§ 36. Электролитическая диссоциация
Как вы знаете из уроков физики, растворы одних веществ способны проводить электрический ток, а других — нет. Чтобы опытным путём проверить эту способность у растворов различных веществ, воспользуемся следующим прибором (рис. 129).
Он состоит из стакана, в который наливают раствор исследуемого вещества. На стакан ставят пластинку из эбонита с вмонтированными в неё двумя угольными электродами, к клеммам которых присоединены провода. Один из них соединён с лампочкой.
Выходной контакт от лампочки и провод от другой клеммы идут к источнику тока. Если раствор, налитый в стакан, проводит электрический ток, то лампочка загорается, и чем лучше эта способность, тем ярче горит лампочка. Проводят электрический ток растворы солей, щелочей, кислот.
Вещества, растворы которых проводят электрический ток, называют электролитами. |
Растворы сахара, спирта, глюкозы и некоторых других веществ не проводят электрический ток.
Вещества, растворы которых не проводят электрический ток, называют неэлектролитами. |
Почему же растворы электролитов проводят электрический ток?
Шведский учёный Сванте Аррениус, изучая электропроводность растворов различных веществ, пришёл в 1877 г. к выводу, что причиной электропроводности является наличие в растворе ионов, которые образуются при растворении электролита в воде.
Процесс распада электролита на ионы называют электролитической диссоциацией. |
С. Аррениус, который придерживался физической теории растворов, не учитывал взаимодействия электролита с водой и считал, что в растворах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяковский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита происходит химическое взаимодействие растворённого вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, т. е. «одетые в шубку» из молекул воды.
Молекулы воды представляют собой диполи (два полюса), так как атомы водорода расположены под углом 104,5°, благодаря чему молекула имеет угловую форму. Молекула воды схематически представлена ниже.
Как правило, легче всего диссоциируют вещества с ионной связью и соответственно с ионной кристаллической решёткой, так как они уже состоят из готовых ионов. При их растворении диполи воды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита (рис. 130).
Рис. 130.
Схема электролитической диссоциации хлорида натрия на гидратированные ионы
Между ионами электролита и диполями воды возникают силы взаимного притяжения. В результате химическая связь между ионами ослабевает, и происходит переход ионов из кристалла в раствор. Очевидно, что последовательность процессов, происходящих при диссоциации веществ с ионной связью (солей и щелочей), будет такой:
- ориентация молекул — диполей воды около ионов кристалла;
- гидратация (взаимодействие) молекул воды с противоположно заряженными ионами поверхностного слоя кристалла;
- диссоциация (распад) кристалла электролита на гидратированные ионы.
Упрощённо происходящие процессы можно отразить с помощью следующего уравнения:
Аналогично диссоциируют и электролиты, в молекулах которых ковалентная полярная связь (например, молекулы хлороводорода НСl, рис. 131), только в этом случае под влиянием диполей воды происходит превращение ковалентной полярной связи в ионную, и последовательность процессов, происходящих при этом, будет такая:
- ориентация молекул воды вокруг полюсов молекулы электролита;
- гидратация (взаимодействие) молекул воды с молекулами электролита;
- ионизация молекул электролита (превращение ковалентной полярной связи в ионную);
- диссоциация (распад) молекул электролита на гидратированные ионы.
Рис. 131.
Схема электролитической диссоциации полярной молекулы хлороводорода на гидратированные ионы
Уравнение диссоциации соляной кислоты:
В растворах электролитов хаотически движущиеся гидратированные ионы могут столкнуться и объединиться. Этот обратный процесс называют ассоциацией.
Свойства гидратированных и негидратированных ионов различаются. Например, негидратированный ион меди Сu 2+ — бесцветный в безводных кристаллах сульфата меди (II) CuSO4 и имеет голубой цвет, когда гидратирован, т. е. связан с молекулами воды Сu 2+ • nH2O. Гидратированные ионы имеют как постоянное, так и переменное число молекул воды.
В растворах электролитов наряду с ионами присутствуют и молекулы. Поэтому растворы электролитов характеризуются степенью диссоциации, которую обозначают греческой буквой α («альфа»).
Степень диссоциации электролита определяют опытным путём и выражают в долях или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1, или 100%, то электролит полностью распадается на ионы. Электролиты имеют различную степень диссоциации, т. е. степень диссоциации зависит от природы электролита. Она также зависит и от концентрации: с разбавлением раствора степень диссоциации увеличивается.
