Меню

Блок питания переменного тока с регулировкой

Лабораторный блок питания с регулировкой тока и напряжения

Лабораторный блок питания может пригодится практически каждому радиолюбителю для отладки и работы с электроникой. В данной статье мы рассмотрим сборку лабораторного блока питания, схема которого довольно известна в сети интернет. Схема является довольно популярной, была собрана множеством радиолюбителей по всему миру. В виду её популярности, в Китае так же наладили производство кит-набора, с помощью которого можно спаять схему, немного сэкономив на времени при изготовлении печатной платы, и поиске компонентов. Я решил заказать этот набор, и посмотреть что из этого получится. В блоке питания имеется регулировка как по току, так и напряжению. Данный пост будет содержать минимум теории, и больше фото для показа что в итоге получилось.

Принципиальная схема блока питания:

Принципиальная схема блока питания

Схема найдена в интернете, некоторые компоненты на схеме выше заменены советскими аналогами, в целом схема идентична.

Сам набор с компонентами добрался в таком виде:

Перед началом сборки выяснилось что некоторые компоненты пришли ни тех номиналов. Что касается подобного рода посылок, то это довольно распространённая практика. Поэтому рекомендуется всегда проверять элементы перед сборкой. В моём случае шунтирующий резистор (R7) оказался 47 Ом, а должен быть 0.47 Ом. Кроме того операционники оказались с дефектом, и после сборки не регулировалось напряжение и ток. Всё исправилось заменой этих компонентов. Читал в интернете, у некоторых схема начинает работать сразу после сборки. У некоторых приходят с дефектами или неправильными номиналами элементов. Очевидно, мне попалось и то и другое, в общем с ситуацией разобрался, и плата собрана и работает.

На схеме так же имеется стабилизатор напряжения 7824, я решил заменить его на 7812, который будет выдавать 12 В для запитки куллера + индикатора напряжения и тока.

В качестве трансформатора временно решил использовать от старого бесперебойника. Плата вывозит нагрузку на 3А, однако легко дорабатывается некоторой заменой компонентов. После этого при необходимости можно повысить выдаваемый ток блоком питания. Протестировав схему, стало понятно, что радиатор на выходном транзисторе маловат в своих габаритах, и не справляется с рассеиванием тепла. После чего решил прикрутить транзистор на радиатор от старого 478-го процессора. Как положено, с использованием термопасты для лучшей проводимости, т.к. узел весьма показался мне уязвимым в вопросе перегрева.

Решил повесить нагрузку в пару ампер на блок питания, посмотреть как быстро будет греться радиатор на транзиcторе. Минуты две при такой нагрузке радиатор спокойно рассеивает температуру после чего уже требуется принудительное охлаждение. Решил немного доработать охлаждение радиатора, и вместо того, чтобы вентилятор жужал постоянно, сделал схему, которая будет включать его при пиковых нагрузках. В сети интернет есть схема, которая реализована за счёт необычной способности транзистора КТ315 менять свои свойства при смене температуры.

Схема регулятора оборотов вентилятора охлаждения:

Собрал эту схему довольно быстро, она так же популярна в сети интернет. Особенность этой схемы в том, что в качестве датчика выступает транзистор КТ315. Этот транзистор к счастью оказался под рукой. Что касается VT2 то я решил заменить его современным аналогом, т.к. в магазинах всё реже можно найти детали старой базы.

Самое время делать корпус для блока питания и собирать это всё дело в кучу. Т.к. под рукой оказался корпус от бесперебойника компьютера, решил попробовать затолкать в него все компоненты, а так же сделать более правильную «морду», с регуляторами индикаторами и тумблером.

Переменные резисторы решил заказать другие, т.к. регулировка с многооборотистым резистором гораздо плавнее. В ходе испытаний выяснилось что индикатор напряжения имеет погрешность 0,01В, а вот что касается тока, то там наблюдается нелинейность в измерении. Исправляется пайкой одной перемычки на плате (в сети много об этом есть постов). Крепёж под «бананы», а так же тумблер включения питания.

Вот такая тушка под корпус лабораторника, переднюю и заднюю панель я открутил, так как она не пригодится, и панели у прибора будут другие.

