие достичь более высокого КПД описаны ниже.
Читайте также:  Что такое ток возбуждения синхронного двигателя

Ключевой с триггером Шмитта

Несколько иначе устроен ключевой стабилизатор напряжения с триггером Шмитта (называемый также релейным или стабилизатором с двухпозиционным регулированием [2] ). В нём, при замкнутом ключе (1), входное напряжение поступает через ключевой элемент на накопитель (2), а выходное напряжение сравнивается с минимально допустимым напряжением и максимально допустимым напряжением в компараторе (4), который является входной составной частью инвертирующего триггера Шмитта (4)-(3). Как только выходное напряжение превышает максимально допустимое напряжение Umax, инвертирующий триггер Шмитта переключается в «0» и закрывает ключ (1). Накопитель разряжается, пока напряжение на нём не упадёт ниже минимально допустимого напряжения Umin, после чего инвертирующий триггер Шмитта переключается в «1», ключ снова открывается и процесс повторяется.
В середине диапазона стабилизации от Umin до Umax состояние ключа не изменяется.
Напряжения сравнения Umin и Umax формируются из опорного напряжения (5), при применении простого триггера Шмитта без обратной связи простыми делителями напряжения, а при применении более сложного триггера Шмитта с обратной связью более сложными для расчёта Umin и Umax цепями.

Такой стабилизатор прост по конструкции, частота замыкания/размыкания ключа в нём определяется суммой постоянных времени заряда и разряда накопителя (объекта управления) и разницей между максимально допустимым и минимально допустимым напряжениями и, при постоянной нагрузке, постоянна.

При двухпозиционном регулировании возможно использование не всех видов преобразований: например, невозможно использование описанного ниже повышающего преобразователя.

Ключевой с широтно-импульсной модуляцией

На рисунке изображена функциональная схема ключевого стабилизатора напряжения с широтно-импульсной модуляцией (ШИМ).

Когда ключ (1) замкнут, входное напряжение Ui через ключ поступает на интегратор (2). Интегратор накапливает энергию, подаваемую с ключа и отдаёт её в нагрузку, когда ключ разомкнут. В результате на выходе имеем усреднённое значение напряжения, которое зависит от входного напряжения и скважности импульсов, зависящей от частоты генератора и ёмкости конденсатора. Вычитатель-усилитель на операционном усилителе (4) вычитает из выходного напряжения напряжение сравнения (6) и усиливает разность. Усиленная разница поступает на модулятор (3). В модуляторе компаратор преобразует импульсы генератора (5) в прямоугольные импульсы, отклонение скважности которых от среднего значения, равного 2, пропорционально разности между выходным напряжением и напряжением сравнения. Поэтому, ключевой стабилизатор напряжения с ШИМ, при малых отклонениях выходного напряжения от напряжения сравнения работает как пропорциональный регулятор (П-регулятор). Обычно генератор выдаёт треугольные или пилообразные импульсы, которые преобразуются в прямоугольные с помощью порогового элемента с регулируемым порогом срабатывания (компаратора). Прямоугольные импульсы с выхода модулятора управляют замыканием и размыканием ключа (1).

При малых отклонениях выходного напряжения от напряжения сравнения скважность близка к 2, а частота работы ключа близка к частоте генератора модулятора. Ключ (транзистор) работает в наиболее благоприятном частотном режиме.

При больших отклонениях выходного напряжения от напряжения сравнения скважность приближается к 0или к \infty, эквивалентная частота работы ключа в начале периода или в конце периода приближается к \infty, ключ (транзистор) работает в наихудшем частотном режиме, в котором чаще всего и выходит из строя, затем ключ (транзистор) переходит в благоприятные, полностью открытое или в полностью закрытое состояние.

Диапазон частот

В отличие от блоков питания с сетевым трансформатором, импульсные блоки питания могут работать при достаточно высокой частоте преобразования. Повышение частоты позволяет уменьшить габариты и массу устройства. С верхней стороны диапазон частот преобразователей ограничивается требованиями ограничения источников помех для работы радиочастотной аппаратуры.