По степени электролитической диссоциации электролиты разделяют на сильные и слабые.
Сильные электролиты при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов значение степени диссоциации стремится к единице в разбавленных растворах.
К сильным электролитам относят:
- практически все соли;
- сильные кислоты, например: H2SO4, НСl, HNO3;
- все щёлочи, например: NaOH, КOН.
Слабые электролиты при растворении в воде почти не диссоциируют на ионы. У таких электролитов значение степени диссоциации стремится к нулю.
К слабым электролитам относят:
- слабые кислоты, например: H2S, H2CO3, HNO2;
- водный раствор аммиака NH3 • Н2O.
Ключевые слова и словосочетания
- Электролиты и неэлектролиты.
- Электролитическая диссоциация и ассоциация.
- Механизм диссоциации веществ с различным типом связи.
- Степень электролитической диссоциации.
- Сильные и слабые электролиты.
Работа с компьютером
- Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
- Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока — сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.
Вопросы и задания
- Объясните, почему раствор гидроксида калия проводит электрический ток, а раствор глюкозы С6Н12O6 — нет.
- Почему при разбавлении раствора электролита степень его диссоциации увеличивается?
- Докажите, что деление химических связей на ковалентную полярную и ионную условно.
- Как отличается по своей природе электропроводность металлов и электролитов?
- Как объяснить электрическую проводимость водных растворов электролитов?
Источник
Теоретическая часть. Все вещества по способности проводить электрический ток можно подразделить на две группы: проводники и диэлектрики
2015-05-10
7416
Все вещества по способности проводить электрический ток можно подразделить на две группы: проводники и диэлектрики. Среди проводников есть вещества, которые проводят электрический ток за счет направленного движения электронов проводники I рода. К таким веществам относятся металлы, характеризующиеся электронной проводимостью. Существуют вещества способные проводить электрический ток в растворенном или расплавленном состояниях. Эту способность обуславливают ионы, образующиеся при диссоциации данных веществ, при растворении в полярных растворителях или при плавлении при повышенных температурах. Такие вещества, растворы или расплавы которых содержат подвижные ионы, называютэлектролитами. В отличие от металлов электролиты относятся к проводникам II рода и характеризуются ионной проводимостью. К электролитам относятся кислоты, основания и соли. Это вещества с ионным или ковалентным полярным типом связи.
Неэлектролитаминазываются вещества, растворы или расплавы которых не содержат ионов, а, следовательно, не могут проводить электрический ток. Это вещества с ковалентными неполярными или малополярными химическими связями.
· некоторые газы (азот, кислород)
· некоторые твердые вещества (сера, кремний, медь)
· некоторые органические соединения (сахароза, бензин, спирт).
Сухая кристаллическая соль хлорид натрия электрический ток не проводит. Имеющиеся в кристаллической решетке хлорида натрия ионы натрия (Nа + ) и (Сl — ) сильно притягиваются друг к другу и не могут свободно перемещаться. При растворении соли в воде ионы, образующие данный электролит, под действием полярных молекул воды отрываются друг от друга и распределяются между молекулами растворителя. Происходит процесс электролитической диссоциации.
Электролитическая диссоциация – процесс распада электролита в растворе с образованием положительно заряженных ионов (катионов) и отрицательно заряженных ионов (анионов).
При растворении в воде или при плавлении неэлектролитов, например, сахара происходит распад его кристаллов только на отдельные электронейтральные молекулы. При этом ионов не образуется и растворы или расплавы неэлектролитов электрический ток не проводят.
Для объяснения особенностей поведения электролитов шведским ученым С. Аррениусом в 1887 году была предложена теория, получившая название теории электролитической диссоциации. Сущность данной теории состоит в следующем:
1. Электролиты при растворении или в расплаве распадаются, диссоциируют на ионы – заряженные положительно (катионы) и заряженные отрицательно (анионы). Свойства ионов совершенно иные, чем у образовавших их атомов.
2. Под действием разности потенциалов, между электродами, погруженными в раствор электролита, ионы приобретают направленное движение, положительно заряженные ионы (катионы) движутся к отрицательно заряженному электроду (катоду), отрицательно заряженные (анионы) — к положительно заряженному электроду (аноду). Раствор электролита проводит электрический ток.
