Меню

Батарейка аа максимальный ток разряда

Сравнительный тест 22 пальчиковых АА аккумуляторов. DNS LAB

Сравнительный тест 22 пальчиковых АА аккумуляторов. DNS LAB

Аватар пользователя

Содержание

Содержание

Лаборатория DNS закончила тестирование АА аккумуляторных батарей и спешит поделиться с вами результатами. В тестировании принимали участие 22 модели разных производителей и разных ценовых категорий.

Какие тесты проводились

Аккумуляторы проходили проверку в нескольких тестах:

  • Измерение реальной емкости при токе 250 мА.
  • Измерение реальной емкости при токе 1 А.
  • Измерение реальной емкости при токе 250 мА при пониженной температуре – 15 o С.
  • Измерение тока короткого замыкания, максимальной температуры с контролем возможных деформаций и появления утечек электролита.
  • Измерение напряжения в режиме холостого хода на новом аккумуляторе.
  • Измерение внутреннего сопротивления.

Результаты измерений

Перед измерением емкости аккумуляторы заряжались и разряжались три раза на батарейном анализаторе (ANQ 8 Channel Battery Analyzer).

Измерение емкости аккумуляторов

Измерение запасенной энергии (mWh, фактически – та же емкость, только умноженная на номинальное напряжение источника) аккумуляторов проводилось методом разряда током нагрузки 250 мА до напряжения 1 В. Лучшими по этому параметру являются Panasonic Eneloop Pro BK-3HCDE, GP 2700 Series 270AAHC, KODAK MN1500 и FinePower 2600 mAh и Panasonic Eneloop Pro BK-3HCDE, GP 2700 Series 270AAHC, FinePower 2600 mAh и ЭРА 2600 mAh при измерении в mAh.

Минимальная емкость у LADDA 1000 mAh, что, впрочем, было понятно из названия, в котором прямо указано небольшое значение для этого параметра, а также Energizer Recharge Universal. Далее идут Rombica NEO X2, ТРОФИ 1500mAh и FinePower 1800 mAh. При этом необходимо отметить, что заявленная в названии аккумуляторов емкость в 1500mAh у ТРОФИ и в 1800 mAh у FinePower вполне обеспечивается. ТРОФИ даже показал в тесте большую емкость.

Ниже приведена диаграмма для измерений емкости в mWh и mAh.

При измерении емкости методом разряда током нагрузки 1 А до напряжения 1 В неожиданный результат показали аккумуляторы GP 1800 Series 180AAHC. У них напряжение сразу просело ниже 1 В. Это говорит о том, что такие аккумуляторы не стоит использовать в устройствах с высоким токопотреблением. Лучшие результаты показали Panasonic Eneloop Pro BK-3HCDE и GP 2700 Series 270AAHC. Минимальная емкость у аккумуляторов Energizer Recharge Universal и Duracell DX1500. В отличие от щелочных батареек Duracell аккумуляторы этого производителя оказались не такими мощными.

Так как в тесте принимали участие аккумуляторы разной емкости, для более точного анализа была составлена диаграмма, показывающая соотношение между заявленной производителем емкостью и измеренными величинами.

Для тока 250 мА диаграмма получилась следующей.

Как видно, наиболее точно соответствовали заявленной емкости аккумуляторы GP 1800 Series 180AAHC, ТРОФИ 1500 mAh и Panasonic Eneloop Pro BK-3HCDE. В отстающие попали Rombica NEO X2, Energizer Recharge Universal и несколько неожиданно — Panasonic BK-3HGAE. Емкость этого аккумулятора оказалась ниже заявленной. Не стоит клеймить позором эту модель, возможно не хватило трех циклов заряд-разряда для «раскачки» аккумулятора, либо производитель измерял емкость на более низких токах. Брак также возможен, в ближайшее время мы перепроверим результат и обновим статью.

Также провели измерение емкости аккумуляторов при отрицательной температуре – 15 o С. Ток 250 мА до напряжения 1 В. Были получены следующие результаты.

Оказалось, что при отрицательных температурах хорошо себя ведут FUJITSU, GP, FinePower и ЭРА. Они теряют емкость незначительно. А вот KODAK и особенно LADDA в холода на улицу лучше не брать, эти модели вас обязательно подведут и разрядятся очень быстро.

Измерение напряжения в режиме холостого хода

Измерение напряжения в режиме холостого хода проводилось на только что извлеченных из блистеров аккумуляторах. Результаты сведены в диаграмму.

Можно увидеть, что Rombica NEO X2 выдавал напряжение чуть более 1,5 В. Остальные аккумуляторы на холостом ходу в состоянии поставки — немного меньше. Минимальное значение напряжения у нового аккумулятора ТРОФИ 2300mAh. Напряжение выше 0.9 В, говорит нам о том, что все аккумуляторы попали на тест в рабочем состоянии.

