Меню

Чем создается электрический ток в вакууме

Чем создается электрический ток в вакууме

Что такое вакуум? — это такая степень разрежения газа, при которой соударений молекул практически нет;

— электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность;
— создать эл.ток в вакууме можно, если использовать источник заряженных частиц;
— действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

— это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.
Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако.
В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него ( т.к. электрод при потере электронов заряжается положительно).
Чем выше температура металла, тем выше плотность электронного облака.

Электрический ток в вакууме возможен в электронных лампах.
Электронная лампа — это устройство, в котором применяется явление термоэлектронной эмиссии.

Вакуумный диод — это двухэлектродная ( А- анод и К — катод ) электронная лампа.
Внутри стеклянного баллона создается очень низкое давление

Н — нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью.
Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.ток в вакууме.

Вольтамперная характеристика вакуумного диода.

При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и электрический ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения.
Вакуумный диод используется для выпрямления переменного тока.
Ток на входе диодного выпрямителя:

Ток на выходе выпрямителя:

Электронные пучки — это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.

Свойства электронных пучков:

— отклоняются в электрических полях;
— отклоняются в магнитных полях под действием силы Лоренца;
— при торможении пучка, попадающего на вещество возникает рентгеновское излучение;
— вызывает свечение ( люминисценцию ) некоторых твердых и жидких тел ( люминофоров );
— нагревают вещество, попадая на него.

Электронно — лучевая трубка ( ЭЛТ )

— используются явления термоэлектронной эмиссии и свойства электронных пучков.

ЭЛТ состоит из электронной пушки, горизонтальных и вертикальных отклоняющих пластин-электродов и экрана.
В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами.

Существуют два вида трубок:

1) с электростатическим управлением электронного пучка (отклонение эл. пучка только лишь эл.полем);
2) с электромагнитным управлением ( добавляются магнитные отклоняющие катушки ).

Основное применение ЭЛТ:
кинескопы в телеаппаратуре;
дисплеи ЭВМ;
электронные осциллографы в измерительной технике.

Электрический ток в различных средах — Класс!ная физика

Источник



Электрический ток в вакууме — причины появления, свойства и применение

Электрический ток в вакууме Электрический ток в вакууме - причины появления, свойства и применение

Виды вакуума

Как же ведет себя электрический ток в вакууме? Как и любой ток, ток в вакууме появляется при наличии источника со свободными заряженными частицами.

Какими частицами создается электрический ток в вакууме? Чтобы создать вакуум в каком-либо закрытом сосуде, необходимо из него откачать газ. Делают это чаще всего с помощью вакуумного насоса. Это такое устройство, которое необходимо, чтобы откачать газ или пар до нужного для опыта давления.

Существует четыре вида вакуума: низкий вакуум, средний вакуум, высокий вакуум и сверхвысокий вакуум.

Рис. 1. Характеристики вакуума

§ 112. Электрический ток в вакууме. Электронно-лучевая трубка

Каковы условия существования электрического тока?

До открытия уникальных свойств полупроводников в радиотехнике использовались исключительно электронные лампы.

Откачивая газ из сосуда (трубки), можно получить газ с очень малой концентрацией молекул.

Запомни Состояние газа, при котором молекулы успевают пролететь от одной стенки сосуда к другой, ни разу не испытав соударений друг с другом, называют вакуумом.

Если в сосуд с вакуумом поместить два электрода и подключить их к источнику тока, то ток между электродами не пойдёт, так как в вакууме нет носителей заряда. Следовательно, для создания тока в трубке должен быть источник заряженных частиц.

Термоэлектронная эмиссия. Чаще всего действие такого источника заряженных частиц основано на свойстве тел, нагретых до высокой температуры, испускать электроны.

Запомни Явление испускания электронов нагретыми металлами называется термоэлектронной эмиссией.

Это явление можно рассматривать как испарение электронов с поверхности металла. У многих твёрдых веществ термоэлектронная эмиссия начинается при температурах, при которых испарение самого вещества ещё не происходит. Такие вещества и используются для изготовления катодов.