Обычно диапазон частот преобразователей составляет 20..80 кГц. При выборе частоты работы ключевых и ШИМ-стабилизаторов необходимо учитывать высшие гармоники токов.

Преобразователи на основе дросселя

Стабилизаторы с ёмкостным накопителем не получили широкого распространения, так как они хорошо работают только при достаточно большом внутреннем сопротивлении первичного источника. Такая ситуация возникает достаточно редко, т. к. внутреннее сопротивление источников питания стараются уменьшить, для отдачи большей мощности в нагрузку и меньших потерь энергии в источнике (например, внутреннее сопротивление бытовой сети электроснабжения в жилых помещениях составляет обычно от 0,05 Ом до 1 Ом). При работе от источника с маленьким внутренним сопротивлением в качестве накопителя энергии целесообразно использовать дроссель, либо более сложные комбинации дросселей и конденсаторов. Рассмотрим некоторые простые разновидности преобразователя.

Преобразователь с понижением напряжения

Buck conventions.svg

Кроме ключа S и дросселя L содержит диод D и конденсатор C. Когда ключ S замыкается, ток от источника течёт через дроссель L и нагрузку. ЭДС самоиндукции дросселя приложена обратно напряжению источника тока. В результате напряжение на нагрузке равно разности напряжения источника питания и ЭДС самоиндукции дросселя, ток через дроссель растёт, как и напряжение на конденсаторе C и нагрузке. При разомкнутом ключе S ток продолжает протекать через дроссель в том же направлении через диод D и нагрузку, а также конденсатор C. ЭДС самоиндукции приложена к нагрузке R через диод D, ток через дроссель постепенно уменьшается, как и напряжение на конденсаторе C и на нагрузке [3] .

Преобразователь с повышением напряжения

Boost conventions.svg

В этом преобразователе ключ установлен после дросселя. Когда ключ замкнут, ток от источника протекает через дроссель L, ток через него увеличивается, в нём накапливается энергия. При размыкании ключа ток от источника течёт через дроссель L, диод D и нагрузку. Напряжение источника и ЭДС самоиндукции дросселя приложены в одном направлении и складываются на нагрузке. Ток постепенно уменьшается, дроссель отдаёт энергию в нагрузку. Пока ключ замкнут, нагрузка питается напряжением конденсатора C. Диод D не даёт ему разрядиться через ключ S [4] .

Возможно также совмещение этой схемы с предыдущей, что позволяет произвольно изменять величину выходного напряжения: как повышать, так и понижать. Для этого перед дросселем устанавливаются диод и ключ, как в предыдущей схеме.

Инвертирующий преобразователь

Buckboost conventions.svg

В нём дроссель подключен параллельно источнику и нагрузке. Когда ключ S замкнут, ток от источника течёт через дроссель и быстро растёт. Когда ключ размыкается, ток продолжает течь через нагрузку R и диод D. ЭДС самоиндукции дросселя приложена в обратную сторону, по сравнению с напряжением источника. Поэтому напряжение к нагрузке также приложено в обратном направлении. Когда ключ S замкнут — диод D закрывается, а нагрузка питается зарядом конденсатора C [5] .

Во всех трёх схемах диод D может быть заменён на ключ [6] , замыкаемый в противофазе к основному ключу. Во многих случаях, особенно в низковольтных стабилизаторах, это позволяет увеличить КПД. Такую схему называют синхронным выпрямителем см. синхронное выпрямление (англ.)

Другие разновидности

Существуют другие разновидности импульсных преобразователей напряжения, использующихся в стабилизаторах. Например, такие преобразователи, как Обратноходовый преобразователь и Двухтактный преобразователь имеют индуктивную развязку выходных цепей, что позволяет питать с их помощью устройства, для которых недопустима гальваническая связь с питающей сетью.