Внутреннее сопротивление

Измерение внутреннего сопротивления выполнялось на новых, полностью заряженных, аккумуляторах с помощью специализированного миллиомметра YR1030+. Проверка выполнялась в режиме импульсного тока с частотой 1 кГц.

В этом тесте вне конкурса оказался аккумулятор Rombica NEO X2. Величина его внутреннего сопротивления, измеренная в рамках теста, составила 15,77 Ом из-за особенностей конструкции этого аккумулятора. Дело в том, что в NEO X2 имеется встроенный в аккумулятор контроллер для заряда и это отражается на результатах измерений, так как контроллер также имеет свое сопротивление, это не позволяет непосредственно измерить внутреннее сопротивление самого аккумулятора.

Из остальных моделей самое большое сопротивление у KODAK 2500 mAh и ТРОФИ 2300 mAh, минимальное – у Panasonic Eneloop BK-3MCCE и Duracell DX1500. Немного больше у Panasonic BK-3HGAE и GP 1800 Series 180AAHC.

Стоимость аккумуляторов

По стоимости аккумуляторов получается следующая картина. Наиболее дорогие — Panasonic Eneloop Pro BK-3HCDE, а также Rombica NEO X2 и другие аккумуляторы Panasonic. Самыми дешевыми являются модели брендов LADDA, FinePower, ТРОФИ и один из аккумуляторов Energizer.

Далее был выполнен расчет средней емкости для каждого аккумулятора и оценка соотношения между средней емкостью и ценой. Это сделано с целью оценки оптимального соотношения цены и емкости аккумуляторов. Сначала рассчитывалась средняя арифметическая емкость аккумуляторов по результатам проведенных тестов, а потом делалась оценка соотношения между средней емкостью и ценой. Получилась следующая диаграмма.

Из нее следует, что оптимальными аккумуляторами по емкости, которую вы покупаете на потраченный рубль, являются модели брендов FinePower, LADDA и ТРОФИ.

Аккумуляторы Rombica NEO X2 оказались в этом плане наиболее дорогими. А если еще и вспомнить, что они единственные не выдержали теста работы на короткое замыкание, то их преимущество в виде встроенного в аккумулятор блока зарядки видится несколько сомнительным.

Выводы

Конечно же, надо учитывать, что оценка параметра «цена – качество» по соотношению цены и степени заряда является условной. Для аккумуляторов важно и то, насколько долго они могут проработать без подзарядки. Не всегда удобно таскать с собой запасные LADDA или FinePower небольшой емкости и менять их в тот самый момент, когда появиться лучший кадр или вы под потолком отбиваете вертикаль, в то время, когда Panasonic Eneloop Pro BK-3HCDE могут проработать намного дольше.

В целом для таких задач, как использование аккумуляторов в пультах, часах, метеостанциях, фонарях, радиоприемниках – то есть, там, где токопотребление небольшое, вполне можно посоветовать недорогие аккумуляторы FinePower, ТРОФИ или LADDA. При этом нужно учитывать, что LADDA показали себя не с лучшей стороны во время испытаний при отрицательных температурах. А это значит, что эти аккумуляторы подходят для использования только летом или зимой в теплых помещениях.

Для использования в фотовспышках, там, где важна емкость и всепогодность лучше брать дорогие аккумуляторы Panasonic. Да, они стоят недешево, но эти модели – самые емкие и надежные.

Как вариант – можно обратить внимание на GP2700 и FinePower 2600. Они показали хорошие результаты в рамках теста, хоть и отстали от Panasonic, но при этом они стоят дешевле. Особенно выделяются в этом плане FinePower 2600, хорошо проявившие себя во всех тестах, в том числе при пониженной температуре.

Аккумуляторы Rombica будут интересны тем, кто не хочет носить с собой зарядное устройство или тратить деньги на его покупку, ведь в эти устройства контроллер заряда уже встроен.

Источник



Страница не найдена!

Страница не найдена!