Односторонняя проводимость. Диод. Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод, в отличие от холодного, непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако

. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод в секунду, равно числу электронов, возвратившихся на электрод за это время. Чем выше температура металла, тем выше плотность электронного облака.

При подключении электродов к источнику тока между ними возникает электрическое поле. Если положительный полюс источника тока соединён с холодным электродом (анодом), а отрицательный — с нагретым (катодом), то вектор напряжённости электрического поля направлен к нагретому электроду. Под действием этого поля электроны частично покидают электронное облако и движутся к холодному электроду. Электрическая цепь замыкается, и в ней устанавливается электрический ток. При противоположной полярности включения источника напряжённость поля направлена от нагретого электрода к холодному. Электрическое поле отталкивает электроны облака назад к нагретому электроду. Цепь оказывается разомкнутой.

Односторонняя проводимость широко использовалась раньше в электронных приборах с двумя электродами — вакуумных диодах, которые служили, как и полупроводниковые диоды, для выпрямления электрического тока. Однако в настоящее время вакуумные диоды практически не применяются.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в это отверстие, образуя за анодом электронный пучок. Количеством электронов в пучке можно управлять, поместив между катодом и анодом дополнительный электрод и изменяя его потенциал.

Свойства электронных пучков и их применение. Испускаемые катодом потоки электронов, движущихся в вакууме, называют иногда катодными лучами

Перечислим свойства электронных пучков (катодных лучей).

    1) Электроны в пучке движутся по прямым линиям.

2) Электронный пучок, попадая на мишень, передаёт ей часть кинетической энергии, что вызывает её нагревание. В современной технике это свойство используют для электронной плавки в вакууме сверхчистых металлов.

3) При торможении быстрых электронов, попадающих на вещество, возникает рентгеновское излучение. Это явление используют в рентгеновских трубках.

4) Некоторые вещества (стекло, сульфиды цинка и кадмия), бомбардируемые электронами, светятся. В настоящее время среди материалов этого типа (люминофоров) применяются такие, у которых в световую энергию превращается до 25% энергии электронного пучка.

5) Электронные пучки отклоняются электрическим полем. Например, проходя между пластинами конденсатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис. 16.20).

6) Электронный пучок отклоняется также в магнитном поле. Пролетая над северным полюсом магнита, электроны отклоняются влево, а пролетая над южным, отклоняются вправо. Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоёв атмосферы (полярное сияние) наблюдается только у полюсов.

7) Электронные пучки обладают ионизирующей способностью.

Читайте также:  Трансформаторы тока инструкция по применению

8)Электронные пучки могут проходить сквозь очень тонкие металлические пластины толщиной 0,003—0,03 мм.

Электронно-лучевая трубка. Возможность управления электронным пучком с помощью электрического или магнитного поля и свечение покрытого люминофором экрана под действием пучка применяют в электронно-лучевой трубке.

Электронно-лучевая трубка была основным элементом первых телевизоров и осциллографа — прибора для исследования быстропеременных процессов в электрических цепях (рис. 16.21).

Устройство электронно-лучевой трубки показано на рисунке 16.22. Эта трубка представляет собой вакуумный баллон, одна из стенок которого служит экраном. В узком конце трубки помещён источник быстрых электронов — электронная пушка

(рис. 16.23). Она состоит из катода, управляющего электрода и анода (чаще несколько анодов располагается друг за другом). Электроны испускаются нагретым оксидным слоем с торца цилиндрического катода С, окружённого теплозащитным экраном Н. Далее они проходят через отверстие в цилиндрическом управляющем электроде В (он регулирует число электронов в пучке). Каждый анод (А1 и А2) состоит из дисков с небольшими отверстиями. Эти диски вставлены в металлические цилиндры. Между первым анодом и катодом создаётся разность потенциалов в сотни и даже тысячи вольт. Сильное электрическое поле ускоряет электроны, и они приобретают большую скорость. Форма, расположение и потенциалы анодов выбирают так, чтобы наряду с ускорением электронов осуществлялась и фокусировка электронного пучка, т. е. уменьшение площади поперечного сечения пучка на экране почти до точечных размеров.

