Меню

Алгоритм определения направления индукционного тока в кольце

§ 40. Направление индукционного тока. Правило Ленца

В предыдущем параграфе были рассмотрены опыты по получению индукционного тока и установлена причина его возникновения.

Как же направлен индукционный ток? Для ответа на этот вопрос воспользуемся прибором, изображённым на рисунке 123. Он представляет собой узкую алюминиевую пластинку с алюминиевыми кольцами на концах. Одно кольцо сплошное, другое имеет разрез. Пластинка с кольцами помещена на стойку и может свободно вращаться вокруг вертикальной оси.

При приближении к сплошному кольцу любого полюса магнита кольцо отталкивается от него

Рис. 123. При приближении к сплошному кольцу любого полюса магнита кольцо отталкивается от него

Возьмём полосовой магнит и внесём его в кольцо с разрезом — кольцо останется на месте. Если же вносить магнит в сплошное кольцо, то оно будет отталкиваться, уходить от магнита, поворачивая при этом всю пластинку. Результат будет точно таким же, если магнит будет повёрнут к кольцам не северным полюсом (как показано на рисунке), а южным. Объясним наблюдаемые явления.

При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается (рис. 124). При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом тока не будет.

Возникновение индукционного тока в сплошном кольце при приближении к кольцу магнита

Рис. 124. Возникновение индукционного тока в сплошном кольце при приближении к кольцу магнита

Ток в сплошном кольце создаёт в пространстве магнитное поле, благодаря чему кольцо приобретает свойства магнита. Взаимодействуя с приближающимся полосовым магнитом, кольцо отталкивается от него. Из этого следует, что кольцо и магнит обращены друг к другу одноимёнными полюсами, а векторы магнитной индукции (Вк и Вм) их полей направлены в противоположные стороны (рис. 125). Зная направление вектора индукции магнитного поля кольца, можно по правилу правой руки (см. рис. 97) определить направление индукционного тока в кольце. Отодвигаясь от приближающегося к нему магнита, кольцо противодействует увеличению проходящего сквозь него внешнего магнитного потока.

Определение направления индукционного тока в кольце

Рис. 125. Определение направления индукционного тока в кольце

Теперь посмотрим, что произойдёт при уменьшении внешнего магнитного потока сквозь кольцо. Для этого, удерживая кольцо рукой, внесём в него магнит. Затем, отпустив кольцо, начнём удалять магнит. В этом случае кольцо будет следовать за магнитом, притягиваться к нему (рис. 126). Значит, кольцо и магнит обращены друг к другу разноимёнными полюсами, а векторы магнитной индукции их полей направлены в одну сторону (рис. 127). При одинаковом направлении Вк и Вм магнитное поле тока будет противодействовать уменьшению внешнего магнитного потока, проходящего сквозь кольцо.

При удалении магнита от сплошного кольца оно, притягиваясь, следует за магнитом

Рис. 126. При удалении магнита от сплошного кольца оно, притягиваясь, следует за магнитом

Направление индукционного тока в кольце меняется при изменении направления движения магнита относительно кольца

Рис. 127. Направление индукционного тока в кольце меняется при изменении направления движения магнита относительно кольца

Читайте также:  Ввг 3х4 характеристики по току

Мы видим, что для определения направления индукционного тока прежде всего необходимо узнать, как направлен вектор магнитной индукции созданного этим током магнитного поля (в центре кольца). На основании результатов рассмотренных опытов (в одном из них внешний магнитный поток увеличивался, а в другом — уменьшался) было сформулировано правило, которое в современной формулировке звучит так:

  • возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток

Данное правило было установлено в 1834 г. российским учёным Эмилием Христиановичем Ленцем, в связи с чем называется правилом Ленца.

Источник



Алгоритм определения направления индукционного тока в кольце

Физика

Электродинамика

Магнитное поле

Механические колебания

Электромагнитные колебания

Механические волны

Электромагнитные волны

Оптика

Геометрическая оптика

Задачи на сферическое зеркало

Линза

Волновая оптика

Основы теории относительности

Основы квантовой физики

Излучения и спектры

Световые кванты

Атомная физика

Ядерная физика

Физика элементарных частиц

Открытие позитрона. Античастицы

Современная физическая картина мира

Современная физическая картина мира

Строение Вселенной

Строение Вселенной

Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звёзд

Наша галактика и другие галактики

Пространственные масштабы наблюдаемой Вселенной

Применимость законов физики для объяснения природы космических объектов

«Красное смещение» в спектрах галактик

Современные взгляды на строение и эволюцию Вселенной

Наблюдение солнечных пятен, звёздных скоплений, туманностей и галактик

Источник

Физика

Поле индукционного тока всегда противодействует причине, вызывающей его появление.

Направление индукционного тока определяется правилом Ленца : индукционный ток в замкнутом проводящем контуре всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.

При определении направления индукционного тока рекомендуется пользоваться следующим алгоритмом :

1) выявить причину изменения магнитного потока и определить, уменьшается или увеличивается поток Ф с течением времени;

2) определить направление поля индукционного тока:

  • если магнитный поток увеличивается, то поле индукционного тока B → i направлено противоположно внешнему магнитному полю B → :
  • если магнитный поток уменьшается, то поле индукционного тока B → i направлено так же, как и внешнее магнитное поле B → :

3) определить направление индукционного тока по правилу правого винта: поступательное движение винта должно совпадать с направлением поля индукционного тока B → i , тогда направление вращения его рукоятки укажет направление индукционного тока.