Информация

  • IMAX B6 заряжает АА Ni-Zn
  • Ni-Zn ААА в слаботочной и низковольтной технике
  • Батарейки АА в часах или игрушках.
  • Гибридный аккумулятор для автомобиля из супер конденсаторов.
  • Единица ёмкости Фрарад (емкость SMD )
  • Зона покрытия рации на батарейках
  • Какой литий можно найти на Store-men.ru
  • НЕОДИМОВЫЕ МАГНИТЫ И ИХ ОСОБЕННОСТИ
  • Неодимовые магниты.
  • Солнечная энергия
  • Ток и напряжение аккумулятора АА /14500
  • Что значит ват/ час у аккумулятора?
  • Информация о доставке
  • Что могут ионисторы на 500F/
  • Что такое гальваника и что она изучает.
  • Политика Безопасности
  • Ионисторы в автомобиле
  • О заряде и энергии, хранимой в ионисторах
  • IMAX-B6 заряжает ионистор.
  • Высокотоковый литиевый аккумулятор
  • Емкость лития
  • Литиевые АА аккумуляторы на 1,5 V.
  • Ионистор от севшего аккумулятора питает электродвигатель.
  • Типы и виды АА аккумуляторов и их характеристики.
  • Ионистор за место аккумулятора в системе освещения
  • ПЕРЕДЕЛКА ШУРУПОВЕРТА НА ЛИТИЙ.
  • Энергия блока ионисторов
  • Саморазряд ионисторов
  • Чем же заряжать Ni-Zn аккумуляторы?
  • Какие аккумуляторы ААА лучше
  • Солнечная панель для зарядки телефона или планшета.
  • Лучшие аккумуляторы аа для фотоаппарата
  • Саморазряд Ni-Mh аккумуляторов АА
  • Радиатор охлаждения медь или аллюминий
  • самодельная светодиодная лампа для рабочего места
  • Сравнение литий-ионныых акб 18650 и 26650
  • Самодельный Power Bank
  • устройство аккумулятора аа
  • Вес аккумулятора для power bank на 50000 mah
  • Сколько служат Ni-Mh aa аккумуляторы
  • Что лучше Ni-Zn 2500 mW/h или Ni-Mh 1500 mah.
  • Как проверить ток и напряжение аккумуляторов АА.
  • Как хранить аккумуляторы АА
  • Домашняя станция зарядки на солнечных батареях.
  • Пайка smd компонентов
  • Обозначение SMD компонентов
  • Зарядка ионистора 500f от солнечных панелей различной мощности
  • Заряжаем 18650 на IMAX-B6
  • 32700 и 32650 LiFePo4
  • Монтаж и описание smd компонентов
  • Power bank на ионисторах.
  • Что такое SMD компоненты
  • Контроллеры заряда батарей.
  • Заряжаем 32700 на Imax-b6.
  • Какие акумуляторы AA выбрать для мышки.
  • Ток и напряжение аккумулятора ААА
  • Лучшие аккумуляторы для вспышки.
  • Платs зарядки для Power bank.
  • Как проверить 2,7 v ионистор.
  • Усиленные аккумуляторы для дрона.
  • Подключение солнечных элементов разной мощности
  • Какие аккумуляторы ААА щас в ходу?
  • Стандарты, ГОСТы и требования ТУ
  • Mosfeet и JFET
  • Плата понижающая для зарядки лития
  • Полупроводники.
  • Маркировка smd конденсаторов
  • Платы для зарядки лития dc dc .
  • Звуковые ( конденсаторы ) ионисторы.
  • SMD -описание и маркировка.
  • Параметры SMD компанентов.
  • Конденсаторы в 3 фазной сети
  • Индуктивность конденсаторов
  • Как проверить конденсатор?
  • Фотоаппараты на АА батарейках.
  • 10 фарад вместо аккумулятора.
  • Power bank на 1000F_2,7V
  • Неполярный конденсатор
  • IMAX-B6 для автомобильного аккумулятора.
  • ААА выбрать для радиотелефона.
Читайте также:  Удар током кровь из ушей

Служба поддержки

Дополнительно

  • Производители
  • Подарочные сертификаты
  • Партнёры
  • Товары со скидкой

Личный кабинет

  • Информация о доставке
  • Что могут ионисторы на 500F/
  • Что такое гальваника и что она изучает.
  • Ионисторы в автомобиле
  • О заряде и энергии, хранимой в ионисторах

Мы работаем для Вас
будни: 9:00 — 21:00
суббота: 10:00 — 16:00, воскресенье: выходной
+7 XXX XXX XX XX

Источник

Сравнительный тест 14 пальчиковых АА батареек щелочного типа

Сравнительный тест 14 пальчиковых АА батареек щелочного типа

Аватар пользователя

Содержание

Содержание

Лаборатория DNS провела сравнительное тестирование щелочных АА батареек, имеющихся в продаже в сети наших магазинов. В тестировании принимали участие 14 вариантов батареек, при этом Energizer Max были представлены в двух вариантах. Для сравнительного эксперимента были взяты батареи в блистере «3+1 штука» и «6 штук».

