Меню

Асимметрия тока двигателя это

Перекос фаз: рассматриваем вопрос

Перекос фаз

В однофазном режиме значение напряжения должно составлять 220 вольт, а при трёхфазном — 380 вольт. Но в реальности эти числа практически не встречаются. Поэтому проверив значение напряжения в розетке, можно наглядно убедиться в существовании перекоса фаз. Чтобы приблизить значение напряжения к стандартным значениям, необходимо понимать, что подразумевается под словосочетанием «перекос фаз», его причинами и возможными способами устранения.

Что это такое, и как его исправить?

Что такое перекос фаз

Что такое перекос фаз: Перекос фаз – это состояние электрической сети, при котором одна или две из трех фаз нагружены сильнее, чем остальные. При этом наблюдается значительное снижение мощности трехфазных электрических приборов, преимущественно двигателей и трансформаторов. Но это, что касается промышленных сетей.

В бытовых условиях перекос наблюдается более выражено, при этом может даже возникать риск выхода из строя электроприборов с преобладающей реактивной нагрузкой. К таким относятся компрессоры холодильников, вентиляторы, приборы с простыми силовыми трансформаторными источниками питания. То все то, что не имеет четкой гальванической развязки с сетью и схему защиты от перенапряжений и просадок.

Следует отметить, что существуют разные виды перекоса в электросети. В зависимости от типа проблемы, выбирается наиболее оптимальный способ ее решения. Остановимся на наиболее распространенной и, в то же время, самой простой ситуации – перекос фаз, вызванный неравномерным распределением внутрисетевой нагрузки.

Большинство сетей являются трехфазными. Если в них нагрузка распределена неравномерно, в следствии чего одна или две фазы перегружены, а третья (или же две) недогружена, происходит перекос. На практике это может выглядеть следующим образом: подавляющее большинство однофазных нагрузок питаются от одной фазы, тогда как остальные могут быть вовсе не задействованы либо использоваться по минимуму.

Наиболее часто встречаются ситуации неисправности, в которых при подключении электропитания к трансформаторам не учитывается их потребляемая мощность. Таким образом, бывает, что физически фазы имеют приблизительно одинаковое количество подключений, но вот потребляемая этими подключениями мощность существенно отличается.

Сосредоточие на одной из фаз приборов с высоким потреблением электричества неизбежно вызывает неравномерную нагрузку между фазами. То же самое можно сказать и об общественных и промышленных объектах – во всех случаях очень важно следить за равномерным распределением нагрузки между имеющимися фазами, это позволит предотвратить возникновение сложностей.

Суть понятия

Фаза — это электрическая цепь с некоторым значением синусоидальной электродвижущей силы.

Суть понятия Трёхфазная цепь, в свою очередь, состоит из трёх электрических цепей, которые владеют синусоидальной электродвижущей силой с одинаковой амплитудой и частотой тока.

Трёхфазная сеть состоит из трёх синусоидальных токов или напряжений, которые имеют одну частоту и сдвинуты по фазе на угол, равный 120 градусам.

Если потребителей электрической энергии подключить к фазам сети неравномерно — например, большинство сосредоточить в одной, а в двух других их будет гораздо меньше — это приведёт к асимметрии напряжения. При этом в трёхфазных четырёхпроводных сетях несимметричность параметров будет менее заметна, так как нулевой провод выравнивает неравномерность напряжения по фазам.

Так как на практике добиться идеальной симметричности невозможно, некоторое отличие значений напряжений является допустимым. Значения токов в каждой из фаз могут отличаться не более, нежели в три раза (а именно 30%) в распределительных щитах. Во вводных панелях распределительных устройств разница параметров должна отличаться не более чем в 6,5 раз (15%).

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения ГОСТ 13109-97

Нормы несимметрии напряжения ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

От чего зависит симметрия напряжений

Симметрия напряжения системы между распредсетями и потребителями электроэнергии зависит от:

  • импеданса силовой цепи;
  • напряжений на выводах генератора;
  • тока, протекающего через приемники, сети передачи и распределения (распределение мощности в системе).

Напряжения на выходных контактах генераторов, как правило, симметричны из-за конструктивных особенностей и эксплуатационных характеристик синхронных машин, применяемых для выработки электроэнергии на электрических станциях. В случаях задействования асинхронных агрегатов, например, в ветряных установках, также получается симметричное трехфазное напряжение.

В локальных сетях генерации и распределения энергии, созданных со стороны потребителя, могут наблюдаться отличающиеся процессы. Многие из этих небольших блоков, например, фотоэлектрические элементы, подключенные к низковольтной сети силовой электроникой, имеют относительно высокий импеданс, что вызывает усиливающийся дисбаланс напряжения.