Пример 23. Провод, имеющий форму параболы, находится в однородном магнитном поле с индукцией, перпендикулярной плоскости провода. Из вершины параболы начинают перемещать перемычку так, как показано на рисунке. Найти направление индукционного тока в проводе.

Решение . Для определения направления индукционного тока воспользуемся алгоритмом.

1. Причиной изменения магнитного потока является увеличение площади, ограниченной проводом. Поток вектора магнитной индукции через указанную площадь также увеличивается :

Читайте также:  Освобождение пострадавшего от действия электрическим током свыше 1000 вольт

где B — модуль вектора индукции магнитного поля; S — площадь, ограниченная контуром; α — угол между нормалью (перпендикуляром) к площадке и вектором B → , α = 90°.

2. При увеличении магнитного потока в контуре возникает индукционный ток, магнитное поле которого B → i направлено противоположно внешнему магнитному полю B → , направленному за плоскость чертежа («от нас»):

т.е. поле индукционного тока направлено «к нам».

3. Направление индукционного тока связано с создаваемым им полем B → i правилом правого винта: при поступательном движении правого винта вдоль направления поля B → i вращение его рукоятки происходит против часовой стрелки; следовательно, индукционный ток также течет в этом же направлении.

При указанном направлении движения перемычки индукционный ток в проводнике течет против часовой стрелки.

Источник

Алгоритм определения направления индукционного тока в кольце

Направление индукционного тока

При внесении в катушку магнита в ней возникает индукционный ток. Если к катушке присоединить гальванометр, то можно заметить, что направление тока будет зависеть от того приближаем ли мы магнит или удаляем его.

Магнит будет взаимодействовать с катушкой либо притягиваясь, либо отталкиваясь от нее. Это будет возникать вследствие того, что катушка с проходящим по ней током, будет подобна магниту с двумя полюсами. Направление индуцируемого тока будет определять, где у катушки будет находиться какой из полюсов.

Если приближать к катушке магнит, то в ней будет возникать индукционный ток такого направления, что катушка обязательно будет отталкиваться от магнита. Если мы будет удалять магнит от катушки, то при этом в катушке возникнет такой индукционный ток, что она будет притягиваться к магниту.

Стоит отметить, что не важно каким полюсом мы подносим или убираем магнит, всегда при подносе катушка будет отталкиваться, а при удалении притягиваться. Различие состоит в том, что при приближении магнита к катушке магнитный поток, который будет пронизывать катушку, увеличивается, так как у полюса магнита кучность линий магнитной индукции увеличивается. А при удалении магнита, магнитный поток, пронизывающий катушку, будет уменьшаться.

Узнать направление индукционного тока можно. Для этого существует правило Ленца. Оно основано на законе сохранения. Рассмотрим следующий опыт.

Так как должен выполняться закон сохранения, должно возникнуть магнитное поле, которое будет препятствовать изменению магнитного потока. В нашем случае магнитный поток увеличивался, следовательно, ток должен течь в таком направлении, чтобы линии вектора магнитной индукции, создаваемые катушкой, были направлены в противоположном направлении линиям магнитной индукции, создаваемым магнитом.

То есть они должны в нашем случае быть направлены вверх. Теперь воспользуемся правилом буравчика. Направляем большой палец правой руки по необходимому нам направлению линий магнитной индукции, то есть — вверх. Тогда остальные пальцы укажут, в какую сторону должен быть направлен индукционный ток. В нашем случае, слева на право.

Читайте также:  Виды поражения электрическим током оказание первой помощи пострадавшим 1

Аналогичный процесс происходит при удалении магнита. Убираем магнит, магнитный поток уменьшается, следовательно, должно возникнуть поле которое будет увеличивать магнитный поток. То есть поле линии магнитной индукции, которого будут сонаправлены с линиями магнитной индукции, создаваемыми постоянным магнитом. В нашем случае эти лини направлены вниз. Опять пользуемся правилом буравчика и определяем направление индукционного тока.

Правило Ленца.

Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.

Применять правило Ленца для нахождения направления индукционного тока в контуре надо так:

1. Определить направление линий магнитной индукции вектора В внешнего магнитного поля.

2. Выяснить, увеличивается ли поток вектора магнитной индукции этого поля через поверхность, ограниченную контуром ( Δ Ф > 0), или уменьшается ( Δ Ф

3. Установить направление линий магнитной индукции вектора В’ магнитного поля индукционного тока. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям магнитной индукции вектора В’ при Δ Ф > 0 и иметь одинаковое с ними направление при Δ Ф

4. Зная направление линий магнитной индукции вектора В’ , найти направление индукционного тока, пользуясь правилом буравчика.

Направление индукционного тока определяется с помощью закона сохранения энергии. Индукционный ток во всех случаях направлен так, чтобы своим магнитным полем препятствовать изменению магнитного потока, вызывающего данный индукционный ток.

Вихревое электрическое поле .

Причина возникновения электрического тока в неподвижном проводнике — электрическое поле.

Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым.Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

индукционное электрическое поле

(вихревое электрическое поле )

1. создается неподвижными электрическими зарядами

1. вызывается изменениями магнитного поля

2. силовые линии поля разомкнуты -потенциальное поле

2. силовые линии замкнуты — вихревое поле

3. источниками поля являются электрические заряды

3. источники поля указать нельзя

4. работа сил поля по перемещению пробного заряда по замкнутому пути равна нулю.

4. работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции

Источник