Как проводился тест

Полная методика тестирования описана по ссылке. Батарейки разряжались постоянным током 250 мА до напряжения 1 В и 0,8 В и постоянным током 1 А до напряжения 1 В и 0,8 В в нормальных условиях с контролем времени, за которое выполняется разряд. Такая методика тестирования позволяет оценить работоспособность батареек при работе на нагрузку с небольшим током, например, в пульте ДУ и при использовании их на нагрузку с высоким током, например, в фотовспышке. Пример на Duracell Ultra Power:

Результаты тестирования

При разряде батареек током 250 мА до напряжения 1 В, максимальная величина емкости оказалась у Duracell Ultra Power. Чуть хуже результат у Duracell Professional. Самый плохой результат — у Energizer Max в блистере по 6 штук.

Достаточно предсказуемо высокое значение емкости показали самые дорогие Duracell. Но с другой стороны дорогие Panasonic Evolta и Energizer Maximum попали в разряд аутсайдеров, наряду с самыми дешевыми Трофи.

Сравнительная диаграмма емкостей, измеренных при разряде батареек током 250 мА до напряжения 0,8 В, показала несколько другую картину. В лидеры кроме Duracell Ultra Power попала одна из разновидностей Energizer Max в блистерах «3+1» и FinePower. Близкие результаты показали также батарейки Philips Power. При этом другой вариант Energizer Max в упаковках по 6 штук оказался аутсайдером этого теста вместе с Panasonic Evolta, Energizer Maximum и Трофи. В целом лидеры этого теста обладают емкостью примерно в 1,5–1,8 раза выше аутсайдеров.

Тестирование разряда батареек постоянным током 1 А до напряжения 1 В показало очевидное преимущество Duracell Ultra Power. Эта батарейка — явный лидер теста. Она имеет емкость более чем в 4 раза выше аутсайдеров, среди которых оказались Energizer Max в блистере по 6 штук, Panasonic Every Day и Трофи.

При тестировании батареек разрядом с током 1 А до напряжения 0,8 В результаты получились ровнее. Выяснилось, что лидерами являются все те же Duracell Ultra Power, а также Panasonic Pro Power.

Несколько хуже оказались шесть моделей брендов Duracell, Philips, GP и Energizer. Самые низкие результаты снова у Energizer Max в блистере по 6 штук. Немного лучше показатели Трофи, Panasonic Every Day, Panasonic Evolta и Energizer Maximum. Емкость лучших батареек в данном тесте в 2–2,5 раза выше, чем у аутсайдеров.

На основании проведенных измерений выполнен расчет средних значений емкости батареек и составлена сравнительная характеристика по усредненной величине этого параметра.

Средние результаты и соотношение цена/качество

Лидером по средним значениям стали батарейки Duracell Ultra Power, от которых несколько отстают Duracell Professional. В аутсайдеры попали Energizer Max в блистере по 6 штук, Трофи и Panasonic Evolta. В среднем емкость у лидеров теста примерно в 2 раза выше, чем у аутсайдеров.

Если оценить стоимость одной батарейки, то сравнительная диаграмма выглядит следующим образом.

Самые дорогие — Duracell Ultra Power, так как каждая такая батарейка обходится покупателю более чем в 100 рублей. Самые дешевые — Трофи, стоящие в 4 раза дешевле. Несколько дороже Трофи — FinePower. Удивительно, что вторые по цене — Panasonic Evolta, оказавшиеся в тесте по величине емкости в числе аутсайдеров почти во всех видах испытаний.

Учитывая предыдущую диаграмму, не вызывает удивления финальная сравнительная характеристика, в которой батарейки сопоставлены по соотношению емкость/цена. То есть, образно говоря, эта диаграмма показывает, сколько емкости (а значит, и времени работы) вы можете купить за рубль.

Победителями при сравнении оказались самые дешевые батарейки Трофи и следующие по цене FinePower. При цене в 3-4 раза дешевле дорогих Duracell, их емкость в большинстве тестов оказалась примерно в 1,5–2 раза меньше.

Исключение — разряд током 1 А до напряжения 1 В. Duracell Ultra Power показали результат почти в 4 раза лучше Трофи и в два раза лучше FinePower. Кстати, по соотношению емкость/цена Duracell Ultra Power попали в число аутсайдеров. А самый плохой показатель оказался у батареек Panasonic Evolta, стоящих немногим меньше Duracell Ultra Power, но при этом во всех тестах показавших значительно меньшую емкость.

Выводы

Исходя из результатов тестирования, можно сделать вывод, что для многих случаев использования батареек совершенно не обязательно покупать дорогие модели. Батарейки Трофи и FinePower при значительно меньшей цене по сравнению с конкурентами показали неплохие результаты и, например, в пульт ДУ для телевизора вполне можно поставить их.