3. Диссоциация в общем случае является процессом обратимым. Это означает, что параллельно с распадом молекул на ионы (диссоциация), идет обратный процесс соединения ионов в молекулы (ассоциация).
Чтобы отметить эту особенность процессов электролитической диссоциации в уравнениях знак равенства заменяют знаком обратимости (D). Например, уравнение диссоциации молекул некоторого электролита (КtАn) на катион Кt + и анион Аn — записывается в виде:
Если электролит является сильным (см. далее), то преимущественно протекает процесс распада на ионы, а обратный процесс ассоциации выражен незначительно. Изображая диссоциацию таких электролитов, вместо знака обратимости ставят одну стрелку, указывающую на направление преимущественного протекание процесса.
С точки зрения теории электролитической диссоциации кислоты (по Аррениусу) – сложные вещества, диссоциирующие на катионы водорода и анионы кислотного остатка:
Кислотные остатки (С1 — , NO3 — и др.) для различных кислот различны, но общим для всех кислот является образование в растворах иона водорода (H + ). Наличие в растворах кислот иона водорода, точнее, гидратированного иона водорода — гидроксония (H + ∙H2O или Н3O + ), обусловливает общие свойства кислот: кислый вкус, действие на индикаторы, взаимодействие с металлами с выделением водорода и др.
Основания (по Аррениусу)– сложные вещества, диссоциирующие анионы гидроксила и катионы металла (или заменяющих его групп).
Общие свойства оснований (мыльность на ощупь, соответствующее действие на индикатор, взаимодействие с кислотами и др.) определяются наличием в растворах оснований ионов гидроксила (ОН — ).
Солями называются сложные вещества, диссоциирующие на катионы металла и анионы кислотного остатка.
Для количественной оценки процесса электролитической диссоциации используется понятие степени электролитической диссоциации.
Степень электролитической диссоциации a — это отношение числа молекул, распавшихся на ионы (n), к общему числу молекул растворенного вещества(No) в растворе:
Степень диссоциации выражается в долях единицы или в процентах.
Например, если a = 30%, то это означает, что из каждых 100 молекул электролита на ионы распадается 30 молекул (a = 0, 3).
Степень электролитической диссоциации зависит от:
· природы растворяемого вещества,
Зависимость диссоциации от природы электролита определяется полярностью связей между атомами в частице электролита. Вещества с ковалентными неполярными или малополярными связями либо не диссоциируют, либо диссоциируют незначительно. Хорошо распадаются на ионы вещества с ковалентными сильно полярными или ионными связями. Следовательно, в растворах хлорида натрия (ионная связь), хлороводорода (ковалентная полярная связь) и хлора (ковалентная неполярная связь) распадаться на ионы будут NаС1 и НС1, а Сl2 будет находиться в растворе в виде молекул.
Если же в растворе оказываются молекулы сложных веществ с различным видом связи, то распад молекулы на ионы произойдет в том месте молекулы, где атомы связаны ионной или ковалентной сильно полярной связью.
Например, молекула гидрокарбоната калия КНСО3характеризуется наличием ионных (К–О) и ковалентных полярных (Н–О и С–О) связей.
К – О ОЭО (К) = 0,91
0,91 3,5 С = О ОЭО (Н) = 2,1
Н – О 2,5ОЭО (С) = 2,5
2,1 3,5ОЭО (О) = 3,5
ΔОЭО (К–О) = 3,5–0,91=2,59 связь ионная;
ΔОЭО (Н–О) = 3,5–2,1=1,4 связь ковалентная сильнополярная;
ΔОЭО (С–О) = 3,5–2,5=1,0 связь ковалентная слабополярная.
Наибольшую величину разности относительных электроотрицательностей (ΔО.Э.О.) имеет связь К-О и, поэтому, диссоциация обусловлена разрывом этой, наиболее полярной (фактически ионной) связи:
Диссоциация этого вещества возможна и по второй ступени. Она связана с разрывом достаточно сильно полярной связи Н – О и протекает незначительно:
II cтупень: НСО3 — D Н + + СО3 2-
Разрыв малополярной связи С — О не происходит.