В качестве материала для панели решил взять гетинакс, толщиной 5 мм. Причина такого выбора в том что его легко обрабатывать, диэлектрик, да и оказался под рукой.

Отверстия сверлились свёрлами и отрезными дисками для бор машины. Процесс изготовления корпуса — творческий, а поэтому в моём случае затянуться на больше чем ожидалось).

Элементы на панели вырезанные из листа гетинакса не стыковались с отверстиями которые были на железном корпусе. Таким образом чтобы разместить элементы потребовалось так же немного подрезать сам металлический корпус.

Урезая корпус под нужды элементов управления, это его значительно ослабляет в плане жесткости. Я же стремился сделать его более надёжным и качественным. В итоге простая переделка перешла в фазу «глубокой» переделки, в ходе чего была срезана задняя панель полностью, и добавлены рёбра жесткости.

Для примерки первый крепёж был сделан что называется на «шару» для того чтобы немного прикинуть размещение элементов. В ходе чего было выяснено, что так же потребуется сделать дополнительную планку по центру, чтобы прикрутить к ней два радиатора, и пару схем.

Сделал всё как задумал, хоть и можно было проще затолкать как получиться, но хотелось сделать как виделось правильным. Оставил запас места под трансформатор большего размера. Сам трансформатор разместил по центру, для более правильной развесовки прибора, а так же рассеивания тепла. Радиатор разместил ближе к задней стенке где находится вентилятор кулера. Сама плата блока питания так же находится ближе к кулеру. Плата управления ближе к передней панели, и в таком положении, чтобы место в центральной части где находится трансформатор оставалась в запасе.

Немного творческого беспорядка, на пару дней, в итоге подогнал все элементы по местам, и спаял узлы в последствии. Радиатор изолировал от корпуса, в итоге были сделаны специальные посадочные площадки из гетинакса которые одной стороной крепились к корпусу другой к радиатору. Получился некий пазл, которой держал всё это дело прочно на своих местах.

После первой сборки и спайки самоё время проверить работоспособность прибора. После сборки прибор включился но регулировалось напряжение и ток. В итоге выяснилось, что многооборотистые резисторы были припаяны немного неправильно, и это дело быстро исправилось. В целом, всё практически готово. Датчик регулятора скорости вращения вентилятора (транзистор КТ315) так же был прикручен около выходного транзистора блока питания, который размещался на радиаторе. Таким образом он быстрее реагирует на смену температуры выходного транзистора не дожидаясь нагрева всего радиатора.

Регуляторы на переменные резисторы мне показались довольно габаритными для этой панели, поэтому ставить их пока не стал, и заказал другие специальные для данного типа резисторов.

Вот такой получился танк. На задней панели сделаны отверстия под для вентилятора, предохранитель, а так же гнездо питания на 220 В. Центральный контакт гнезда как и положено заземлил на корпус блока питания. Хотя в наших розетках и нету третей точки — заземления, но пускай будет хотя бы в приборе, на будущее.

Проводка в блоке так же была связана, чтобы не было механического воздействия на места припоя при эксплуатации прибора.

В дальнейшем прибор так же планируется дорабатываться и в плане мощности, и возможно немного по внешнему виду. А пока результат он выглядит таким вот образом.

Сама плата с базовыми элементами способна выдавать от 0 до 30 Вольт, с током от 0 до 3 Ампер. Осциллограммы к сожалению показать не могу, т.к. нет осциллографа под рукой. Конечно это не много, ну и не мало тоже. По этой причине в дальнейшем планируется доработка в сторону увеличения мощности, путем замены элементной базы, от трансформатора до транзисторов. Разумеется насколько это позволят сами дорожки платы.

htmaker Опубликована: 13.10.2019 0 1
Вознаградить Я собрал 0 Участие в конкурсе 0

Читайте также:  Сила тока в телефоне сколько

Источник



Лабораторные блоки питания 2261

Одноканальные источники питания

Линейные источники питания мощностью до 1000Вт

Программируемые источники питания

Многоканальные источники питания

Системные источники питания

Источники переменного тока

Аксессуары к лабораторным блокам питания

Лабораторные блоки питания представляют собой стабилизированные регулируемые источники питания, обеспечивающие высокую точность выходного сигнала при изменении параметров нагрузки и питающего напряжения в широких пределах.

