Меню

Аккумуляторная батарея это химический источник тока

Химия и ток

Какими в будущем станут привычные нам аккумуляторы и другие источники питания

В современной жизни химические источники тока окружают нас повсюду: это батарейки в фонариках, аккумуляторы в мобильных телефонах, водородные топливные элементы, которые уже используются в некоторых автомобилях. Бурное развитие электрохимических технологий может привести к тому, что уже в ближайшее время вместо машин на бензиновых двигателях нас будут окружать только электромобили, телефоны перестанут быстро разряжаться, а в каждом доме будет свой собственный электрогенератор на топливных элементах. Повышению эффективности электрохимических накопителей и генераторов электроэнергии посвящена одна из совместных программ Уральского федерального университета с Институтом высокотемпературной электрохимии УрО РАН, в партнерстве с которыми мы публикуем эту статью.

На сегодняшний день существует множество разных типов батареек, среди которых все сложнее ориентироваться. Далеко не каждому очевидно, чем аккумулятор отличается от суперконденсатора и почему водородный топливный элемент можно использовать, не опасаясь нанести вред окружающей среде. В этой статье мы расскажем о том, как для получения электроэнергии используются химические реакции, в чем разница между основными типами современных химических источников тока и какие перспективы открываются перед электрохимической энергетикой.

Химия как источник электричества

Сначала разберемся, почему химическую энергию вообще можно использовать для получения электричества. Все дело в том, что при окислительно-восстановительных реакциях происходит перенос электронов между двумя разными ионами. Если две половины химической реакции разнести в пространстве, чтобы окисление и восстановление проходили отдельно друг от друга, то можно сделать так, чтобы электрон, который отрывается от одного иона, не сразу попадал на второй, а сначала прошел по заранее заданному для него пути. Такую реакцию можно использовать как источник электрического тока.

Впервые эта концепция была реализована еще в XVIII веке итальянским физиологом Луиджи Гальвани. Действие традиционного гальванического элемента основано на реакциях восстановления и окисления металлов с разной активностью. Например, классической ячейкой является гальванический элемент, в котором происходит окисление цинка и восстановление меди. Реакции восстановления и окисления проходят, соответственно, на катоде и аноде. А чтобы ионы меди и цинка не попадали на «чужую территорию», где они могут прореагировать друг с другом непосредственно, между анодом и катодом обычно помещают специальную мембрану. В результате между электродами возникает разность потенциалов. Если соединить электроды, например, с лампочкой, то в получившейся электрической цепи начинает течь ток и лампочка загорается.

Схема гальванического элемента

Основным недостатком гальванического элемента является ограниченное время его работы. Как только реакция пройдет до конца (то есть будет полностью израсходован весь постепенно растворяющийся анод), такой элемент просто перестанет работать.

Пальчиковые щелочные батарейки

Возможность перезарядки

Первым шагом к расширению возможностей химических источников тока стало создание аккумулятора — источника тока, который можно перезаряжать и поэтому использовать многократно. Для этого ученые просто предложили использовать обратимые химические реакции. Полностью разрядив аккумулятор в первый раз, с помощью внешнего источника тока прошедшую в нем реакцию можно запустить в обратном направлении. Это восстановит исходное состояние, так что после перезарядки батарею можно будет использовать заново.

Автомобильный свинцово-кислотный аккумулятор

Литий-ионный аккумулятор для мобильного телефона

Твердый электролит

В качестве другого менее очевидного способа повышения эффективности и безопасности батарей, химики предложили не ограничиваться в химических источниках тока жидкими электролитами, а создать полностью твердотельный источник тока. В таких устройствах вообще нет жидких компонентов, а есть слоистая структура из твердого анода, твердого катода и твердого же электролита между ними. Электролит при этом одновременно выполняет и функцию мембраны. Носителями заряда в твердом электролите могут быть различные ионы — в зависимости от его состава и тех реакций, которые проходят на аноде и катоде. Но всегда ими являются достаточно маленькие ионы, которые могут относительно свободно перемещаться по кристаллу, например протоны H + , ионы лития Li + или ионы кислорода O 2- .