Важную роль в процессе диссоциации играет растворитель. Чем большей полярностью обладают молекулы растворителя, тем лучше диссоциирует в нем данный электролит, и тем больше степень диссоциации последнего. Если представить диссоциирующее вещество как систему из двух точечных зарядов, то сила взаимодействия ионов (F), на которые диссоциирует данное вещество, определяется в соответствии с законом Кулона:
Эта сила зависит не только от величины зарядов частиц (е1 и е2) и расстояния между ними ( r ), но и от природы среды, в которой взаимодействуют частицы. Природа среды характеризуется значением диэлектрической проницаемости ( e ), которая показывает, во сколько раз сила взаимодействия между зарядами в данной среде меньше, чем в вакууме.
Ниже приведены значения величин диэлектрической проницаемости некоторых растворителей при 25°С.
Аммиак жидкий e = 25,4
Этиловый спирт e = 25,2
Бензол e = 2,3
Раствор хлороводорода в бензоле (e = 2,3) практически не диссоциирует и не проводит электрический ток, в то время как в воде (e = 80) хлороводород диссоциирует хорошо и раствор проводит электрический ток.
Повышение температуры, как правило, увеличивает диссоциацию и при нагревании степень диссоциации возрастает.
При уменьшении концентрации электролита, т.е. при разбавлении раствора, степень диссоциации увеличивается. Поэтому, говоря о степени диссоциации, следует указывать концентрацию раствора.
В зависимости от величины степени электролитической диссоциации различают сильные и слабые электролиты.
По величине степени диссоциации в 0,1 н. растворах все электролиты можно подразделить:
a = 0 неэлектролиты,
a>30% электролиты сильные.
К сильным электролитам относятся:
· почти все растворимые соли (СuSО4, BaС12, KВr),
· такие неорганические кислоты, как: HCl, HBr, HI, HClO4, H2SO4, HNO3, HMnO4, HCrO4 и некоторые другие;
· растворимые в воде основания: LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH)2, Sr(OH)2 (кроме гидроксида аммония NH4OH, который является слабым электролитом!)
К слабым электролитам относятся:
· почти все органические кислоты, например, стеариновая С17Н35ООН, уксусная СН3СООН;
· нерастворимые в воде соли и гидроксиды металлов, например, BaSO4, Ca3(PO4)2, Al(ОН)3, Сu(ОН)2, Fе(ОН)3.
· комплексные катионы или анионы, которые представляют из себя сложные ионы образующиеся при диссоциации в растворе, так называемых, комплексных соединений (солей, кислот и оснований), например: [Al(OH)4] — , [Cu(NH3)4] 2- и др.
· К слабым электролитам относится также вода.
Второй количественной характеристикой процесса диссоциации является константа диссоциации (Кд).
Константа диссоциации представляет собой константу равновесия процесса диссоциации слабого электролита и, в отличии от степени диссоциации, не зависит от концентрации растворенного вещества в растворе.
Значения величин констант диссоциации для ряда электролитов приведены в приложении (таблица 8).
Например, циановодородная (синильная) кислота, является слабым электролитом. Как любая кислота она диссоциирует с образованием катионов водорода и анионов кислотного остатка:
Равновесие этого процесса характеризуется соответствующей константой диссоциации.
Малая величина константы диссоциации позволяет судить о незначительном распаде кислоты на ионы и смещении равновесия процесса диссоциации влево.
Равновесие процесса диссоциации в водном растворе такого вещества, как гидроксид аммония, можно представить следующим образом:
Чем меньше величина константы диссоциации электролита, тем он слабее.
Величины констант диссоциации для ряда слабых электролитов приведены в табл.8 приложения.
Ориентируясь на значение величины константы диссоциации можно делать заключение о силе электролита.
Источник
Почему кристаллический хлорид натрия не проводит электрический ток, а его раствор электропроводен?
Обсуждение вопроса:
В кристаллическом хлориде натрия ионы расположены в узлах кристаллической решетки, поэтому перемещаться они не могут, соответственно под действием электрического поля не может возникнуть направленного движения заряженных частиц, раствор не пропускает электрический ток.
При растворении в воде хлорида натрия, он распадается на ионы (Na⁺ и Cl⁻), которые могут свободно передвигаться в растворе, соответственно под действием электрического поля возникает направленное движение заряженных частиц, поэтому раствор электропроводен.
Механизм диссоциации соли состоит в том, что если кристалл соли поместить в воду, то вокруг положительных и отрицательных ионов кристаллической решётки электролита диполи воды сориентируются противоположно заряженными концами. Между ионами кристалла соли и молекулами воды возникнет притяжение, связь между ионами ослабевает, и происходит переход ионов из кристалла в раствор. Вокруг, перешедших в раствор ионов соли, образуются оболочки из диполей воды, то есть в растворе содержатся гидратированные ионы соли.