Сопротивление части энергосистемы неодинаково для отдельных фаз. Геометрическое расположение линий с асимметрией относительно земли вызывает различия и в их электрических параметрах. В целом, эти отклонения очень малы и могут быть незначительными при использовании превентивных мер.

Асимметрия на стороне нагрузки

Наиболее распространенными являются случаи перекоса фаз на стороне нагрузки. Приемниками, вызывающими асимметрию в сети, являются:

  • блоки однофазных нагрузок, подключенных к трехфазной, например, индукционные печи, сварочный трансформатор;
  • трехфазные приемники, работающие с периодической асимметрией (дуговые печи);
  • множество неравномерно распределенных однофазных нагрузок, включенных между фазными и нейтральными проводниками, например, у муниципальных потребителей в низковольтных сетях.

Асимметрия нагрузок по фазам

Асимметрия нагрузок по фазам

Важно! Неисправность системы также является причиной перекоса фаз. Распространенными случаями являются замыкания на землю, неисправности проводов. Такие дефекты вызывают падения напряжения в одной-двух фазах, что может способствовать перенапряжению в других фазах.

Последствия перекоса фаз:

  1. Снижение эксплуатационного срока электрооборудования;
  2. Увеличение энергопотребления;
  3. Нарушения в работе двигателей и генераторов, снижение их мощности;
  4. Возможность повреждения электроприборов и устройств.

Причины возникновения

Нарушение симметричности напряжений в трёхфазной цепи — нежелательная ситуация. Поэтому для того чтобы её устранить, необходимо понять, почему она может возникнуть. Причины перекоса фаз в трёхфазной сети сводятся к основным трём обстоятельствам:

  • неравномерное группирование потребителей;
  • отсоединение нулевого провода;
  • замыкание фазного провода на землю.

Причины возникновения перекоса фаз

При неправильном распределении потребителей в трёхфазной трёхпроводной цепи, напряжение на них будет существенно отличаться. Потребители, обладающие наименьшим сопротивлением, окажутся под повышенным напряжением. Токоприёмники с большим значением сопротивления будут иметь напряжение, не достигающее оптимального значения.

Неравномерное распределение нагрузки оказывает влияние как на источники и приёмники электрической электроэнергии, так и на потребителей. Для электроприёмников перекос грозит снижением срока службы их работы.

На источниках электроэнергии неравномерное распределение напряжения по фазам скажется в виде увеличенного потребления энергии, повреждений изоляции, износа, сокращение срока службы. При использовании автономного дизельного генератора увеличится расход топлива и охлаждающего вещества.

Снижение качества электрической изоляции для потребителей чревато такими последствиями:

  • повреждение, поломка бытовых приборов или электрической проводки;
  • возникновение пожара;
  • получение травм;
  • выход из строя электроприборов.

Опасность и последствия перекоса

Чем опасен перекос фаз в электросети? Условно негативные моменты можно разделить на три группы:

  1. Вред для электрических приемников (приборов, оборудования): их повреждение, уменьшение срока использования.
  2. Вред для источников электроэнергии: механические повреждения, увеличение потребления электроэнергии, уменьшения срока эксплуатации источника.
  3. Последствия для потребителей: увеличение расходов на электричество, необходимость ремонта электрооборудования, возможное получение травм.

Из-за того что электроэнергия распределяется по проводникам неравномерно, в электросети значительно увеличивается потребление электричества. Трехфазная сеть, у которой образовалась несимметрия, может снизить срок эксплуатации электроприборов и бытовой техники.

Последствия несимметрии

Если это автономная электростанция, то расход масла и топлива при такой ситуации значительно увеличивается, а генератор может сломаться. В случае, когда одна фаза получает больше напряжения, чем две другие, электробезопасность нарушается. А это может привести к различным электротравмам, а также к возгоранию электрических бытовых приборов и самой проводки.

Читайте также:  Норма утечки тока в автомобиле мультиметром допустимая

Как видно последствия такого явления значительные и их решение и устранение может привести к большим материальным затратам. Для того чтобы избежать подобной неприятной ситуации, следует заранее принимать определенные меры.

Видео

Защитные методы

Существует несколько способов защиты низковольтных потребительских сетей от перекоса фазных напряжений. Первым способом является расчет нагрузочных токов и конструктивное планирование их с целью обеспечения равномерности распределения мощностей.

Нагрузки со стороны низкого напряжения, такие как бытовые электроприборы или осветительные сети, обычно однофазные, что затрудняет гарантию симметрии. При планировании электрической сети, содержащей такие типы электроприемников, отдельные схемы должны быть равномерно распределены между тремя фазами, например, одна фаза на этаж. Мерой по защите от перекоса фаз может служить и изменение рабочих параметров нагрузок в существующих сетях.