На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин, подобных пластинам плоского конденсатора (см. рис. 16.22). Если электрического поля между пластинами нет, то пучок не отклоняется и светящаяся точка располагается в центре экрана. При сообщении разности потенциалов вертикально расположенным пластинам пучок смещается в горизонтальном направлении, а при сообщении разности потенциалов горизонтальным пластинам он смещается в вертикальном направлении.

Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса электронов очень мала, то они почти мгновенно, т. е. за очень короткое время, реагируют на изменение разности потенциалов управляющих пластин.

В настоящее время чаще используются телевизоры с жидкокристаллическим или плазменным экраном.

В электронно-лучевой трубке, применяемой в телевизоре (так называемом кинескопе), управление пучком, созданным электронной пушкой, осуществляется с помощью магнитного поля. Это поле создают катушки, надетые на горловину трубки (рис. 16.24).

Цветной кинескоп содержит три разнесённые электронные пушки и экран мозаичной структуры, составленный из люминофоров трёх типов (красного, синего и зелёного свечения). Каждый электронный пучок возбуждает люминофоры одного типа, свечение которых в совокупности даёт на экране цветное изображение.

Электронно-лучевые трубки широко применялись в дисплеях — устройствах, присоединяемых к электронно-вычислительным машинам (ЭВМ). На экран дисплея, подобный экрану телевизора, поступала информация, записанная и переработанная ЭВМ. Можно было непосредственно видеть текст на любом языке, графики различных процессов, изображения реальных объектов, а также воображаемые объекгы, подчиняющиеся законам, записанным в программе вычислительной машины.
Ключевые слова для поиска информации по теме параграфа. Термоэлектронная эмиссия. Катодные лучи

Вопросы к параграфу

    1. Для какой цели в электронных лампах создают вакуум?

2. Наблюдается ли термоэлектронная эмиссия в диэлектриках?

3. Как осуществляется управление электронными пучками?

4. Как устроена электронно-лучевая трубка?

Электронная пушка создаёт пучок электронов в стеклянной вакуумирован- ной камере. Все электроны, покинувшие раскалённый катод пушки, покидают катод и ударяются в экран электронно-лучевой трубки. Если увеличить ускоряющее напряжение в пушке в 2 раза, то сила тока, идущего в вакууме через трубку,

    1) не изменится 3) возрастёт примерно в 2 раза 2) возрастёт примерно в раза 4) возрастёт примерно в 4 раза

Вакуумный диод, у которого анод (положительный электрод) и катод (отрицательный электрод) — параллельные пластины, работает в режиме, когда между током и напряжением выполняется соотношение I = aU3/2 (где а — некоторая постоянная величина). Линейная зависимость тока от напряжения (закон Ома) нарушается из-за

    1) свойств электронного пучка

2) появления дополнительных носителей тока

3) того, что свойства анода и катода разные

4) движения электронов в вакууме

Электрический ток в вакууме

Ток в вакууме не может существовать самостоятельно, так как вакуум является диэлектриком. В таком случае создать ток можно с помощью термоэлектронной эмиссии. Термоэлектронная эмиссия – явление, при котором электроны выходят из металлов при нагревании. Такие электроны называются термоэлектронами, а все тело – эмиттер.

На это явление впервые обратил внимание американский ученый Томас Эдисон в 1879 году.

Рис. 2. Термоэлектронная эмиссия

Эмиссия делится на:

  • вторичную электронную (выбивание быстрыми электронами);
  • термоэлектронную (испарение электронов с горячего катода);
  • фотоэлектронная (электроны выбиваются светом);
  • электронная (выбивание сильным полем).

Электроны смогут вылететь из металла, если будут обладать достаточной кинетической энергией. Она должна быть больше работы выхода электронов для данного металла. Электроны, вылетающие из катода, образуют электронное облако. Половина из них возвращается в исходное положение. В равновесном состоянии число вылетевших электронов равно количеству вернувшихся. От температуры прямо пропорционально зависит плотность электронного облака (т.е. при повышении температуры, плотность облака становится больше).