По схемному построению лабораторные блоки питания делятся на линейные и импульсные. Схема линейного источника состоит из мощного сетевого трансформатора, выпрямителя и стабилизатора. Такие блоки питания характеризуются минимальным уровнем шумов, создают минимальные помехи в сетях электропитания, но имеют большие ве c и габариты, низкий КПД.

Импульсные лабораторные блоки питания сначала выпрямляют сетевое напряжение на входе, затем преобразуют его в переменное напряжение высокой частоты, далее снова выпрямляют и стабилизируют. Такая схема позволяет уменьшить габариты и вес силового трансформатора и соответственно самого блока, повысить КПД, но создает электромагнитные помехи в цепях питания.

Купить лабораторные блоки питания можно с одним выходным каналом или несколькими. Программируемые блоки питания позволяют моделировать различные режимы работы для проведения лабораторных испытаний.

Источники могут иметь различные дополнительные функции: высокоскоростное управление, интерфейсы передачи данных, усиленную изоляцию, энкодеры, устройство задания последовательности, поглотители энергии и прочие.

Основными поставщиками лабораторных блоков питания являются: Tektronix, Keithley, QJE, Good Will, Mastech, Rohde & Schwarz, АКИП, Мегеон,Rigol.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Архангельск, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Иваново, Ижевск, Казань, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.

Товары из группы «Лабораторные блоки питания» вы можете купить оптом и в розницу.

Источник

Блок питания с регулировкой напряжения и тока

Друзья, сегодня хочу рассказать вам о своей новой самоделке, это блок питания с регулировкой напряжения и тока о котором мечтают все без исключения начинающие и опытные радиолюбители. Устройство можно использовать, как в качестве лабораторного блока для питания различных самоделок, так и в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Блок питания имеет стабилизированный регулятор напряжения и систему ограничения силы тока, защиту от переполюсовки клейм аккумулятора со световой индикацией, а также автоматический регулятор скорости вентилятора, изменяющий обороты в зависимости от нагрева радиатора. На этом рисунке изображена схема блока питания с регулировкой напряжения и тока рассчитанная на ток до 10А. К этой схеме можно подключать любой трансформатор или импульсный источник питания от 12 до 30В. Для тех кто любит по мощнее, в этой статье вы также найдете схему рассчитанную на ток до 25А. Не буду торопить события. Внимательно читайте статью до конца.

Схема блока питания с регулировкой напряжения и тока 1.2. 30В 10А

Схема блока питания с регулировкой напряжения и тока 1.2…30В 10А

Регулируемый стабилизатор напряжения LM317 позволяет плавно регулировать напряжение в диапазоне от 1.2 до 30В. Регулировка напряжения выполняется переменным резистором Р1. Транзистор Т1 MJE13009 выполняет роль ключа пропускающего через себя большой ток.

Система ограничения силы тока выполнена на полевом транзисторе Т2 IRFP260, позволяет ограничивать ток от 0 до 10А, управление током осуществляется переменным резистором Р2, что позволяет использовать данный блок питания в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Мощный резистор R6 с сопротивлением 0.1 Ом 20 Вт выполняет роль шунта. Купить его не проблема в Китае на Али Экспресс. Если не хочется долго ждать можно соединить несколько резисторов параллельно тогда получится один мощный резистор. Обратите внимание на то, что при параллельном соединении резисторов применяется специальная формула.