Важно! Несмотря на распределение, баланс нагрузок в центральном трансформаторе варьируется из-за изменения статистических циклов работы оборудования.

Другие защитные методы:

  1. Применение релейной аппаратуры, фиксирующей напряжение и автоматически срабатывающей на отключение при появлении асимметрии выше заданного показателя. При выравнивании значений напряжения подается сигнал на обратное включение;

Реле контроля напряжения

Реле контроля напряжения

  1. Переустройство схемы фазных соединений при значительных изменениях характера нагрузки;
  2. Применение стабилизаторов напряжения, трансформаторов для симметрирования нагрузочных токов и другого оборудования.

Стабилизатор

Бытовое применение стабилизаторов предназначено для обеспечения неизменных показателей напряжения одной питающей фазы. Но они не влияют на перекос фаз в трехфазной сети. В промышленности применяют трехфазные устройства.

Стабилизатор напряжения

Основная функция аппарата – обеспечить выходное напряжение, питающее подсоединенные к нему устройства. Большинство стабилизаторов имеет электронные фильтры, целью которых является подавление шума и пикового напряжения. Стабилизатор защищает как от пониженного напряжения, так и от перенапряжения.

Симметрирующий трансформатор

Эти трехфазные устройства подключаются для питания потребительских электросетей и обладают рядом полезных функций:

  • симметрируют нагрузку в питающей сети, независимо от фазных токов электроприемников;
  • при подсоединении электрооборудования с мощным потреблением сглаживают просадку напряжения;
  • уменьшают потери электроэнергии.

Симметрирующие трансформаторы возможно использовать, как для питания трехфазной нагрузки, так и для создания однофазных схемных конфигураций. В случае наличия трехфазной системы без нейтрального проводника устройство преобразует ее в четырехпроводную систему с N-проводом.

Альтернативные способы устранения фазных перекосов – использование конденсаторных батарей с треугольным соединением, включение специальных трансформаторов с дополнительной нагрузкой в виде конденсатора и индуктивности и другие.

Источник



Асимметрия тока / напряжения

Симметрия трехфазной системы означает, что напряжение и ток в трех фазовых проводах равны друг другу с периодом 120°.

Асимметрия возникает, если нарушено одно из этих условий или оба условия одновременно. В большинстве случаев асимметрию вызывают нагрузки.

В сетях высокого и среднего напряжения используются, как правило, трехфазные и симметричные нагрузки, хотя и в них могут присутствовать большие одно- или двухфазные нагрузки (например, индукционные печи с частотой питающей сети, печи сопротивления и т. п.). К низковольтной сети часто подключают однофазные электрические нагрузки (например, персональные компьютеры, бытовую радиоэлектронику, осветительные приборы и т.п.). и соответствующие контуры токов нагрузки должны максимально равномерно распределяться по трем фазовым проводам в рамках электрической разводки. В зависимости от уравновешивания однофазных нагрузок сеть работает в большей или меньшей степени симметрично.

Симметрия напряжения Janitza

Асимметрия тока и напряжения

Уровень совместимости для асимметрии, вызванной всеми потребителями, при стационарном режиме напряжения не должен превышать 2 %. Для отдельных потребляющих установок максимальная асимметрия составляет 0,7 % при усреднении за 10 минут.

Асимметрия тока/напряжения на векторной диаграмме

Рис.3 Асимметрия на векторной диаграмме

Источник

Явление перекоса фаз в трехфазной сети

Трехфазная сеть в классическом варианте состоит из четырех проводников — трех фазных и одного нулевого или нейтрального провода. В процессе эксплуатации возникает перекос фаз в трехфазной сети или асимметрия напряжений между ними.

Причины

Трехфазная сеть состоит из двух частей — высоковольтной и низковольтной. Между ними устанавливается обычно подстанция с понижающим трансформатором. В высоковольтной части фазы загружены равномерно, перекос возникает в низковольтной части и связан с особенностями распределения нагрузки между фазными шинами.

Существует два различных вида перекоса фаз:

  • модули векторов напряжения различны по величине, угол между ними одинаковый (120°);
  • значительно реже возникает на практике, когда кроме различных модулей напряжений, углы между ними также различны.

На диаграмме напряжений представлены параметры идеально работающей трехфазной цепи и их изменение при возникновении перекоса.

Схема

Падение/увеличение фазного напряжения согласно закона Ома возникает при увеличении/уменьшении сопротивления (нагрузки). Поэтому одной из причин возникновения перекоса будет разное по количеству и мощности число электрических приборов «сидящих» на каждой отдельной фазе.