При подключении электродов к источнику между ними возникает электрическое поле. Если положительный полюс источника тока соединить с анодом (холодным электродом), а отрицательный – с катодом (нагретым электродом), то напряженность электрического поля будет направлена к нагретому электроду.

Как электрический ток может появиться в вакууме

Для того, чтобы создать в вакууме полноценный электрический ток, необходимо использовать такое физическое явление, как термоэлектронная эмиссия. Она основана на свойстве какого-либо определенного вещества испускать при нагревании свободные электроны. Такие электроны, выходящие из нагретого тела, получили название термоэлектронов, а все тело целиком называется эмиттером.

Что представляет собой электрический ток в вакууме

Термоэлектронная эмиссия лежит в основе работы вакуумных приборов, более известных, как электронные лампы. В самой простейшей конструкции содержится два электрода. Один из них катод, представляет собой спираль, материалом которой служит молибден или вольфрам. Именно он накаливается электрическим током. Второй электрод называется анодом. Он находится в холодном состоянии, выполняя задачу по сбору термоэлектронов. Как правило, анод изготавливается в форме цилиндра, а внутри его размещается нагреваемый катод.

Где берутся свободные носители зарядов в вакууме? Вакуумный диод

Если в сосуде создан вакуум, то в нем все же есть немало молекул, некоторые из них могут быть и ионизированы. Но заря­женных частичек в таком сосуде для вы­явления заметного тока мало.

Как же получить в вакууме достаточное количество свободных носителей заряда? Если нагреть проводник, пропуская по нему электрический ток или другим способом (рис. 7.6), то часть свободных электронов в металле будут иметь достаточную энергию, чтобы выйти из металла (выполнить работу выхода).

Явление излучения электронов нака­ленными телами называется термоэлектрон­ной эмиссией.

Однако кинетическую энергию свобод­ных электронов в веществе можно увели­чить и с помощью света.

Излучение элект­ронов веществом под действием света назы­вается фотоэлектронной эмиссией, или внеш­ним фотоэффектом.

Рис. 7.6. Излучение электронов раска­ленным проводником

Природу и закономернос­ти внешнего фотоэффекта объяснил Альберт Эйнштейн, за что и получил Нобелевскую премию по физике 1921 г.

Рассмотрим подробнее явления, происхо­дящие в сосуде (баллоне), где имеется про­водник, который может быть накален с помощью электрического тока (рис. 7.6). В баллоне создан вакуум.

Поскольку при нагревании проводника из него излучаются электроны, то может возникнуть мысль, что электроны с тече­нием времени могут заполнить весь баллон. Тем не менее это не так. Будем называть этот проводник в баллоне катодом. Элект­роны, которые оставили накаленный катод, образуют вокруг него облачко. Это вызвано тем, что катод, утратив часть свободных электронов, заряжается положительно. Поло­жительно заряженный катод и удерживает возле себя облачко электронов.

Катод (гр.— опускание, движе­ние книзу): 1) Электрод прибора или ус­тройства, который соединяют с отрицательным полюсом ис­точника тока. 2) Отрицательный полюс источ­ника тока (гальванического эле­мента и т. п.). 3) Источник электронов в элект­ронно-вакуумных приборах. Материал с сайта https://worldofschool.ru

Рис. 7.8. Внутреннее строение вакуум­ного диода

Если теперь в баллон ввести еще один электрод (анод) и создать электрическое поле между анодом и катодом (рис. 7.7), то в баллоне возникнет электрический ток. В этом случае ток возможен, поскольку по­ложительно заряженный анод притягивает отрицательно заряженные электроны. Если же анод будет иметь отрицательный заряд, то электроны от него будут отталкиваться. Однако при небольших напряжениях наи­более быстрые электроны все же могут до­лететь до анода, и в цепи может наблюдать­ся небольшой ток. При увеличении напря­жения (если анод заряжен отрицательно) ток в цепи совсем прекратится.