Общее сопротивление резисторов делится на количество резисторов. Как определить общее сопротивление, одинаковых резисторов? Надо просто взять сопротивление одного резистора и разделить на количество резисторов. Например, у меня есть 4 резистора, сопротивление каждого резистора 1 Ом и рассеиваемая мощность 10 Вт, следовательно общее сопротивление всех резисторов 1 Ом, если их соединить параллельно, то получится общее сопротивление четырех резисторов 0.25 Ом 40 Вт. Мощность всех резисторов суммируется. Таким образом можно сделать резистор любой мощности. На фотографиях и в видеоролике в моем блоке питания вы увидите сборку из 4 резисторов по 1 Ом 10 Вт с общим сопротивлением 0.25 Ом и мощностью 40 Вт. Сделал я так потому, что в тот момент у меня не было под рукой, да и в магазине тоже мощного резистора на 0.1 Ом 20 Вт. Но вот чудо, оказалось, что регулировка тока в данной схеме отлично работает даже с сопротивлением в 0.25 Ом. Мне стало интересно и я решил провести серию экспериментов с резисторами пришедшими через пару недель из Китая, с сопротивлением в 0.1 Ом, 0.25 Ом, 0.5 Ом, и пришел к выводу, что с любым из этих сопротивлений регулировка тока работает отлично. То есть, в данную схему можно поставить резисторы с любым сопротивлением в диапазоне от 0.1 Ом до 0.5 Ом, что делает эту схему доступной для сборки начинающим радиолюбителям. Ведь не всегда можно найти в магазине резисторы с нужным сопротивлением и мощностью. Ещё я пробовал заменить резистор куском нихромовой спирали от электроплитки, все тоже самое на работу регулировки тока это никак не повлияло, единственный минус в том, что спираль сильно нагревалась и её пришлось залить в бетон.

В схеме имеется встроенная защита от переполюсовки. При правильном подключении блока питания к аккумулятору загорается зеленый светодиод Led1. В случае не правильного подключения загорается красный светодиод Led2, сигнализирующий о ошибке подключения. Система корректно работает только при выключенном питании блока питания. То есть сначала подключаем аккумулятор, когда загорится зеленый светодиод включаем блок питания в сеть.

Автоматический регулятор оборотов вентилятора предназначен для уменьшения уровня шума возникающего в процессе работы блока питания. Стабилизатор напряжения L7812CV поддерживает постоянное напряжение 12В поступающее на делитель состоящий из терморезистора R8 установленного на радиаторе и подстроечного резистора Р3. Напряжение с делителя поступает на базу транзистора Т3. В процессе работы блока питания от большой нагрузки радиатор нагревается, сопротивление терморезистора R8 установленного в радиаторе становится меньше сопротивления подстроечного резистора Р3, напряжение на базе транзистора увеличивается и транзистор приоткрывается, тем самым увеличивая скорость вращения вентилятора. Настройка чувствительности регулятора осуществляется подстроечным резистором Р3.

В данной схеме регулируемого блока питания имеется возможность подключения разных моделей вольтметров и амперметров, стрелочных и электронных. С аналоговой классикой обозначенной на схеме буквами V вольтметр и A амперметр все понятно подключаем согласно схеме. Амперметр лучше покупать со встроенным шунтом, так гораздо компактней и дешевле. Класс точности вольтметра и амперметра с Али Экспресс должен быть 2.5 эти приборы работают нормально. А вот с китайскими электронными придется повозиться. На данный момент существует две модели китайских универсальных измерительных приборов (КУИП). Первая модель с синим проводом со встроенным шунтом более точная менее глючная, в последнее время её трудно найти на Али Экспресс. Вторая модель с желтым проводом и встроенным шунтом не точная и очень глючная с прыгающими показаниями амперметра от 0 до 0.25А на холостом ходу без нагрузки. Не понятно зачем её вообще продают? Если вы будете ставить электронный КУИП, тогда надо разорвать участок электрической цепи отмеченный на схеме красным крестиком. По другому в данной схеме электронный КУИП работать правильно не будет .

А эта схема для тех, кто любит мощные блоки питания. Как и обещал до 25А.

Читайте также:  Боли бьющие током в голове

Схема блока питания с регулировкой напряжения и тока 1.2. 30В 25А

Схема блока питания с регулировкой напряжения и тока 1.2…30В 25А

В схему добавлен дополнительный мощный транзистор Т2 TIP35C способный выдерживать ток до 25А и резистор R3 200 Ом. Диодный мост заменен на более мощный. Транзистор IRFP250 выдерживает 30А, а транзистор IRFP260 49А.

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 10А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2. 30В 10А

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 10А

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 25А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2. 30В 25А

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 25А

Стабилизатор напряжения LM317, транзисторы TIP35C, IRFP250, 260 устанавливаем на радиатор через изолирующие термопрокладки и термошайбы. Транзистор MJE13009 устанавливаем на радиатор без изоляции, иначе от сильного нагрева и плохого отвода тепла через термопрокладку будет перегреваться и выходить из строя. Стабилизатор напряжения L7812CV и транзистор BD139 устанавливаем на разные радиаторы. Терморезистор вставляем в просверленное в радиаторе отверстие и закрепляем с помощью Поксипола или Эпоксидной смолы. В процессе установки терморезистора проверяйте мультиметром отсутствие электрического контакта, между терморезистором и радиатором. Переменные резисторы, а также светодиоды при необходимости можно соединить проводами и вынести за пределы платы.