Но это не значит, что дорогие батарейки вроде Duracell Ultra Power совсем не нужны. Наоборот, в приборы с высоким токопотреблением, например, вспышки фотоаппаратов, лучше поставить именно эту модель, так как Duracell Ultra Power обладают в режиме отдачи большого тока значительно большей емкостью, чем дешевые конкуренты. И в этом случае они вполне оправдывают свою высокую стоимость.

Источник

Батарейки и аккумуляторы. Тесты и сравнения

Различные устройства, требующие электропитания, прочно вошли в жизнь туриста. Фонари, GPS, телефоны, рации, фото- и видеоаппаратура. Вариантов элементов питания придумано уже много. Есть одноразовые (батарейки) и многоразовые перезаряжаемые (аккумуляторы). К сожалению, производители придумали всякие значки, классификации типа Экстра, Ультра, Плюс, Супер, Макси, Турбо и т.д, вместо того, чтобы написать внятно характеристики элементов питания. О их разновидностях и производителях, тесты и сравнительные характеристики, какие лучше использовать, в каких условиях и ситуациях, и пойдёт речь.

Читайте также:  Реле тока в контакторе

Поскольку элементы питания ведут себя очень по-разному при разных токах разряда, я приведу для ориентировки средние токи, потребляемые разными устройствами:

Цифровой фотоаппарат: 0,5-1,5А
Фонарь на лампе накаливания: 0,5-1А
Фонарь на одном мощном светодиоде: 0,04-1А
Фонарь на 5 слабых светодиодах: 0,04-0,1А
Бритва Gillette M3 Power: 0,08A
Детская игрушка: 0,1-0,4А
MP3 плеер: 0,1А
Кварцевые часы: 0.0001А

Если устройство питается от 1.5V батареек, посчитать примерный потребляемый ток (в А) можно, разделив ёмкость используемых батареек (в А), на количество часов непрерывной работы (или суммарное количество часов работы).

Условия проводимых тестов.

Нас интересует, какое время проработает наше устройство от конкретных батареек. Для этого будем сравнивать ёмкость батареек в различных режимах. Ёмкость будем измерять в ампер-часах (Ач). То есть, если ёмкость батарейки 1Ач(1000мАч), то при нагрузке 0,5А она проработает 2 часа, при нагрузке 0,1А – 10 часов.

Все элементы питания при разных нагрузках имеют разную ёмкость. Обусловлено это наличием внутреннего сопротивления, сильно отличающегося для разных производителей и типов. Также ёмкость сильно меняется от температуры.

Поэтому тесты проводились при 23 градС для токов разряда 250мА(0,25А), 750мА, 2500мА, а также для тока 500мА при температуре -15 градС. В тестах участвуют элементы питания типа АА.

Солевые батарейки.

Это самые дешёвые батарейки. 0,1-0,25$/шт. Срок хранения до 3-х лет.

при 2,5А и при -15 солевые батарейки вообще отказались работать.

Щёлочные батарейки. Они же Алкалайн, Алкалин.

Средние по цене, 0,5-0,8$/шт. Срок хранения до 7 лет.

при -15 емкость упала на 90%.

Литиевые батарейки.

Самые дорогие. 2,5-4$/шт. Срок хранения до 15 лет.

Они могут отдать очень большой ток, вплоть до 20 А, поэтому в паспорте к устройству должна быть указана возможность работы от таких элементов. Иначе их лучше не использовать.

Поскольку в тестах принимала участие только одна литиевая батарейка, показаны её характеристики в сравнении с солевой и щёлочной, лидерами в своих категориях. Для 250мА данных не привожу, поскольку они такие же, как для 750.

при -15 емкость упала на 20%.

Выводы по батарейкам:

Солевые батарейки совершенно не пригодны для токов более 100мА и низких температур.

Шелочные(Алкалайн) батарейки оптимальны для токов до 250мА, при больших токах сильно теряют ёмкость. Не пригодны при низких температурах. Малопригодны для фото-видеотехники (она кратковременно потребляет большие токи).

Литиевые – одинаково отлично работают при любых токах. Хорошо работают при морозе. Но, поскольку при малых токах их ёмкость только в 1.5-2 раза выше, чем у щёлочных, а цена выше в 5 раз, то для малых токов их использовать накладно. Для больших токов, как в фото-видеотехнике и мощных фонарях, они оптимальны, и замены им нет (среди батареек).

Аккумуляторы Ni-MH.