Анод (гр.— путь вверх, восхож­дение): 1) Электрод электро- и радио­технических приборов, электро­литических ванн и других ус­тройств, соединяющихся с по­ложительным полюсом источ­ника электрического тока. 2) Положительный полюс источ­ника электрического тока.

Рассмотренный прибор называется ваку­умным диодом, строение одного из которых показано на рис. 7.8. Практически диод про­водит ток лишь в одном направлении — когда анод заряжен положительно. Поэтому его используют в основном для выпрям­ления переменных токов. Однако в наше время вакуумные диоды в выпрямителях повсеместно вытеснены полупроводниковы­ми диодами — более надежными, экономич­ными, долговечными.

Источник

Электрический ток в вакууме

Виды вакуума

Как же ведет себя электрический ток в вакууме? Как и любой ток, ток в вакууме появляется при наличии источника со свободными заряженными частицами.

Какими частицами создается электрический ток в вакууме? Чтобы создать вакуум в каком-либо закрытом сосуде, необходимо из него откачать газ. Делают это чаще всего с помощью вакуумного насоса. Это такое устройство, которое необходимо, чтобы откачать газ или пар до нужного для опыта давления.

Существует четыре вида вакуума: низкий вакуум, средний вакуум, высокий вакуум и сверхвысокий вакуум.

Рис. 1. Характеристики вакуума

Электрический ток в вакууме

Ток в вакууме не может существовать самостоятельно, так как вакуум является диэлектриком. В таком случае создать ток можно с помощью термоэлектронной эмиссии. Термоэлектронная эмиссия – явление, при котором электроны выходят из металлов при нагревании. Такие электроны называются термоэлектронами, а все тело – эмиттер.

На это явление впервые обратил внимание американский ученый Томас Эдисон в 1879 году.

Рис. 2. Термоэлектронная эмиссия

Эмиссия делится на:

  • вторичную электронную (выбивание быстрыми электронами);
  • термоэлектронную (испарение электронов с горячего катода);
  • фотоэлектронная(электроны выбиваются светом);
  • электронная(выбивание сильным полем).

Электроны смогут вылететь из металла, если будут обладать достаточной кинетической энергией. Она должна быть больше работы выхода электронов для данного металла. Электроны, вылетающие из катода, образуют электронное облако. Половина из них возвращается в исходное положение. В равновесном состоянии число вылетевших электронов равно количеству вернувшихся. От температуры прямо пропорционально зависит плотность электронного облака (т.е. при повышении температуры, плотность облака становится больше).

Применение электрического тока в вакууме

Электрический ток в вакууме используется в различных электронных приборах. Одним из таких приборов является вакуумный диод

Рис. 3. Вакуумный диод

Состоит он из баллона, который включает 2 электрода – катод и анод.

Что мы узнали?

Кратко о электрическом токе в вакууме мы узнали их этой статьи. Для существования его в вакууме в первую очередь необходимо наличие свободных заряженных частиц. Также рассмотрены виды вакуума и их характеристики. Необходимым для изучения является понятие термоэлектронной эмиссии. Информацию можно использовать для подготовки доклада и сообщения на уроке физики.

Источник

Что представляет собой электрический ток в вакууме

Электрический ток в вакууме Электрический ток в вакууме - причины появления, свойства и применение

Виды вакуума

Как же ведет себя электрический ток в вакууме? Как и любой ток, ток в вакууме появляется при наличии источника со свободными заряженными частицами.

Какими частицами создается электрический ток в вакууме? Чтобы создать вакуум в каком-либо закрытом сосуде, необходимо из него откачать газ. Делают это чаще всего с помощью вакуумного насоса. Это такое устройство, которое необходимо, чтобы откачать газ или пар до нужного для опыта давления.

Существует четыре вида вакуума: низкий вакуум, средний вакуум, высокий вакуум и сверхвысокий вакуум.

Рис. 1. Характеристики вакуума

Вакуумный диод

Прибором простейшего вида, использующим явление возникновения электричества, порождаемого термоэлектронной эмиссией, является вакуумный диод. Его работа довольно простая, а сам прибор относится к простейшим устройствам. Основной характеристикой диода является вольт-амперная зависимость.