Готовый блок питания начинает работать сразу после подачи питания на плату. Единственное что надо настроить, так это скорость вращения вентилятора. Для этого надо при холодном радиаторе с помощью подстроечного резистора Р3 выставить напряжение на вентиляторе примерно 1 вольт. Вентилятор начнет вращаться при температуре радиатора примерно 45 градусов, обороты будут подниматься прямо пропорционально температуре радиатора. При охлаждении радиатора обороты вентилятора будут снижаться. Так работает автоматический регулятор оборотов вентилятора.

Блок питания с регулировкой напряжения и тока

Как же пользоваться блоком питания?
Очень просто. Включаем питание и выставляем регулируемым резистором Р1 нужное вам напряжение. Ручку регулируемого резистора Р2 ставим в крайнее правое положение соответствующее максимальной силе тока. Подключаем нагрузку к блоку питания, при необходимости добавляем напряжение. Если надо резистором Р2 можно ограничить ток.

Блок питания с регулировкой напряжения и тока подключение нагрузки

Как заряжать аккумулятор?
Легко! При подключении аккумулятора блок питания должен быть выключен из сети. Ставим ручки резисторов Р1 и Р2 в крайнее левое положение, минимальное напряжение и минимальный ток. Подключаем аккумулятор к блоку питания. Должен загореться зеленый светодиод, это означает что аккумулятор подключен правильно. В случае ошибки подключения загорится красный светодиод. После того, как вы убедились в правильности подключения аккумулятора, включите блок питания в сеть. Переменным резистором Р1 установите напряжение 14.5В. Далее резистором Р2 установите силу тока равную 10% от емкости аккумулятора, то есть для 60А/ч батареи начальный ток должен быть не более 6А.

Блок питания с регулировкой напряжения и тока начало зарядки аккумулятора

После установки силы тока произойдет падение напряжения примерно до 13В. По мере заряда аккумулятора напряжение будет постепенно подниматься до 14.5В, а сила тока будет снижаться до 0.1А это будет означать, что батарея полностью заряжена.

Блок питания с регулировкой напряжения и тока конец зарядки аккумулятора

Что будет с блоком питания в случае короткого замыкания?
Ничего страшного не произойдет. В случае короткого замыкания сработает защита ограничения тока. Согласно закону Ома: чем больше сопротивление цепи, тем меньше сила тока будет в нем. Следовательно при коротком замыкании будет максимально возможный ток. Напряжение упадет, а сила тока будет той, которую вы ограничили резистором Р2.

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 10А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 IRFP250, IRFP260, T3 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2 200R 0.25W, R3 1K 5W, R4 100R 0.25W, R5 47R 0.25W, R6 0.1R 20W, R7 3K 0.25W
  • Терморезистор R8 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 25А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 TIP35C, T3 IRFP250, IRFP260, T4 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2, R3 200R 0.25W, R4 1K 5W, R5 100R 0.25W, R6 47R 0.25W, R7 0.1R 20W, R8 3K 0.25W
  • Терморезистор R9 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой напряжения и тока

Источник

Как выбрать регулируемый преобразователь напряжения

Подробное руководство преобразователей напряжения от Суперайс

В среде радиолюбителей и профессионалов очень популярны лабораторные блоки питания, а именно регулируемые источники напряжения и тока. Кроме привычных регулировок они содержат дополнительные функции, например, триггерную защиту от перегрузки, память режимов, возможность удаленного управления с ПК или смартфона. В любом случае они все равно остаются регулируемыми блоками питания.

Конечно, если у вас достаточно денег, то можно просто купить что-то из продукции Rigol, ITECH, Siglent, но часто это дорого, а иногда излишне, особенно если речь идет о «домашнем» использовании или небольшом бюджете начинающего радиолюбителя.