В идеально работающих трехфазных цепях ток через нейтральный провод равен нулю. В случае возникновения перекоса на нем появляются токи, которые компенсируют асимметрию напряжений. Вот почему обрыв («отгорание») нулевого провода служит еще одной из причин появления перекоса.

Изображение с результатом «отгорания» нейтрального провода.

результат «отгорания» нейтрального провода

Короткое замыкание одной из фаз на землю, которая приводит к работе сети в режиме перекоса, редко встречается среди причин возникновения неравенства напряжений по фазам. В некоторых случаях допускается такая аварийная эксплуатация при необходимости обеспечения электроэнергией пользователей.

Признаки нестабильной работы электрических приборов, вызванные перекосом фаз

Независимо от причин перекоса необходимо знать и выявлять его признаки. В квартире или частном доме с электрическими приборами могут происходить следующие действия от несимметричности напряжения и не только:

  • осветительные приборы типа ламп дневного света или других типов работающих по энергосберегающей технологии начнут мерцать;
  • лампочки накаливания будут ярко гореть или наоборот тускнеть;
  • бытовые приборы (утюг, телевизор и другие) перестанут включаться;
  • выключатель стал на ощупь теплым;
  • в розетке появились искры, послышались треск и щелчки;
  • в щитке появились щелчки, срабатывают защитные автоматы.

При обнаружении вышеперечисленных признаков следует отключить все приборы из сети, лишь затем приступать к поиску причин. При отсутствии познаний в области электротехники лучше обратитесь к специалисту.

Негативные последствия перекоса

Работа трехфазной сети с перекосом фаз приводит к следующим отрицательным действиям.

  • Перекос вызывает рост уравнивающих токов, тем самым увеличивается расход электроэнергии на потребление оборудованием.
  • Отклонение фазного напряжения, превышающее номинальное значение при отсутствии автоматических выключателей может вывести бытовое или промышленное электрооборудование из строя.Отклонение фазного напряжения
  • Отклонение напряжения в меньшую сторону от нормального создаст для оборудования следующие проблемы: увеличится нагрузка на электромоторы, их мощность падает, для запуска необходимы еще более высокие пусковые токи, электроника будет работать со сбоями, некоторые устройства просто не будут включаться.
  • Эксплуатационный срок работы оборудования в режиме перекоса фаз будет меньшим. Ресурсные показатели не будут соответствовать паспортным данным.
  • Перекос фаз, вызванный обрывом нейтрального провода может резко повысить опасность получения электрического удара. Шина заземляющего устройства на трансформаторной подстанции теряет связь с местным контуром заземления, тем самым оставляя пользователя без защиты.схема

Нормы на перекос фаз

На практике не существует работающих трехфазных сетей, в которых отсутствует перекос фаз. Это связано с особенностями электрического оборудования, принцип работы которых с точки зрения экономической целесообразности исключает симметричное исполнение (сварочные аппараты, индукционные печи, потребители бытовой сферы). Кроме этого, например, в многоквартирных домах появляется вероятностный фактор, связанный с отсутствием какой — либо системы в подключении электрической бытовой техники. Наличие нескольких импульсных источников питания, например для компьютеров, делает их поведение непредсказуемым в трехфазной сети.

Помимо равномерного распределения нагрузки по фазам проектировщикам следует учитывать вышеперечисленные факторы для поставки пользователям определенного качества электроэнергии. В некоторых случаях трудноразрешимую задачу позволяют решить регламенты на допустимый перекос фаз, обозначенные в следующих нормативных документах: ПУЭ (Правила Устройства Энергоустановок), ГОСТ 31098 – 97 определяющим нормы качества электроэнергии и сводом правил СП31-110.

Параметры, превышение которых недопустимо:

  • максимальное отклонение фазных токов:
    • для измеренных во вводном распределительном устройстве (ВРУ) — 15 %,
    • для измеренных в распределительном щите (РЩ) — 30 %.
  • допустимые значения коэффициентов несимметричности напряжений:
    • по обратной последовательности — 2 %,
    • по нулевой последовательности — 4 %.
Читайте также:  Как выбирается положительное направление тока

Вышеуказанные нормативы должны соблюдаться на всех возможных режимах работы трехфазных электрических сетей. Исключения составляют режимы, вызванные Форс — Мажорными обстоятельствами.

Как определить перекос фаз

Самым простым и поэтому наиболее применяемым является контроль по максимальному отклонению фазных токов. С помощью токовых клещей измеряется сила тока при максимально полной нагрузке на каждом проводнике отдельной фазы в ВРУ или РЩ. Размеры клещей достаточно компактны, чтобы подлезть к любому проводнику, находящемуся в стесненных условиях среди других проводников.

