Меню

Чем регулировать частоту тока в сети

Способы увеличения частоты тока

Как работает преобразователь частоты?

Первичным звеном частотного преобразователя переменного переменного тока или VFD, является преобразователь тока. Преобразователь тока состоит из шести диодов, которые аналогичны обратным клапанам, используемым в системах водопровода. Они позволяют току течь только в одном направлении; Направление тока изображено на знаке диода в виде стрелки. Например, когда напряжение А-фазы (по аналогии с системой водопровода напряжение можно представить как давление) выше, напряжение фазы B или C, тогда соответствующий диод откроется. Когда напряжение В-фазы становится выше, чем на фазе А, то диод В-фазы откроется, и диод А-фазы закроется. То же самое верно для 3-х диодов с отрицательной стороны шины. Таким образом, мы получаем шесть текущих «импульсов», поскольку каждый диод открывается и закрывается. Это называется «шестиимпульсным VFD», который является стандартной конфигурацией для текущих частотно-регулируемых приводов.

Предположим, что привод работает от напряжения сети 480 В. Значение 480В — является среднеквадратичной. Пики в сети со среднеквадратичным напряжением 480 В составляют 679 В. Как вы можете видеть, у шины преобразователя частоты есть напряжение постоянного тока с пульсацией переменного тока. Напряжение пробегает величины приблизительно от 580 В до 680 В.

Мы можем избавиться от пульсации переменного тока на шине постоянного тока, добавив конденсатор.Конденсатор работает аналогично резервуару или аккумулятору в системе воснабжения. Этот конденсатор поглощает пульсацию переменного тока и обеспечивает плавное постоянное напряжение. Пульсация переменного тока на шине постоянного тока обычно составляет менее 3 вольт. Таким образом, напряжение на шине постоянного тока становится примерно «650 В постоянного тока». Фактическое напряжение будет зависеть от напряжения питающей двигатель сети переменного тока, уровня дисбаланса напряжения в электрический сети, нагрузки двигателя, полного сопротивления системы, а также любых других дросселей или гармонических фильтров привода.

Преобразователь диодного моста, который преобразует переменное напряжение в постоянное, иногда называют просто «конвертером». Звено, преобразующее постоянный ток обратно в переменный, также является преобразователем, но чтобы отличить его от диодного преобразователя, его обычно называют «инвертором».

Обратите внимание, что в реальном преобразователе частоты переменного тока показанные переключатели фактически будут транзисторами

Когда мы закрываем один из верхних переключателей в инверторе, соответствующая фаза двигателя подключается к положительной шине постоянного тока, и напряжение на этой фазе становится положительным. Когда мы закрываем один из нижних переключателей в преобразователе, фаза подключается к отрицательной шине постоянного тока и становится отрицательной. Таким образом, мы можем делать положительной или отрицательной любую фазу на двигателе, а соответственно и генерировать любую желаемую частоту. Итак, мы можем сделать любую фазу положительной, отрицательной или нулевой.

Синяя синусоидальная волна показана только для сравнения. Привод на самом деле не генерирует эту синусоидальную волну

Обратите внимание, что выходной сигнал преобразователя частоты имеет «прямоугольную» форму волны. Привод VFD не может генерировать идеальный синусоидальный сигнал

Этот прямоугольный сигнал естественно не будет хорошим вариантом для систем распределения общего назначения, но вполне подходит для электродвигателя.

Если мы хотим уменьшить частоту двигателя до 30 Гц, то мы просто медленне переключаем транзисторы инвертора. Но, если мы уменьшаем частоту до 30 Гц, то мы также должны уменьшить напряжение до 240 В для поддержания отношения В/Гц. Каким же образом мы будем уменьшать напряжение, если у нас есть только напряжение постоянного тока в 650 В?

Что нужно знать о частотном преобразователе Что нужно знать о частотном преобразователе Способы увеличения частоты тока Что нужно знать о частотном преобразователе / статьи и обзоры / элек.ру Как повысить силу тока, не изменяя напряжения Что такое преобразователь частоты переменного тока (vfd)? / статьи и обзоры / элек.ру Что нужно знать о частотном преобразователе

Это принцип называется Широтно Импульсной Модуляцией или ШИМ. Представьте себе, что мы можем контролировать давление в системе водоснабжения, поворачивая затвор на высокой скорости. Хотя это не было бы практично для системы водоснабжения, оно отлично работает для Преобразователя частоты VFD

Обратите внимание, что в течение первого цикла напряжение будет лишь половину времени и нулевым вторую половину цикла. Таким образом, среднее напряжение составляет половину 480 В или 240 В

Путем импульсного выхода мы можем добиться любого среднего напряжения на выходе частотного преобразователя VFD.