Время чтения: 16 минут
Автор статьи — Андрей Кириченко

Топология блоков питания

Чтобы не ошибиться при выборе блоков питания, рассмотрим их топологию.

Линейные — в качестве регулирующего узла применен линейный стабилизатор.

Преимущества — быстрая реакция на изменение нагрузки, малая емкость по выходу, отсутствуют пульсации по выходу.

Недостатки — большое тепловыделение, небольшая выходная мощность. Так как в них обычно применяется трансформатор 50 Гц, то добавляется вес и цена.

Импульсные — регулируемый импульсный блок питания или инвертор с ШИМ регулировкой.

Преимущества — хорошее соотношение мощность/объем/цена, высокий КПД. Данные блоки питания активно развиваются, встречаются сложные, программируемые источники.

Недостатки — повышенный уровень ВЧ пульсаций, большая емкость выходного конденсатора, возможен бросок тока при подключении нагрузок.

Гибридные — блок, где основная регулировка производится импульсной схемой, но на выходе стоит линейный стабилизатор. Схема настроена так, что на выходе импульсного модуля питания немного (1-3 Вольта) выше, чем на выходе линейного.

Преимущества — КПД уступает импульсным устройствам, уровень пульсаций, скорость реакции почти такие же, как у линейных.

Недостатки — выше сложность устройства, цена, что сдерживает распространение таких блоков питания.

Импульсные блоки питания

Линейные и гибридные блоки на время отставим в сторонку, рассказ пойдет о импульсных. Ассортимент их очень широк и позволяет сделать все самостоятельно или купить готовое устройство, которое надо только установить в корпус.

Примеры импульсных преобразователей

На некоторых платах инверторов вы увидите один, два или три регулятора, обычно если он один, то это регулировка напряжения, если два, то добавлена регулировка тока.

Первый преобразователь популярен среди начинающих радиолюбителей, стоит недорого, подстроечные резисторы выводятся на проводах. Если добавить ампервольтметр и блок питания, то получится простой регулируемый источник для тестирования различных поделок, причем ток нагрузки достигает предела до 8-10 Ампер.

Применяя плату на базе LTC3780, можно получить то же самое, но выбор блоков питания будет шире, так как модуль универсальный.

Иногда производители сразу выпускают преобразователи с внешним переменным резистором, а бывают модели со встроенным индикатором тока и напряжения, остается только блок питания и корпус.

Импульсные преобразователи напряжения

Импульсные преобразователи напряжения

Пара ZK-SJVA-4X и D3806 более интересна, но если у первой добавили индикатор, а регулировка производится все равно подстроечными резисторами, то вторая показанная справа, более любопытна.

У D3806 полностью цифровое управление, съемная плата с индикатором и кнопкам, что выводит её на переднюю панель вашего будущего блока питания без сложностей. Конвертор является повышающе-понижающим. Единственный существенный недостаток — нельзя одновременно видеть значение тока и напряжения.

Читайте также:  Формула разброса для тока

Импульсные преобразователи ZK-SJVA-4X и D3806

Импульсные преобразователи ZK-SJVA-4X и D3806

Принципы регулировки модулей питания

Самое время пояснить про отличия в принципах регулировки:

Аналоговая — при помощи переменных резисторов, для установки тока надо сначала закоротить клеммы, выставить необходимый максимальный ток, только потом подключить нагрузку.

Цифровая — при помощи кнопок или энкодера, можно установить напряжение и максимальный ток при неактивном выходе блока питания, что гораздо удобнее.

Преобразователи с расширенным функционалом

Модули питания с расширенными функциями стали очень популярны. Делают их с универсальным входом. Например, использовать блок питания 19 Вольт от ноутбука и получить на выходе как 5, так 35 Вольт. Но к сожалению конверторы с топологией SEPIC имеют повышенный уровень пульсаций и рекомендуется применять меры по их подавлению, но для не критичных нагрузок нормально.

Пример известной модели — XYS3580, выходное напряжение до 36 Вольт, ток до 5 Ампер, мощность 80 Ватт.

Регулируемый SEPIC преобразователь напряжения XYS3580

Популярна в этом сегменте продукция молодой фирмы Fnirsi, выпускающей компактные DC-DC конвертеры.