определение перекоса фаз

После того как определите и зафиксируете показания следует выполнить легкий сравнительный расчет на отклонения фазных токов. Показания должны соответствовать нормам.

Устранение перекоса фаз

Если результаты замеров выявят наличие несимметричности напряжений фаз, следует принять меры чтобы устранить перекос. Защита от перекоса фаз в трехфазной сети выполняется следующими способами.

  • На этапе проектирования следует равномерно распределить нагрузку по фазам. Приборы, имеющие однофазное питание не должны сосредотачиваться на одном проводнике, оставляя незагруженными другие. Кроме количественного распределения по фазам следует учитывать мощностные характеристики электрических устройств.
  • В ранее введенных в эксплуатацию трехфазных сетях, где каждая фаза не рассчитывалась на перегрузку при возможности следует поменять схему потребления энергии. В условиях кризисной ситуации необходимо поменять мощность потребителя.
  • Недостаточно эффективный способ обеспечить необходимое напряжение на каждой фазе трехфазной цепи это применение стабилизаторов напряжения.стабилизатор напряженияТрехфазные стабилизаторы напряжения конструктивно включают в себя однофазные, которые реагируют на изменение параметров конкретно на своей фазе. Поднятие, опускание напряжения вызывает ответную реакцию на других. Это может в некоторых случаях вызвать вторичный перекос с уже другими параметрами. Невозможность 100 % гарантии защиты от последствий перекоса фаз основной недостаток стабилизаторов напряжения.
  • Использование в трехфазной системе питания симметрирующего трансформатора позволяет выравнивать напряжение не только на отдельной конкретной фазе, а обеспечивать симметричность напряжений на всех трех согласно требуемых норм.трехфазная система питанияКроме этого прибор сглаживает напряжение переходного процесса при подключении в сеть мощных асинхронных двигателей, дросселей, трансформаторов и другого подобного оборудования.Устройство способно устранить фазный перекос в большом диапазоне значений напряжения.
  • Стабилизатор напряжения, симметрирующий трансформатор это дорогие устройства, не всегда есть возможность их применить. Существует достаточно простой и эффективный способ не допустить критического перекоса фаз — применение специального реле.

Реле напряжения рнпп-311м

Если параметры трехфазной сети выходят за пределы установленного диапазона реле отключит источник питания. Когда параметры восстановятся до приемлемых значений, реле самостоятельно возобновит подачу питания.

Ответственное отношение к равномерному распределению нагрузки по фазам не гарантирует избежать перекос. От обрыва нулевого провода никто не застрахован, соединительный контакт может от перегрева «отгореть» в любой момент. Поэтому к рекомендациям по оборудованию трехфазной сети приборами защиты от перекоса следует прислушаться. Единовременные затраты сохранят работоспособность более дорогому электрическому оборудованию, работающему от трехфазной сети.

Где купить

Максимально быстро приобрести устройства стабилизации можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:

Видно по теме

Источник

13 распространенных причин неисправности электродвигателей

В промышленности электродвигатели используются повсеместно, они становятся технически все сложнее, что часто может осложнять поддержание их работы на пике эффективности. Важно помнить, что причины неисправностей электродвигателей и приводов не ограничиваются одной областью специализации: они могут быть как механического, так и электрического характера. И только нужные знания разделяют дорогостоящий простой и продление срока службы.

Наиболее частые неисправности электродвигателей — повреждения изоляции обмоток и износ подшипников, возникающие по множеству разных причин. Эта статья посвящена заблаговременному обнаружению 13 наиболее распространенных причин повреждений изоляции и выхода из строя подшипников.

Качество электроэнергии

Частотно-регулируемые приводы

Механические причины

Факторы, связанные с неправильной установкой

Наиболее частые неисправности электродвигателей

Качество электроэнергии

1. Переходное напряжение

1 причина неисправности электродвигателей - Переходное напряжение

Переходные напряжения могут происходить из множества источников как на самом предприятии, так и за его пределами. Включение и выключение нагрузки поблизости, батареи конденсаторов коррекции коэффициента мощности или даже погодные явления — все это может создавать переходные напряжения в распределительных сетях. Эти процессы с произвольной амплитудой и частотой могут разрушать или повреждать изоляцию обмоток электродвигателей.

Обнаружение источника переходных процессов может оказаться сложной задачей, поскольку они происходят нерегулярно, а их последствия могут проявляться по-разному. Например, переходные процессы могут проявиться в контрольных кабелях и необязательно нанесут вред непосредственно оборудованию, но они могут нарушить его работу.

Воздействие: повреждение изоляции обмотки электродвигателя приводит к раннему возникновению неисправностей и незапланированному простою.