Ионы, содержащиеся в кристаллическом (твердом) веществе, расположенные в узлах кристаллической решетки, соединенные друг с другом и перемещаться не могут, поэтому твердые электролиты электрический ток не проводят. Натрий хлорид при растворении в воде распадается на ионы (положительно и отрицательно заряжены), что способны свободно передвигаться, и являются носителями зарядов. Под воздействием электрического поля движение ионов становится направленным (возникает электрический ток).
Если кристалл соли поместить в воду, то вокруг положительных и отрицательных ионов кристаллической решётки электролита диполи воды сориентируются противоположно заряженными концами. Между ионами кристалла соли и молекулами воды возникнет притяжение, связь между ионами ослабевает, и происходит переход ионов из кристалла в раствор. Перешедшие в раствор ионы остаются связанными с присоединившимися к ним молекулами воды, которые образуют гидратную оболочку иона, то есть в растворе содержатся гидратированные ионы соли.
Источник
Электропроводность растворов
Рис. 71. Установка для сравнения электропроводности растворов
Хорошими проводниками электрического тока, помимо металлов, являются расплавленные соли и основания. Способностью проводить ток обладают также водные растворы оснований и солей. Безводные кислоты — очень плохие проводники, но водные растворы кислот хорошо проводят ток. Растворы кислот, оснований и солей в других жидкостях в большинстве случаев тока не проводят, но и осмотическое давление таких растворов оказывается нормальным. Точно так же не проводят тока водные растворы сахара, спирта, глицерина и другие растворы с нормальным осмотическим давлением.
Различное отношение веществ к электрическому току легко иллюстрировать следующим опытом.
Соединим провода, идущие от осветительной сети, с двумя угольными или металлическими пластинками— электродами (рис. 71). В один из проводов включим электрическую лампу, позволяющую грубо судить о наличии тока в цепи. Погрузим теперь свободные концы электродов в сухую поваренную соль или безводную серную кислоту. Лампа не загорается, так как эти вещества не проводят тока и цепь остается незамкнутой.
Тоже самое происходит, если погрузить электроды в стакан с чистой дестиллированной водой. Но стоит только растворить в воде немного соли или прибавить к ней какой-нибудь кислоты или основания, как лампа тотчас же начинает ярко светиться. Свечение прекращается, если опустить электроды в раствор сахара, глицерина и т. п.
Сванте Аррениус (1859—1927)
Таким образом, среди растворов способностью проводить ток обладают преимущественно водные растворы кислот, оснований и солей. Сухие соли, безводные кислоты и основания (в твердом виде) тока не проводят почти не проводит тока и чистая вода. Очевидно, что при растворении в воде кислоты, основания и соли подвергаются каким-то глубоким изменениям, которые и обусловливают электропроводность получаемых растворов.
Электрический ток, проходя через растворы, вызывает в них, так же как и в расплавах, химические изменения, выражающиеся в том, что из раствора выделяются продукты разложения растворенного вещества или растворителя. Вещества, растворы которых проводят электрический ток, получили название электролитов. Электролитами являются кислоты, основания и соли.
Химический процесс, происходящий при пропускании тока через раствор электролита, называется электролизом. Исследуя продукты, выделяющиеся у электродов при электролизе кислот, оснований и солей, установили, что у катода всегда выделяются металлы или водород, а у анода — кислотные остатки или гидроксильные группы, которые затем подвергаются дальнейшим изменениям. Таким образом, первичными продуктами электролиза оказываются те же составные части кислот, оснований и солей, которые при реакциях обмена, не изменяясь, переходят из одного вещества в другое.
Сванте Аррениус (Svante Arrhenius) — шведский ученый, физико-химик, родился 19 февраля 1859 г. Был профессором университета в Стокгольме и директором Нобелевского института. В результате изучения электропроводности растворов предложил в 1887 г. теорию, объясняющую проводимость электрического тока растворами кислот, щелочей и солей, получившую название теории электролитической диссоциации.
Аррениусу принадлежит также ряд исследовании по астрономии, космической физике и в области приложения физико-химических законов к биологическим процессам.
Вы читаете, статья на тему Электропроводность растворов
Источник