Регулируемый источник питания FNIRSI DC-580

DC-580 — характеристики подобны XYS3580, только минимальное напряжение 1,8 Вольт, а не 0,6. Такие модели обычно имеют стандартные размеры, потому устройство легко переделать на более мощную без замены передней панели устройства.

При этом есть DC-DC модули питания без корпуса.

Но объединяет их не сходство характеристик, универсальное питание или стандартный корпус, а то, что здесь помимо простой регулировки тока и напряжения расширен функционал. Например, измерять выходную мощность, отданную емкость, поворачивать изображение на экране, настраивать порог срабатывания защиты.

Цифровые преобразователи напряжения

Цифровые преобразователи напряжения

Среди популярных есть менее известные блоки, несправедливо забытые, хотя по-своему удобные, надежные в работе:

DPX6012S от YIYIELECTRONIC, 60 Вольт 12 Ампер, но кроме неё есть вариант 60 Вольт 5 Ампер и 32 Вольт 3 Ампер, индекс S означает управление с ПК.

ZXY-6005S производства MingHe, с напряжением 60 Вольт и током 5 Ампер. Как у DC-DC инверторов DPX существует три модели, все на 60 Вольт, но ток 5, 10 и 20 Ампер. Также, как у DPX индекс S это поддержка управления с компьютера.

Регулируемые преобразователи DPX6012S и ZXY-6005S

Регулируемые преобразователи DPX6012S и ZXY-6005S

Регулируемые преобразователи фирмы RDtech серии DPS и DPH

Самым известным производителем регулируемых источником питания называют фирму RDtech, которая выпускает большое количество источников питания. Мало того, разработчики стараются прислушиваться к пользователям и предлагают обновления прошивок своих устройств.

Первые модели, где производитель скорее «тренировался», приводить смысла нет, а вот о последующих стоит рассказать подробно, они того стоят.

Стабилизаторы серии DPS и DPH. Сюда входят три основные модели, несколько их модификаций:

DPS3005, DPS5005, DPS8005 — компактные, скорее даже сверхкомпактные, понижающие стабилизаторы, выходной ток до 5 Ампер, напряжение 30, 50, 80 Вольт. Цена отличается мало, то DPS8005 популярней.

Понижающие стабилизаторы DPS3005, DPS5005 и DPS8005

Понижающие стабилизаторы DPS3005, DPS5005 и DPS8005

DPS3012, DPS3015, DPS5020 — понижающие конвертеры с выходным током 12, 15, 20 Ампер и напряжением 30, 50 Вольт. Первая модель считается устаревшей, вторая стоит почти как третья, потому лучше взять старший вариант — DPS5020.

Понижающие конвертеры DPS3012, DPS5015 и DPS5020

Понижающие конвертеры DPS3012, DPS5015 и DPS5020

DPH3205, DPH5005 — повышающе-понижающие стабилизаторы с выходным током 5 Ампер и напряжением 32, 50 Вольт. Эти модули не сильно мощные, но позволяют проще подобрать подходящий блок питания. Для получения полной мощности надо использовать блок питания на 19-20 Вольт в первом случае и 30-32 во втором.

Повышающе-понижающие стабилизаторы DPH3205 и DPH5005

Повышающе-понижающие стабилизаторы DPH3205 и DPH5005

Программа управляет стабилизатором, строит графики, задает несложные алгоритмы работы, например, автоматическое ступенчатое повышение напряжения или тока.

Программное обеспечение стабилизатора напряжения DPH5005

Программное обеспечение стабилизатора напряжения DPH5005

Регулируемые преобразователи фирмы RDtech серии RD60xx

Прорывом стал выпуск понижающих преобразователей серии RD60xx, в которую входят три модели — RD6006, RD6012, RD6018, все они имеют выходное напряжение до 60 Вольт и ток 6, 12, 18 Ампер. Ожидается выпуск RD6024 с током до 24 Ампер линейки Pro RD6006P, отличающаяся точностью измерения, установки параметров.

Все приборы подключаются к компьютеру через USB, с индексом W комплектуются модулем WiFi, а при желании докупается адаптер для подключения через промышленный интерфейс RS485.

Производитель опять не стал плодить разнообразие корпусов и выпустил все модели не только в одном дизайне, размере, а с одним принципом управления.