Резонансный преобразователь имеет наилучшие условия работы ключей, что позволяет строить на его основе преобразователи большой мощности (до десятков киловатт) с достаточно высоким КПД. [7] [8] Однако его недостатком является сложность проектирования, что мешает его широкому распространению.

Квазирезонансный преобразователь обладает значительно более высоким КПД по сравнению с широтно-импусными модуляторами, благодаря чему обеспечивается минимальное энергопотребление в дежурном режиме и низкое тепловыделение в рабочем. Выходное напряжение БП регулируется за счет изменения частоты работы преобразователя. [9]

Особенности использования

Фильтрация импульсных помех

Импульсный стабилизатор напряжения является источником высокочастотных помех в связи с тем, что содержит ключи, коммутирующие ток [10] . Сложно подобрать такой режим работы ключей, чтобы коммутация происходила в моменты, когда через ключ не протекает ток при размыкании, или на ключе нулевое напряжение при замыкании. Поэтому в моменты коммутации возникают довольно значительные броски напряжения и тока, распространяющиеся как на вход, так и на выход стабилизатора. Для поглощения помех помехоподавляющие фильтры устанавливаются как на входе, так и на выходе стабилизатора.

Использование в сетях переменного тока

Рассмотренные импульсные преобразователи напряжения преобразуют постоянный ток на входе в постоянный ток на выходе. Для питания устройств от сети переменного тока необходимо устанавливать на входе выпрямитель и сглаживающий фильтр. Стоит отметить, что импульсный стабилизатор напряжения под нагрузкой имеет отрицательное дифференциальное сопротивление: при повышении напряжения на входе для сохранения выходного напряжения уменьшается входной ток, и наоборот. Если подключить такой стабилизатор через мостовой выпрямитель в сеть переменного тока, он станет источником нечётных гармоник [11] . Поэтому, чтобы обеспечить достаточный коэффициент мощности, требуется компенсатор.

Гальваническая развязка

Стоит отметить некоторые особенности импульсных стабилизаторов с точки зрения гальванической развязки цепей:

  • Существование импульсных преобразователей напряжения с гальванической развязкой позволяет отказаться от низкочастотного сетевого трансформатора — необходимую гальваническую развязку будет осуществлять высокочастотный трансформатор, который работает на частоте десятков-сотен килогерц, и следовательно его габариты значительно меньше, чем обычного силового сетевого трансформатора работающего на промышленной частоте 50 Гц.
  • Озвученное выше решение предполагает наличие относительно большого количества элементов, установленных до развязывающего трансформатора, а значит гальванически связанных с входными цепями. Эта часть, гальванически связанная с электрической сетью, обычно выделяется на платах либо штриховкой, либо чертой на слое сеткографической маркировки, или даже особой окраской, которая предупреждает человека о потенциальной опасности прикосновения к частям, расположенным в ней. Импульсные блоки питания в составе других приборов (телевизоров, компьютеров) закрываются защитными крышками, снабжёнными предупреждающими надписями. Если при ремонте импульсного блока питания необходимо включить его со снятой крышкой, рекомендуется включать его через развязывающий трансформатор или УЗО.
  • Обратная связь в импульсных стабилизаторах также требует развязки. Для этой цели применяют либо отдельную обмотку на трансформаторе, с которой снимается напряжение для сравнения с опорным, либо напряжение снимается с выхода блока питания, а развязка управляющих цепей осуществляется с помощью оптрона.
  • Часто помехоподавляющие фильтры на входе импульсных блоков питания соединяются с корпусом прибора. Это делается в том случае, если предполагается подключение защитного заземления корпуса. Если защитным заземлением пренебрегли, то на корпусе прибора образуется потенциал относительно земли равный половине сетевого напряжения. Конденсаторы фильтров, как правило, имеют небольшую ёмкость, поэтому прикосновение к корпусу такого прибора неопасно для человека, но одновременное прикосновение чувствительными частями тела к заземленным приборам и к незаземленному корпусу ощутимо (говорят, что прибор «кусается»). Кроме того потенциал на корпусе может быть опасен для самого прибора.

Источник

Adblock
detector