Для чего использовать преобразователь частоты переменного тока VFD?

Сокращение потребления энергии и затрат на лектроэнергию.

Если у вас есть применение, которое не требует постоянной работы на максимальной скорости, вы можете сократить энергозатраты, управляя двигателем с помощью частотно-регулируемого привода, что является одним из преимуществ преобразователей частоты. Преобразователь частоты переменного тока VFD позволяет вам сопоставлять скорость электродвигателя с требуемой нагрузкой. На сегодняшний момент нет другого, более эффективного способа управления электродвигателем переменного тока, который позволит выполнить это.

На сегодняшний момент потребление электроэнергии электродвигателями составляет более 65% мирового энергопотребления. Оптимизация систем управления двигателем путем применения частотных преобразователей способна добится снижения энергопотребления в некоторых случаях до 70%. Кроме того, использование преобразователя частоты улучшает качество продукции и снижает издержки производства.

Увеличение производства за счет более жесткого контроля технологических процессов.

Управляя двигателями с максимальной эффективностью, в технологическом цикле будет происходить меньшее количество ошибок, меньше простоев, что в свою очередь обеспечит более высокий уровень дохода. Так, например, на конвейерах и ремнях с помощью частотного регулирования вы устраняете рывки при запуске, позволяя использовать сквозной старт.

Увеличьте срок службы оборудования и уменьшите обслуживание.

Ваше оборудование будет работать дольше и иметь меньше времени простоя из-за технического обслуживания благодаря оптимальному управлению частотой и напряжением. Частотный преобразователь также будет обеспечивать оптимальную защиту электродвигателя от электротермические перегрузок, пропадания фазы, перенапряжения и т. д. Также чатотный преобразователь обеспечит плавный запуск двигателя устранив возможные ударные нагрузки.

Как повысить силу тока, не изменяя напряжения? Способы увеличения частоты тока Что нужно знать о частотном преобразователе / статьи и обзоры / элек.ру Как повысить силу тока, не изменяя напряжения Что такое преобразователь частоты переменного тока (vfd)? / статьи и обзоры / элек.ру Что нужно знать о частотном преобразователе Как повысить силу тока, не изменяя напряжения? Что такое преобразователь частоты переменного тока (vfd)? Способы увеличения частоты тока

Оригинал статьи: What is a Variable Frequency Drive?

Как повысить силу тока в зарядном устройстве?

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Читайте также:  Естественные токи в природе

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству

Вот и все — остается обратить внимание на параметры тока и напряжения

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Что нужно знать о частотном преобразователе / статьи и обзоры / элек.ру Как повысить силу тока, не изменяя напряжения Что такое преобразователь частоты переменного тока (vfd)? / статьи и обзоры / элек.ру Как повысить силу тока, не изменяя напряжения? Что такое преобразователь частоты переменного тока (vfd)? Способы увеличения частоты тока Что нужно знать о частотном преобразователе / статьи и обзоры / элек.ру Что такое преобразователь частоты переменного тока (vfd)? / статьи и обзоры / элек.ру Что нужно знать о частотном преобразователе

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Что нужно знать о частотном преобразователе / статьи и обзоры / элек.ру Как повысить силу тока, не изменяя напряжения Что такое преобразователь частоты переменного тока (vfd)? / статьи и обзоры / элек.ру Как повысить силу тока, не изменяя напряжения? Что такое преобразователь частоты переменного тока (vfd)?

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Источник



Как изменить частоту тока

Как изменить частоту тока

  • Как изменить частоту тока
  • Как увеличить частоту тока
  • Как увеличить мощность электродвигателя
  • Генератор переменного тока, конденсатор, катушка индуктивности, тестер

Подключите систему к источнику переменного тока, при этом ее активное сопротивление должно быть незначительным. Этот колебательный контур создаст в цепи собственную частоту, которая будет причиной появления емкостного и индуктивного сопротивления.
Чтобы найти ее значение:
1. Найдите произведение значений индуктивности и электроемкости, измеренных с помощью тестера.

2. Из значения, получившегося в пункте 1, извлеките квадратный корень.

3. Полученный результат умножьте на число 6,28.

4. Число 1 поделите на значение, полученное в пункте 3.