Понижающие преобразователи RD6006, RD6012 и RD6018

Понижающие преобразователи RD6006, RD6012 и RD6018

Корпус здесь заметно больше чем у предыдущей серии, но значительно больше стал дисплей, а также прямой выбор величины тока и напряжения.

Все модели этой серии дополнены необычной функцией, заряда аккумуляторов, причем с защитой от подключения в неправильной полярности. В отличие от обычных лабораторных блоков питания, при подключении аккумулятора к отдельной клемме включается режим заряда с полным отключением при падении тока до 10 миллиампер у модели RD6006 или до 100 миллиампер у моделей RD6012 и RD6018.

Но RDTech пошел еще дальше и теперь инвертор можно купить с корпусом.

Всего есть четыре типа корпуса, два для линейки DPS/DPH, имеющие небольшие отличия, два для линейки RD60xx, разного размера. Корпус собирает лабораторный программируемый блок питания буквально «из кубиков».

Разновидности корпусов для линейки преобразователей DPS/DPH и RD60xx

Разновидности корпусов для линейки преобразователей DPS/DPH и RD60xx

Регулируемые преобразователи фирмы Juntek

Отдельного упоминания заслуживает фирма Juntek, которая выпускает серию стабилизаторов напряжения с разными параметрами. Концепция знакомая, но имеет существенные отличия.

Распространенные модели имеют верхний лимит по напряжению в 60 Вольт, за исключением DPS8005, у которого 80 Вольт и серия ZXY60xx, которая хоть и имеет 60 в названии модели, но реально выдает 62 Вольт. Была еще модель ZXY12010 на 120 Вольт 10 Ампер, но её никто не видел и вряд ли теперь увидит, а жаль, хорошие преобразователи.

Линейка DPM примечательна моделями на 24, 50 Ампер, а серия DPH выходным напряжением до 96 Вольт.

Выглядят DC-DC конверторы аскетично, несколько кнопок, пара семисегментных дисплеев и четыре светодиода. Дизайн у всех одинаков, небольшое различие в месте установки вентилятора.

Стабилизаторы напряжения серии DPM и DPH

Стабилизаторы напряжения серии DPM и DPH

Но так как мы живем в эпоху компьютеров, то в данном случае производитель решил «не отбиваться от коллектива», все преобразователи подключаются к ПК. При этом без индекса они имеют только порт TTL, с индексом 485 — RS485, а если указано RF, то здесь добавлена внешняя панель с большим дисплеем, кнопками, энкодером, беспроводным подключением.

Подключение DC-DC конвертеров к ПК

Подключение DC-DC конвертеров к ПК

Казалось бы, что на этом выбор ограничивается, но это не так. Если начать перечислять все что есть на рынке регулируемых преобразователей, то пока дойдешь до конца списка, успеют выпустить пару новых моделей.

Например, компактный, но устаревший преобразователь на базе XL4005E1 с парой индикаторов, регулировкой тока и напряжения.

Старенькая, но любопытная DP30V5A-L от RDtech, характеристики ничем не выделяются, но хитрость со съемными индикаторами выглядит необычно.

А как не сказать про отдельную серию разных регулируемых SEPIC модулей с питанием от USB и поддержкой QC, как например, ZK-DP2F. Преобразователь умеет регулировать напряжение, ограничивать ток — «лабораторник в кармане».

Конечно еще две интересные модели от фирмы Juntek, это мощный повышающий DC-DC стабилизатор B900W с током до 15 Ампер и малогабаритный понижающий B3603, как показанный ранее D3806 они все имеют съемную плату с индикатором и кнопками.

Регулируемые преобразователи напряжения

Регулируемые преобразователи напряжения

Особенности при выборе модуля питания DC-DC

Что важно знать и помнить при выборе регулируемого преобразователя?

Внутри это самый обычный инвертор, со всеми их тонкостями и нюансами, они также бывают понижающие, повышающие, универсальные, но первые встречаются гораздо чаще.

Надо помнить, что понижающим необходим запас по входному напряжению около 4-5 Вольт, повышающие и универсальные могут отдать полную мощность только при входном напряжении не ниже определенного предела.

На этом все, дальше выбираем подходящую модель и помним, что «кормить» ваши устройства лучше хорошей «пищей».

Источник