Тестировались аккумуляторы с паспортной ёмкостью более 2000мАч. Сейчас их стоимость порядка 3-5$, то есть сравнима с литиевыми батарейками. У Ni-MH аккумуляторов есть существенный недостаток – высокий ток саморазряда. За неделю их заряд падает на 10-20%, за месяц на 30%, за год – в ноль. Поэтому использовать их для слабых токов с длительным по времени разрядом бессмысленно. Но сейчас появилось новое поколение Ni-MH аккумуляторов – так называемые Ready-to-Use. Они имеют низкий ток саморазряда и продаются уже заряженными. За год такие элементы теряют всего 15-30% заряда. В тесте участвуют 3 таких аккумулятора, и выделены внизу в отдельную группу.

при морозе -15 емкость падает на 30%, также аккумуляторы портятся при заряде на морозе.

Условия эксплуатации и хранения:

— не подвергать глубокому разряду (держать заряд на уровне минимум 20%);

— не оставлять на длительное хранение разряженную батарею.

— не подвергать воздействию температур ниже -20°C и повышенных температур;

— хранить и использовать при комнатной температуре.

Аккумуляторы Li-Ion.

Этот тип аккумуляторов тест не проходил. По двум причинам: не существует таких аккумуляторов на напряжение 1.2-1.5В. И существует всего один вид аккумуляторов форм-фактора АА – 14500, с напряжением 3.6В и ёмкостью 900мАч. У Ni-MH — 1.2В при 2700мАч. То есть по соотношению объёма к ёмкости Li-Ion аккумуляторы наравне с современными Ni-MH. По разрядным характеристикам они тоже близки. В мороз Ni-MH работают даже лучше. К тому же они долговечнее, дешевле и их можно заменить обычными батарейками. Производители устройств делают оригинальные, нестандартных форм Li-Ion аккумуляторы, что делает невозможной взаимозаменяемость.

Итоги. Батарейки против аккумуляторов.

По разрядным характеристикам Никель-металлгидридные (Ni-MH) аккумуляторы оказались на равне с литиевыми батарейками. Пока они им уступают только из-за наличия тока саморазряда, но и тут прогресс на месте не стоит. Но, если учесть, что цена их одинакова, а аккумуляторы можно перезаряжать до 1000! раз, то победу можно смело отдать аккумуляторам. Литиевые батарейки оптимальны лишь в трёх случаях: когда аккумуляторы сели и их негде зарядить. Или когда необходимо питать редко использующееся мощное устройство, например фонарь, валяющийся в машине «на всякий случай». И в наружных устройствах с малым потреблением, например заоконный термометр.

Зарядка и эксплуатация Ni-MH аккумуляторов.

Поскольку емкость и количество возможных циклов заряд/разряд сильно зависят от качества заряда, стоит подробно разобраться с этим вопросом.

Методы заряда и, соответственно, типы зарядных устройств можно разделить на четыре группы. При этом во всех случаях мы будем указывать зарядный ток через ёмкость аккумулятора: например, рекомендация заряжать током величиной «0,1С» означает, что аккумулятору ёмкостью 2700 мА*ч в такой схеме соответствует ток 270 мА (0,1*2700 = 270), а аккумулятору ёмкостью 1400 мА*ч – 140 мА.

Медленный заряд током 0,1C

Этот метод основан на том, что современные аккумуляторы легко выдерживают перезаряд (то есть попытку «залить» в них больше энергии, чем аккумулятор может хранить), если зарядный ток не превышает величины 0,1C. Если ток превышает эту величину, аккумулятор при перезаряде может выйти из строя.

Соответственно, слаботочное зарядное устройство не нуждается в каком-либо контроле окончания заряда: ничего страшного в избыточной его продолжительности нет, аккумулятор просто рассеет лишнюю энергию в виде тепла. Соответствующие зарядные устройства дёшевы и весьма широко распространены. Для зарядки аккумулятора достаточно оставить его в таком ЗУ на время не менее 1,6*C/I, где C – ёмкость аккумулятора, I – зарядный ток. Скажем, если мы берём ЗУ с током 200 мА, то аккумулятор ёмкостью 2700 мА*ч гарантированно зарядится за 1,6*2700/200 = 21 час 36 минут. Почти сутки… в общем, главный недостаток таких ЗУ очевиден – время зарядки зачастую превышает разумные величины.

Тем не менее, если вы никуда не торопитесь, такое зарядное устройство вполне имеет право на жизнь. Главное – если вы используете аккумуляторы малой ёмкости в паре с современным ЗУ, проверьте, чтобы ток зарядки (а он обязательно должен быть указан в характеристиках ЗУ) не превышал 0,1C. Также стоит учесть, что медленный заряд способствует проявлению у аккумуляторов эффекта памяти.