Она имеет три участка: нелинейный, степенной, насыщения. На первом происходит медленное возрастание силы тока при увеличении напряжения. Эта зависимость экспоненциальная. На втором промежутке изменение описывается формулой: I = G * U 3/2 где: G — проводимость, величина, обратная сопротивлению. Третий участок характеризуется тем что при росте напряжения значение тока практически не изменяется. Это связано с тем что число электронов, вылетевших из проводника, становится постоянным для любого момента времени.

Сам электронный прибор представляет собой колбу с двумя электродами. В середине сосуда создан физический вакуум. Один электрод (катод) предназначен для испускания электронов, а другой (анод) для их получения. Катодный вывод состоит из нити, которая разогревается под действием тока и длинного цилиндра с уложенным в него спиралью подогревателя.

При нагреве электрода возникает термоэлектронная эмиссия. Электроны покидают поверхность и создают облако с избытком отрицательных зарядов. Поверхность же вывода начинает заряжаться положительно. Некоторое количество частиц, обладающих небольшой скоростью, падают на катод, но быстрые электроны преодолевают барьер и переходят на анод. Если на положительный вывод подать прямое смещение, то возникнет ускоряющее поле, которое ещё больше способствует переносу электронов.

В результате появится постоянный ток. Электровакуумный диод имеет неоспоримое достоинство перед полупроводниковым — отсутствие обратного тока. Кроме этого, устройство способно выдерживать большие напряжения и ионизирующее излучение. Но при этом прибор нельзя назвать энергоэффективным.

Наиболее часто в качестве термокатода используют вольфрам или смесь окислов щёлочноземельных металлов. Следует отметить, что к основным параметрам диода относят крутизну вольт-амперной характеристики ток насыщения и запирающее напряжение. Последнее определяет значение, при котором происходит пробой — появление искры с дугой и увеличение в несколько раз силы тока. То есть нарушения прочности вакуума.

Электрический ток в вакууме

Ток в вакууме не может существовать самостоятельно, так как вакуум является диэлектриком. В таком случае создать ток можно с помощью термоэлектронной эмиссии. Термоэлектронная эмиссия – явление, при котором электроны выходят из металлов при нагревании. Такие электроны называются термоэлектронами, а все тело – эмиттер.

На это явление впервые обратил внимание американский ученый Томас Эдисон в 1879 году.

Рис. 2. Термоэлектронная эмиссия

Эмиссия делится на:

  • вторичную электронную (выбивание быстрыми электронами);
  • термоэлектронную (испарение электронов с горячего катода);
  • фотоэлектронная (электроны выбиваются светом);
  • электронная (выбивание сильным полем).

Электроны смогут вылететь из металла, если будут обладать достаточной кинетической энергией. Она должна быть больше работы выхода электронов для данного металла. Электроны, вылетающие из катода, образуют электронное облако. Половина из них возвращается в исходное положение. В равновесном состоянии число вылетевших электронов равно количеству вернувшихся. От температуры прямо пропорционально зависит плотность электронного облака (т.е. при повышении температуры, плотность облака становится больше).

При подключении электродов к источнику между ними возникает электрическое поле. Если положительный полюс источника тока соединить с анодом (холодным электродом), а отрицательный – с катодом (нагретым электродом), то напряженность электрического поля будет направлена к нагретому электроду.

Открытие явления и его природа

Томас Эдисон, проводя ряд экспериментов с лампочкой накаливания, пытался выяснить причину перегорания нити. Физик обратил внимание, что при её разрыве на стекле колбы с внутренней её стороны образуется чёрный налёт. При дальнейшем изучении Эдисон обнаружил что если пластина, внесённая в вакуум относительно нити накаливания, подключается к положительному потенциалу ток не появлялся. В ином случае проводник довольно сильно нагревался.