Критичность: высокая.

2. Асимметрия напряжений

2 причина неисправности электродвигателей - Асимметрия напряжений

Трехфазные распределительные сети часто питают однофазные нагрузки. Асимметрия сопротивления или нагрузки может быть причиной асимметрии напряжений на всех трех фазах. Возможные неисправности могут находиться в проводке электродвигателя, на клеммах электродвигателя, а также в самих обмотках. Эта асимметрия может вызывать перегрузки в каждой фазной цепи трехфазной сети. Одним словом, напряжение на всех трех фазах всегда должно быть одинаковым.

Воздействие: асимметрия является причиной сверхтоков в одной или нескольких фазах, которые вызывают перегрев и повреждение изоляции.

Критичность: средняя.

3. Гармонические искажения

3 причина неисправности электродвигателей - Гармонические искажения

Проще говоря, гармоники — это любые нежелательные дополнительные высокочастотные колебания напряжения или тока, поступающие на обмотки электродвигателя. Эта дополнительная энергия не используется для вращения вала электродвигателя, а циркулирует в обмотках и в конечном итоге приводит к потере внутренней энергии. Эти потери рассеиваются в виде тепла, которое со временем ухудшает изолирующие свойства обмоток. Некоторые гармонические искажения формы тока являются нормой для систем, питающих электронную нагрузку. Гармонические искажения можно измерить с помощью анализатора качества электроэнергии, проконтролировав величины токов и температуры на трансформаторах и убедившись, что они не перегружены. Для каждой гармоники утвержден приемлемый уровень искажений, который регламентируется стандартом IEEE 519-1992.

Воздействие: снижение эффективности электродвигателя приводит к дополнительным расходам и увеличению рабочей температуры.

Критичность: средняя.

Частотно-регулируемые приводы

4. Отражения на выходных ШИМ-сигналах привода

4 причина неисправности электродвигателей - Отражения на выходных ШИМ-сигналах привода

Частотно-регулируемые приводы используют широтно-импульсную модуляцию (ШИМ) для управления выходным напряжением и частотой питания электродвигателя. Отражения возникают из-за несогласованности полных сопротивлений источника и нагрузки. Несогласованность полных сопротивлений может произойти в результате неправильной установки, неправильного выбора компонентов или ухудшения состояния оборудования со временем. Пик отражения в цепи электропривода может достигать уровня напряжения шины постоянного тока.

Воздействие: повреждение изоляции обмотки электродвигателя приводит к незапланированному простою.

Прибор для измерения и диагностики: Fluke 190-204 ScopeMeter® , 4-канальный портативный осциллограф с высокой частотой выборки.

Критичность: высокая.

5. Среднеквадратичное отклонение тока

5 причина неисправности электродвигателей - Среднеквадратичное отклонение тока

По своей сути среднеквадратичное отклонение тока — это паразитные токи, циркулирующие в системе. Среднеквадратичное отклонение тока образуется как результат частоты сигнала, уровня напряжения, емкости и индуктивности в проводниках. Эти циркулирующие токи могут выйти через системы защитного заземления, вызывая ложное размыкание или, в некоторых случаях, нагревание обмотки. Среднеквадратичное отклонение тока можно обнаружить в проводке электродвигателя, это сумма тока с трех фаз в любой момент времени. В идеальной ситуации сумма этих трех токов должна равняться нулю. Иными словами, обратный ток от привода будет равняться току, поступающему на привод. Среднеквадратичное отклонение тока можно также представить в виде асимметричных сигналов в нескольких проводниках, имеющих емкостную связь с заземляющим проводником.

Воздействие: произвольное размыкание цепи из-за прохождения тока по защитному заземлению.

Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke 190-204 ScopeMeter с широкополосными (10 кГц) токовыми клещами (Fluke i400S или аналогичные).

Критичность: низкая.

6. Рабочие перегрузки

6 причина неисправности электродвигателей - Рабочие перегрузки

Перегрузка электродвигателя возникает, когда он работает под повышенной нагрузкой. Основными признаками перегрузки электродвигателя являются чрезмерное потребление тока, недостаточный крутящий момент и перегрев. Избыточное тепловыделение электродвигателя является главной причиной его неисправности. При перегрузке электродвигателя его отдельные компоненты — включая подшипники, обмотки и другие части — могут работать нормально, но электродвигатель будет перегреваться. Поэтому начинать поиски неисправности следует с проверки именно перегруженности электродвигателя. Поскольку 30% всех неисправностей электродвигателей происходят именно из-за их перегруженности, важно понимать, как измерять и определять перегрузку электродвигателя.