Заряд током 0,2…0,5С без контроля окончания заряда

Подобные зарядные устройства хоть и редко, но всё же встречаются – в основном среди дешёвой китайской продукции. При токе 0,2…0,5С они либо не имеют контроля окончания заряда вообще, либо имеют только встроенный таймер, выключающий аккумуляторы через заданное время.

Использовать подобные ЗУ категорически не рекомендуется: так как контроля окончания заряда нет, то в большинстве случаев аккумулятор окажется недо- или перезаряжен, что существенно сократит срок его жизни. Сэкономив на зарядном устройстве, вы потеряете деньги на аккумуляторах.

Заряд током до 1C с контролем окончания заряда

Этот класс зарядных устройств – наиболее универсален для повседневного применения: с одной стороны, они обеспечивают зарядку аккумуляторов за разумное время (от полутора до четырёх-шести часов, в зависимости от конкретного ЗУ и аккумуляторов), с другой, чётко контролируют окончание заряда в автоматическом режиме.

Читайте также:  Прибор для измерения напряженности электрического тока 1

Наиболее часто встречающийся метод контроля окончания заряда – по спаду напряжения, обычно он называется «метод dV/dt», «метод отрицательной дельты» или «метод -dV». Заключается он в том, что в течение всей зарядки напряжение на аккумуляторе медленно растёт – но когда аккумулятор достигает полной ёмкости, оно кратковременно снижается. Это изменение очень небольшое, однако его вполне можно обнаружить – и, обнаружив, прекратить заряд.

Многие производители зарядных устройств также указывают в их характеристиках «микропроцессорный контроль» – но, по сути, это то же самое, что и контроль по отрицательной дельте: если он есть, то он осуществляется специализированным микропроцессором.

Впрочем, контроль по напряжению – не единственный доступный: в момент накопления аккумулятором полной ёмкости в нём резко возрастает температура корпуса, что также можно контролировать. На практике, впрочем, технически проще всего измерять напряжение, поэтому другие методы контроля окончания заряда встречаются редко.

Также многие качественные зарядные устройства имеют два защитных механизма: контроль температуры аккумуляторов и встроенный таймер. Первый останавливает зарядку, если температура превысит допустимый предел, второй – если за разумное время остановка заряда по отрицательной дельте не сработала. И то, и другое может случиться, если мы используем старые или попросту некачественные аккумуляторы.

Закончив зарядку аккумуляторов большим током, наиболее «разумные» зарядные устройства ещё некоторое время дозаряжают их малым током (менее 0,1C) – это позволяет получить от аккумуляторов максимальную возможную ёмкость. Индикатор заряда на устройстве при этом обычно гаснет, показывая, что основная стадия зарядки закончена.

Проблем с подобными устройствами бывает две. Во-первых, не все из них способны с достаточной точностью «поймать» момент спада напряжения – но, увы, это проверить можно только опытным путём. Во-вторых, хотя такие устройства обычно рассчитаны на 2 или 4 аккумулятора, большинство из них не умеют заряжать эти аккумуляторы независимо друг от друга.

Например, если в инструкции к ЗУ указано, что оно может заряжать только 2 или 4 аккумулятора одновременно (но не 1 и не 3) – это значит, что оно имеет лишь два независимых канала заряда. Каждый из каналов обеспечивает напряжение около 3 В, а аккумуляторы включаются в них попарно-последовательно. Следствия из этого два. Очевидное заключается в том, что вы не сможете зарядить в подобном ЗУ один аккумулятор. Менее очевидное – в том, что контроль окончания заряда также осуществляется только для пары аккумуляторов. Если вы используете не слишком новые аккумуляторы, то просто из-за технологического разброса одни из них состарятся немного раньше других – и если в паре попались два аккумулятора с разной степенью старения, то такое ЗУ либо недозарядит один из них, либо перезарядит второй. Разумеется, это будет только усугублять темпы старения худшего из пары.

«Правильное» зарядное устройство должно позволять заряжать произвольное количество аккумуляторов – один, два, три или четыре – а в идеале, ещё и иметь для каждого из них отдельный индикатор окончания зарядки (в противном случае индикатор гаснет, когда зарядится последний из аккумуляторов). Только в таком случае у вас будут некоторые гарантии того, что каждый из аккумуляторов будет заряжен до полной ёмкости независимо от состояния остальных аккумуляторов. Отдельные индикаторы заряда позволяют также отлавливать преждевременно вышедшие из строя аккумуляторы: если из четырёх элементов, использовавшихся вместе, один заряжается значительно дольше или значительно быстрее остальных, значит, именно он и будет слабым звеном всей батареи.