Читайте также:  Переменный электрический ток ютуб

Это явление учёный объяснил существованием зарядов определённого знака, которые способны перемещаться в вакууме. На то время электрон ещё не был открыт. Эдисон увидел, что при повышении напряжения степень накала изменялась. Этот эффект был после назван термоэлектронной эмиссией. Уже после этого явления нашлось применение в детектировании радиоволн.

С физической точки зрения, термоэлектронной эмиссией называют способность тел испускать со своей поверхности электроны при нагревании. Связано это с тем что в веществах существует так называемый потенциальный барьер. То есть область пространства с конкретной потенциальной энергией. В равновесном состоянии величина заряда мала и не позволяет частице перейти через этот барьер. Но как только потенциал электрона возрастает, он свободно проходит через него. Нужную дополнительную энергию как раз и получает частица за счёт тепловых колебаний.

Уровень потенциального барьера зависит от двух параметров:

  • термоэлектронной работы выхода f;
  • значения надбарьерного отражения электронов.

Таким образом, прикладывая разность потенциалов между двумя проводниками, подключёнными к одной цепи, можно добиться протекания между ними тока. При нагревании проводника до высоких температур вокруг него образуется электронное облако. Причём чем выше температура, тем его плотность больше.

Так как проводник начинает заряжаться отрицательно из-за частичного ухода электронов то возникает сила притягивающая вылетевшие частицы обратно.

Но при дальнейшем повышении температуры наступает такой момент, когда электроны вырываются из облака. Этому способствует другой проводник с меньшим потенциалом, к которому и устремляются электроны. Возникает электропроводность.

Что мы узнали?

Кратко о электрическом токе в вакууме мы узнали их этой статьи. Для существования его в вакууме в первую очередь необходимо наличие свободных заряженных частиц. Также рассмотрены виды вакуума и их характеристики. Необходимым для изучения является понятие термоэлектронной эмиссии. Информацию можно использовать для подготовки доклада и сообщения на уроке физики.

Предыдущая ФизикаПлоское зеркало – увеличение и виды Следующая

ФизикаВторой закон Ньютона – формула, запись и определение кратко

Физика процесса

Электрический ток в вакууме может образовываться только направленным движением электронов. Ввести их, возможно, с помощью помещения в среду металла. Для того чтобы частицы покинули поверхность проводника нужно им отдать энергию. Этот процесс называется работой выхода электронов из вещества.

Её значение для разных материалов было установлено экспериментально. Так, для наиболее популярных веществ работа выхода равна:

  • вольфрама — 4,5 эВ;
  • кадмия — 2,2 эВ;
  • цинка — 4,2 эВ;
  • оксида бария — 1 эВ.

То есть для того чтобы извлечь электрон, нужно сообщить ему определённую энергию. Только тогда он сможет вылететь с поверхности. В обычном состоянии энергия электрона в металле составляет 3,2 KT (тепловая). При комнатной температуре (T = 300 K) KT = 0,026 эВ. Этой величины будет явно недостаточно, чтобы появилась электропроводность в вакууме.

Электрический ток в вакууме - причины появления, свойства и применение

Если же нагреть тело до 3 тыс. градусов по кельвину (многие металлы начинают расплавляться), то KT = 0,26 эВ. Этого значения всё равно мало для того, чтобы выбить электроны. Но на самом деле носители имеют определённое распределение по энергиям. Найденное значение показывает среднюю величину. Поэтому в теле из-за высокой плотности заряженных частиц обязательно будут такие электроны, которые имеют энергию превышающую работу выхода.

Над поверхностью проводника появляется электронное облако. При этом чем выше температура, тем плотнее оно будет. Вылетевший электрон приводит к изменению заряда металла. В итоге он начинает втягиваться обратно. Устанавливается равновесие. Какое число электронов вылетает, такое же их количество возвращается.

Для того чтобы образовался поток зарядов нужно ввести вспомогательную цепь. Другими словами, сообщить электронам дополнительную энергию. Зависимость между током и напряжением в рассматриваемом случае не будет соответствовать закону Ома. Ведь образованное электронное облако задерживает вновь вылетающие электроны. Но если увеличить напряжение на другом выводе, то концентрация носителей в образованном поле уменьшится, значит, снизится и тормозящий эффект. Это приведёт к увеличению тока.