  • как изменяется сила тока
  • Как изменить частоту в колебательном контуреКак изменить частоту в колебательном контуре
  • Как увеличить обороты электродвигателяКак увеличить обороты электродвигателя
  • Как увеличить мощность токаКак увеличить мощность тока
  • Как увеличить индуктивность катушкиКак увеличить индуктивность катушки
  • Как подключить частотный преобразовательКак подключить частотный преобразователь
  • Как понизить токКак понизить ток
  • Как увеличить скорость вращения вентилятораКак увеличить скорость вращения вентилятора
  • Как увеличить силу токаКак увеличить силу тока
  • Как изменить частотуКак изменить частоту
  • Как увеличить частоту шиныКак увеличить частоту шины
  • Как отличить переменный от постоянного токаКак отличить переменный от постоянного тока
  • Как и у какого врача измеряют внутричерепное давлениеКак и у какого врача измеряют внутричерепное давление
  • Как понизить силу токаКак понизить силу тока
  • Как изменить вольтажКак изменить вольтаж
  • Как изменить напряжение на процессореКак изменить напряжение на процессоре
  • Как определить энергетические мощностиКак определить энергетические мощности
  • Как повысить крутящий моментКак повысить крутящий момент
  • Как понизить частоту шиныКак понизить частоту шины
  • Как зависит ток от напряжения
  • ГЭС: принцип работы, схема, оборудование, мощностьГЭС: принцип работы, схема, оборудование, мощность
  • Как понизить частоту процессораКак понизить частоту процессора
  • Как увеличить тактовую частоту процессораКак увеличить тактовую частоту процессора
Читайте также:  Светодиодный индикатор тока схема

Источник

Чем регулировать частоту тока в сети

Уважаемые Коты.
Подскажите начинающему котенку где посмотреть (от теории до практики) как изменять частоту тока?
Заранее огромное СПАСИБО!

С уважением,
начинающий котенок.

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Possessio
Есть умножители/делители частоты, но в основном они применяются в цифровой технике. При том с первыми проблем гораздо больше, чем со вторыми.
А самый простой вариант уже посоветовал aen — это генератор. Так что вопрос всё равно непонятен. Выходное напряжение нужно для питания чего-то (силовая цепь), или это просто какой-то сигнал?

Stalker46, читай внимательней, человеку надо измеНИть частоту, а не измеРИть

Компания «Компэл» и Analog Devices приглашают всех желающих 27/04/2021 принять участие в вебинаре, посвященном решениям Analog Devices для гальванической изоляции. В программе вебинара: технологии гальванической изоляции iCoupler, цифровые изоляторы, технология isoPower, гальванически изолированные интерфейсы (RS-485, CAN, USB, I2C, LVDS) и другое. Вебинар будет интересен разработчикам промышленной автоматики и медицинской техники.

Широкий ассортимент винтовых клеммников Degson включает в себя различные вариации с шагом выводов от 2,54 до 15 мм, с числом ярусов от одного до трёх и углами подключения проводника 45°, 90°, 180°. К тому же Degson предлагает довольно большой выбор клеммных винтовых колодок кастомизированных цветов.

Так вот мы и хотим от вас добиться, что именно нужно?

Ну например, есть тарнсформатор на 50 Гц, надо запитать двигатель на 400 Гц — это одно, построить радиопередатчик с умножением частоты задающего генератора — это совершенно другое, а поставить цифровой счетчик для деления частоты сигнала (логических уровней) — это уже совсем третье

_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение

ПРИСТ расширяет ассортимент

Если вопрос сформулировать иначе:
Энергия от одного источника переменного тока — генератор (частотой 50Гц) используется на два параллельных потребителя первый для работы использует ту же частоту, а для работы другого необходима частота тока 100Гц, какую схему (устройство) нужно поставить перед вторым потребителем что бы он работал?

Если вопрос сформулировать иначе:
Энергия от одного источника переменного тока — генератор (частотой 50Гц) используется на два параллельных потребителя первый для работы использует ту же частоту, а для работы другого необходима частота тока 100Гц, какую схему (устройство) нужно поставить перед вторым потребителем что бы он работал?

_________________
Нет недающих-есть плохо просящие.

Источник

Преобразователи частоты

В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.

  1. Виды преобразователей частоты
  2. Способы управления преобразователем
  3. Режимы управления частотными преобразователями
  4. Преимущества частотных преобразователей
  5. Сферы применения

Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.

Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.

Виды преобразователей частоты

Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:

Электромашинные частотники.

Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.

Электронные преобразователи.

Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.

Непосредственные преобразователи частоты

Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства такого типа включаются непосредственно в питающую сеть.