Многоканальные зарядные устройства имеют и ещё одну приятную особенность: во многих из них при зарядке половинного количества аккумуляторов можно выбирать скорость заряда. Скажем, ЗУ Sanyo NC-MQR02, рассчитанное на четыре аккумулятора формата AA, при зарядке одного или двух аккумуляторов позволяет выбирать зарядный ток между 1275 мА (при установке аккумуляторов в крайние слоты) и 565 мА (при установке их в центральные слоты). При установке трёх или четырёх аккумуляторов они заряжаются током 565 мА.

Кроме удобства в эксплуатации, ЗУ данного типа являются и наиболее «полезными» для аккумуляторов: заряд током средней величины с контролем окончания заряда по отрицательной дельте является оптимальным с точки зрения увеличения срока жизни аккумуляторов.

Отдельный подкласс быстрых зарядных устройств – ЗУ с предварительным разрядом аккумуляторов. Сделано это для борьбы с эффектом памяти и может быть весьма полезно для Ni-Cd аккумуляторов: ЗУ проследит, чтобы сначала они были полностью разряжены, и только после этого начнёт заряд. Для современных Ni-MH такая тренировка уже не является обязательной.

Заряд током более 1C с контролем окончания заряда

И, наконец, последний метод – сверхбыстрый заряд, продолжительностью от 15 минут до часа, с контролем заряда опять же по отрицательной дельте напряжения. Достоинств у таких ЗУ два: во-первых, вы почти моментально получаете заряженные аккумуляторы, во-вторых, сверхбыстрый заряд позволяет в большой степени избежать эффекта памяти.

Есть, впрочем, и минусы. Во-первых, не все аккумуляторы хорошо выдерживают быстрый заряд: недостаточно качественные модели, имеющие большое внутреннее сопротивление, могут в таком режиме перегреваться вплоть до выхода из строя. Во-вторых, очень быстрый (15-минутный) заряд может негативно влиять на срок жизни аккумуляторов – опять же, из-за их избыточного нагрева при заряде. В-третьих, такой заряд «наполняет» аккумулятор лишь до 90 % ёмкости – после чего для достижения 100 % ёмкости требуется дополнительный дозаряд малым током (впрочем, большинство быстрых ЗУ его осуществляют).

Тем не менее, если вы нуждаетесь в сверхбыстрой зарядке аккумуляторов, приобретение «15-минутного» или «получасового» ЗУ будет хорошим выходом. Разумеется, использовать с ним надо только качественные аккумуляторы крупных производителей, а также своевременно исключать из батарей отслужившие своё экземпляры.

Если же вас устраивает продолжительность заряда в несколько часов, то оптимальными по-прежнему остаются описанные в предыдущем разделе ЗУ с зарядным током менее 1C и контролем окончания заряда по отрицательной дельте напряжения.

Отдельный вопрос – совместимость зарядных устройств с разными типами аккумуляторов. ЗУ для Ni-MH и Ni-Cd, как правило, универсальны: любое из них может заряжать аккумуляторы каждого из этих двух типов. ЗУ для Ni-MH аккумуляторов с окончанием заряда по отрицательной дельте напряжения, даже если для них это не заявлено прямо, могут работать и с Ni-Cd аккумуляторами, а вот наоборот – увы. Дело здесь в том, что скачок напряжения, та самая отрицательная дельта, у Ni-MH заметно меньше, чем у Ni-Cd, поэтому не всякое ЗУ, настроенное на работу с Ni-Cd, сможет «почувствовать» этот скачок на Ni-MH.

Для других же типов аккумуляторов, включая литий-ионные и свинцово-кислотные, эти ЗУ непригодны в принципе – такие аккумуляторы имеют совершенно другую схему заряда.

Здравствуйте !На производстве есть 2-скоростная кран-балка «Lemmens», ПДУ которой работает только от LR-6 ( АА ) при заряде от 1,2 В до 1,5 В. Очень капризное приемо-передаточное устройство в плане энергоснабжения от батарей. В теплые время года замена производится 1 раз в месяц, в холодное время года (зима) — 1 раз в полторы недели.В связи с этим я прошу у вас совета : из-за жажды перехода от алкалайновых батареек к NiMH ( или другим аккумуляторным батарейкам форм-фактора АА ) какие могут быть использованы аккумуляторные батарейки в качестве замены алкалайновых, учитывая «капризность» ПДУ к энергоснабжению ?Заранее спасибо.

Илья, попробуйте аккумуляторы Nimh, 1,2v у них уже когда разряжены на 70%. Скорее всего подойдут. Никакие другие не подойдут.

Андрей, спасибо за ответ !Буду испытывать NiMH. Но я наткнулся еще на литий-железо-фосфорные, у которых вообще инновационная составляющая принципа сбережения и расхода заряда.

Спасибо за ответ! Какие размеры имеются ввиду?

Источник