Таким образом, вылетающие электроны можно уподобить электра ракетам, преодолевшим земное притяжение. Если к выводу присоединить положительный электрод источника тока, то возникшее электромагнитное поле между спиралью и электродом внутри колбы с вакуумом, устремит к нему электроны. Внутри потечёт электрический ток.

Где берутся свободные носители зарядов в вакууме? Вакуумный диод

Если в сосуде создан вакуум, то в нем все же есть немало молекул, некоторые из них могут быть и ионизированы. Но заря­женных частичек в таком сосуде для вы­явления заметного тока мало.

Как же получить в вакууме достаточное количество свободных носителей заряда? Если нагреть проводник, пропуская по нему электрический ток или другим способом (рис. 7.6), то часть свободных электронов в металле будут иметь достаточную энергию, чтобы выйти из металла (выполнить работу выхода).

Явление излучения электронов нака­ленными телами называется термоэлектрон­ной эмиссией.

Однако кинетическую энергию свобод­ных электронов в веществе можно увели­чить и с помощью света.

Излучение элект­ронов веществом под действием света назы­вается фотоэлектронной эмиссией, или внеш­ним фотоэффектом.

Рис. 7.6. Излучение электронов раска­ленным проводником

Природу и закономернос­ти внешнего фотоэффекта объяснил Альберт Эйнштейн, за что и получил Нобелевскую премию по физике 1921 г.

Рассмотрим подробнее явления, происхо­дящие в сосуде (баллоне), где имеется про­водник, который может быть накален с помощью электрического тока (рис. 7.6). В баллоне создан вакуум.

Поскольку при нагревании проводника из него излучаются электроны, то может возникнуть мысль, что электроны с тече­нием времени могут заполнить весь баллон. Тем не менее это не так. Будем называть этот проводник в баллоне катодом. Элект­роны, которые оставили накаленный катод, образуют вокруг него облачко. Это вызвано тем, что катод, утратив часть свободных электронов, заряжается положительно. Поло­жительно заряженный катод и удерживает возле себя облачко электронов.

Рис. 7.7. Если в баллон ввести поло­жительно заряженный анод, то в пепи появится электрический ток

Катод (гр.— опускание, движе­ние книзу): 1) Электрод прибора или ус­тройства, который соединяют с отрицательным полюсом ис­точника тока. 2) Отрицательный полюс источ­ника тока (гальванического эле­мента и т. п.). 3) Источник электронов в элект­ронно-вакуумных приборах. Материал с сайта https://worldofschool.ru

Рис. 7.8. Внутреннее строение вакуум­ного диода

Если теперь в баллон ввести еще один электрод (анод) и создать электрическое поле между анодом и катодом (рис. 7.7), то в баллоне возникнет электрический ток. В этом случае ток возможен, поскольку по­ложительно заряженный анод притягивает отрицательно заряженные электроны. Если же анод будет иметь отрицательный заряд, то электроны от него будут отталкиваться. Однако при небольших напряжениях наи­более быстрые электроны все же могут до­лететь до анода, и в цепи может наблюдать­ся небольшой ток. При увеличении напря­жения (если анод заряжен отрицательно) ток в цепи совсем прекратится.

Анод (гр.— путь вверх, восхож­дение): 1) Электрод электро- и радио­технических приборов, электро­литических ванн и других ус­тройств, соединяющихся с по­ложительным полюсом источ­ника электрического тока. 2) Положительный полюс источ­ника электрического тока.

Рассмотренный прибор называется ваку­умным диодом, строение одного из которых показано на рис. 7.8. Практически диод про­водит ток лишь в одном направлении — когда анод заряжен положительно. Поэтому его используют в основном для выпрям­ления переменных токов. Однако в наше время вакуумные диоды в выпрямителях повсеместно вытеснены полупроводниковы­ми диодами — более надежными, экономич­ными, долговечными.

Источник

Adblock
detector