Плюсы непосредственных преобразователей частоты:

  • Возможностью рекуперации электроэнергии в сеть при работе в режиме торможения двигателя. Непосредственное включение обеспечивает двусторонний обмен электричеством.
  • Высоким к.п.д. за счет однократного преобразования частоты.
  • Возможностью наращивания мощности за счет присоединения дополнительных преобразователей.
  • Широким диапазоном низких частот. Непосредственные преобразователи обеспечивают стабильную работу привода на малых скоростях.

Минусы непосредственных преобразователей частоты:

  • Аппроксимированная форма выходного напряжения с наличием постоянных составляющих и субгармоник. Такая форма переменного напряжения на выходе устройства вызывает дополнительный нагрев двигателя, снижает момент, создает помехи.
  • Частота напряжения на выходе преобразователя не превышает аналогичную характеристику сетевого напряжения. Таким образом, при помощи этих устройств можно только снижать скорость вращения двигателей.
  • Основная сфера непосредственных преобразователей – электроприводы на базе асинхронных и синхронных двигателей большой и средней мощности.

Преобразователи частоты с промежуточным звеном постоянного тока.

Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.

Читайте также:  Токи выходов блока питания компьютера

Плюсы преобразователей с промежуточным звеном постоянного тока:

  • Возможностью получения выходного напряжения с частотой как выше, так и ниже аналогичного параметра сети питания. Частотники на базе схемы двойного преобразования используют для высоко- средне- и низкоскоростных электроприводов.
  • Чистой синусоидальной формой напряжения на выходе. Схема преобразователя позволяет получать переменное напряжение с минимальным отклонением от синусоидальной формы.
  • Возможностью построения простых и сложных силовых и управляющих схем для приводов с различными требованиями к скорости реагирования, диапазону скоростей.
  • Возможностью адаптации к сетям постоянного тока. Преобразователи данного типа можно приспособить для питания от резервных и аварийных источников постоянного тока без дополнительных устройств. Это позволяет применять такие частотники в приводах ответственного оборудования с резервными источниками электроэнергии.
  • Разнообразием алгоритмов управления. Преобразователи со звеном постоянного тока можно запрограммировать и адаптировать практически ко всем электроприводам, в том числе и претенциозным, где требуется особо точное регулирование скорости и момента.

Минусы преобразователей с промежуточным звеном постоянного тока:

  • Относительно большую массу и габариты, что обусловлено наличием выпрямительного, фильтрующего и инверторного блоков.
  • Повышенные потери мощности. Схема двойного преобразования несколько уменьшает общий к.п.д.

Устройство преобразователей с промежуточным звеном постоянного тока

Состоят такие преобразователи из нескольких основных блоков:

  • Выпрямителя. Для ЧП используются диодные и тиристорные преобразователи постоянного тока. Первые отличаются высоким качеством постоянного напряжения практически с полным отсутствием пульсации, низкой стоимостью и надежностью. Однако диодные выпрямители не позволяют реализовать возможность рекуперации электроэнергии в сеть при торможении двигателя. Выпрямители на тиристорах обеспечивают возможность протекания тока в обоих направлениях и позволяют отключать преобразователь от сети без дополнительной коммутирующей аппаратуры.
  • Фильтра. Выходное напряжение тиристорных управляемых выпрямителей имеет значительную пульсацию. Для ее сглаживания используют реакторы, емкостные или индуктивно-емкостные фильтры.
  • Инвертора. В ЧП используют инверторы напряжения и тока. Последние обеспечивают рекуперацию электроэнергии в сеть и применяются для управления электрическими машинами с частым пуском, реверсом и остановкой, например, крановыми двигателями.
  • Частотники на базе инверторов напряжения выдают на выходе напряжение формы “чистый синус”. Благодаря этому преобразователи такого типа получили наиболее широкое распространение.
  • Микропроцессора. Этот блок осуществляет управление входным выпрямителем, прием и обработку сигналов с датчиков, взаимодействие с автоматизированной системой высшего уровня, запись и хранение информации о событиях, формирует выходное напряжения ЧП соответствующей частоты. А также выполняет функции защиты от перегрузок, обрыва фазы и других аварийных и ненормальных режимов работы.

Способы управления преобразователем

По принципу управления различают 2 основных вида частотных преобразователей:

ЧП со скалярным управлением

Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.

ЧП с векторным управлением

Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.

ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление.

2) Внешнее управление.

3) Управление по дискретным входам или “сухим контактам”.

4) Управление по событиям.

Преимущества частотных преобразователей.

1) Экономия электроэнергии.

2) Увеличение срока службы промышленного оборудования.

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.

5) Широкий диапазон мощности двигателей.

6) Защита электродвигателя от аварий и аномальных режимов работы.

7) Снижение уровня шума работающего двигателя.

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин . Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов. Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Источник