Читайте также:  Электродвигатель постоянного тока с короткозамкнутым ротором

Воздействие: преждевременный износ электрических и механических компонентов электродвигателя, ведущий к необратимому выходу из строя.

Инструмент для измерения и диагностики: цифровой мультиметр Fluke 289.

Критичность: высокая.

7. Нарушение центрирования

7 причина неисправности электродвигателей - Нарушение центрирования

Нарушение центрирования возникает при неправильном выравнивании вала привода относительно нагрузки или смещении передачи, которая их соединяет. Многие специалисты считают, что гибкое соединение устраняет и компенсирует смещение, тем не менее, гибкое соединение защищает от смещения только саму передачу. Даже с гибким соединением не отцентрированный вал будет передавать повреждающие циклические усилия по своей длине на электродвигатель, вызывая повышенный износ электродвигателя и увеличивая фактическую механическую нагрузку. Кроме того, нарушение центрирования может быть причиной вибрации валов как нагрузки, так и электропривода. Существует несколько типов нарушения центрирования:

  • Угловое смещение: оси валов пересекаются, но не параллельны;
  • Параллельное смещение: оси валов параллельны, но не соосны;
  • Сложное смещение: сочетание углового и параллельного смещений. (Примечание: практически всегда нарушение центрирования является сложным, но практикующие специалисты рассматривают их как сумму составляющих смещений, поскольку устранять нарушение центрирования проще по отдельности — угловую и параллельную составляющие).

Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности.

Критичность: высокая.

8. Дисбаланс вала

8 причина неисправности электродвигателей - Дисбаланс вала

Дисбаланс — это состояние вращающейся детали, когда центр масс расположен не на оси вращения. Иными словами, когда центр тяжести находится где-то на роторе. Хотя устранить дисбаланс двигателя полностью невозможно, можно определить, не выходит ли он за рамки приемлемых значений, и предпринять меры для исправления ситуации.

Дисбаланс может быть вызван различными причинами:

  • скопление грязи;
  • отсутствие балансировочных грузов;
  • отклонения при производстве;
  • неравная масса обмоток двигателя и другие факторы, связанные с износом.

Тестер или анализатор вибрации поможет определить, сбалансирован вращающийся механизм или нет.

Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности.

Прибор для измерения и диагностики: измеритель вибрации Fluke 810.

Критичность: высокая.

9. Расшатанность вала

9 причина неисправности электродвигателей - Расшатанность вала

Расшатанность возникает из-за чрезмерного зазора между деталями. Расшатанность может возникать в нескольких местах:

  • Расшатанность с вращением возникает из-за чрезмерного зазора между вращающимися и неподвижными частями машины, например, в подшипнике.
  • Расшатанность без вращения возникает между двумя обычно неподвижными деталями, например, между опорой и основанием или корпусом подшипника и машиной.

Как и в случаях со всеми другими источниками вибрации, важно уметь определить расшатанность и устранить проблему, избежав убытков. Определить наличие расшатанности во вращающейся машине можно с помощью тестера или анализатора вибрации.

Влияние: ускоренный износ вращающихся компонентов, вызывающий механические неисправности.

Прибор для измерения и диагностики: измеритель вибрации Fluke 810.

Критичность: высокая.

10. Износ подшипника

10 причина неисправности электродвигателей - Износ подшипника

Неисправный подшипник имеет повышенное трение, сильнее нагревается и имеет пониженную эффективность из-за механических проблем, проблем со смазкой или износа. Неисправность подшипника может быть следствием различных факторов:

  • нагрузка, превышающая расчетную;
  • недостаточная или неправильная смазка;
  • неэффективная герметизация подшипника;
  • нарушение центрирования вала;
  • неправильная установка;
  • нормальный износ;
  • наведенное напряжение на валу.

Когда неисправности подшипников начинают проявляться, это также вызывает каскадный эффект, ускоряющий выход двигателя из строя. 13% неисправностей двигателя вызваны неисправностями подшипников, и более 60 % механических неисправностей на предприятии вызваны износом подшипников, поэтому важно знать, как устранять эти потенциальные проблемы.

Влияние: ускоренный износ вращающихся компонентов приводит к выходу подшипников из строя.

Прибор для измерения и диагностики: измеритель вибрации Fluke 810.

Критичность: высокая.

Факторы, связанные с неправильной установкой

11. Неплотно прилегающее основание

11 причина неисправности электродвигателей - Неплотно прилегающее основание

Неплотное прилегание вызывается неровным монтажным основанием двигателя или приводимого в движение компонента или неровной монтажной поверхностью, на которой располагается монтажное основание. Данное состояние может создать неприятную ситуацию, при которой затяжка монтажных болтов на самом деле привносит новые нагрузки и нарушение центрирования. Неплотное прилегание опоры часто возникает между двумя диагонально расположенными крепежными болтами, как, например, в случае с неровным стулом или столом, которые раскачиваются по диагонали. Существуют два типа неплотного прилегания основания:

  • Параллельное неплотное прилегание основания —возникает, когда одна монтажная опора расположена выше, чем три другие;
  • Угловое неплотное прилегание основания —возникает, когда одна из монтажных опор не параллельна или не перпендикулярна по отношению к монтажной поверхности.

В обоих случаях неплотное прилегание основания может быть вызвано неровностями в монтажной опоре механизма или в монтажном основании, на котором находится опора. В любом случае найти и устранить неплотное прилегание необходимо до центрирования вала. Качественный лазерный инструмент для центрирования может определить неплотное прилегание основания данной вращающейся машины.

Влияние: нарушение центрирования компонентов механического привода.

Критичность: средняя.

12. Напряжение трубной обвязки

12 причина неисправности электродвигателей - Напряжение трубной обвязки

Натяжением трубной обвязки называется состояние, при котором новые нагрузки, натяжения и силы, действующие на остальное оборудование и инфраструктуру, передаются назад на двигатель и привод, приводя к нарушению центрирования. Наиболее часто встречающимся примером этого являются простые схемы с электродвигателем/насосом, когда что-то оказывает воздействие на трубопроводы, например:

  • смещение в фундаменте;
  • недавно установленный клапан или другой компонент;
  • предмет, ударяющий, сгибающий или просто давящий на трубу;
  • сломанные или отсутствующие крепления для труб или настенная арматура.

Эти силы могут оказывать угловое или смещающее воздействие, что в свою очередь приводит к смещению вала двигателя/насоса. По этой причине важно проверять центрирование машины не только во время установки — точное центрирование является временным состоянием и может изменяться с течением времени.

Влияние: нарушение центрирования вала и последующие нагрузки на вращающиеся компоненты, приводящие к преждевременным неисправностям.

Критичность: низкая.

13. Напряжение на валу

13 причина неисправности электродвигателей - Напряжение на валу

Когда напряжение на валу электродвигателя превышает изолирующие характеристики смазки подшипника, происходит пробой на внешний подшипник, что вызывает точечную коррозию и образование канавок на дорожке качения подшипника. Первыми признаками проблемы являются шум и перегрев, возникающие по мере того, как подшипники теряют первоначальную форму, а также появление металлической крошки в смазке и увеличение трения подшипника. Это может привести к разрушению подшипника уже через несколько месяцев работы электродвигателя. Неисправность подшипника — это дорогостоящая проблема как с точки зрения восстановления электродвигателя, так и с точки зрения простоя оборудования, поэтому предотвращение этого посредством измерения напряжения на валу и тока в подшипниках является важной частью диагностики. Напряжение на валу присутствует только тогда, когда на двигатель подается питание, и он вращается. Угольная щетка, устанавливаемая на щуп, позволяет измерять напряжение на валу при вращении электродвигателя.

Влияние: дуговые разряды на поверхности подшипника вызывают точечную коррозию и образование канавок, что в свою очередь приводит к чрезмерной вибрации и последующей неисправности подшипника.

Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke-190-204 ScopeMeter, щуп AEGIS с угольными щетками для измерения напряжения на валу.

Критичность: высокая.

Четыре стратегии для достижения успеха

Системы управления электродвигателями используются в важных процессах на заводах. Поломка оборудования может привести к большим финансовым потерям, связанным как с потенциальной заменой электродвигателя и его деталей, так и с простоем систем, зависящих от данного электродвигателя. Обеспечивая обслуживающих инженеров и техников необходимыми знаниями, определяя приоритеты работ и проводя профилактическое обслуживание для контроля оборудования и устранения трудно обнаруживаемых проблем, зачастую можно избежать неисправностей, вызванных рабочими нагрузками, и сократить потери от простоя.

Существуют четыре ключевые стратегии для устранения или предотвращения преждевременных поломок электродвигателя и вращающихся деталей:

  1. Запись рабочих условий, технических характеристик оборудования и диапазонов допусков рабочих характеристик.
  2. Регулярный сбор и запись критических измерений при установке, до и после технического обслуживания.
  3. Создание архива эталонных измерений для анализа тенденций и обнаружения изменения состояния.
  4. Построение графиков отдельных измерений для выявления основных тенденций.Любые изменения в линии тенденций более чем на +/- 10-20% (или любую другую определенную величину, в зависимости от эксплуатационных характеристик или критичности системы) необходимо исследовать для выявления причин возникновения проблем.

Источник