Водородные топливные элементы

Возможность перезарядки и специальные меры безопасности делают аккумуляторы значительно более перспективными источниками тока, чем обычные батарейки, но все равно каждый аккумулятор содержит внутри себя ограниченное количество реагентов, а значит, и ограниченный запас энергии, и каждый раз аккумулятор необходимо заново заряжать для возобновления его работоспособности.

Чтобы сделать батарейку «бесконечной», в качестве источника энергии можно использовать не те вещества, которые находятся внутри ячейки, а специально прокачиваемое через нее топливо. Лучше всего в качестве такого топлива подойдет вещество, максимально простое по составу, экологически чистое и имеющееся в достатке на Земле.

Наиболее подходящее вещество такого типа — газообразный водород. Его окисление кислородом воздуха с образованием воды (по реакции 2H2 + O2 → 2H2O) является простой окислительно-восстановительной реакцией, а транспорт электронов между ионами тоже можно использовать в качестве источника тока. Протекающая при этом реакция является своего рода обратной реакцией к реакции электролиза воды (при котором под действием электрического тока вода разлагается на кислород и водород), и впервые такая схема была предложена еще в середине XIX века.

Но несмотря на то, что схема выглядит довольно простой, создать основанное на этом принципе эффективно работающее устройство — совсем не тривиальная задача. Для этого надо развести в пространстве потоки кислорода и водорода, обеспечить транспорт нужных ионов через электролит и снизить возможные потери энергии на всех этапах работы.

Принципиальная схема работы водородного топливного элемента

Водородный топливный элемент Toyota

Joseph Brent / flickr

Кроме реакции окисления водорода для топливных элементов предложено использовать и другие типы реакций. Например, вместо водорода восстановительным топливом может быть метанол, который кислородом окисляется до углекислого газа и воды.

Эффективность топливных элементов

Несмотря на все преимущества водородных топливных элементов (такие как экологичность, практически неограниченный КПД, компактность размеров и высокая энергоемкость), они обладают и рядом недостатков. К ним относятся, в первую очередь, постепенное старение компонентов и сложности при хранении водорода. Именно над тем, как устранить эти недостатки, и работают сегодня ученые.

Повысить эффективность топливных элементов в настоящее время предлагается за счет изменения состава электролита, свойств электрода-катализатора, и геометрии системы (которая обеспечивает подачу топливных газов в нужную точку и снижает побочные эффекты). Для решения проблемы хранения газообразного водорода используют материалы, содержащие платину, для насыщения которых предлагают использовать, например, графеновые мембраны.

В результате удается добиться повышения стабильности работы топливного элемента и времени жизни его отдельных компонентов. Сейчас коэффициент преобразования химической энергии в электрическую в таких элементах достигает 80 процентов, а при определенных условиях может быть и еще выше.

Огромные перспективы водородной энергетики связывают с возможностью объединения топливных элементов в целые батареи, превращая их в электрогенераторы с большой мощностью. Уже сейчас электрогенераторы, работающие на водородных топливных элементах, имеют мощность до нескольких сотен киловатт и используются как источники питания транспортных средств.

Альтернативные электрохимические накопители

Помимо классических электрохимических источников тока, в качестве накопителей электроэнергии используют и более необычные системы. Одной из таких систем является суперконденсатор (или ионистор) — устройство, в котором разделение и накопление заряда происходит за счет образования двойного слоя вблизи заряженной поверхности. На границе электрод-электролит в таком устройстве в два слоя выстраиваются ионы разных знаков, так называемый «двойной электрический слой», образуя своеобразный очень тонкий конденсатор. Емкость такого конденсатора, то есть количество накопленного заряда, будет определяться удельной площадью поверхности электродного материала, поэтому в качестве материала для суперконденсаторов выгодно брать пористые материалы с максимальной удельной площадью поверхности.

Ионисторы являются рекордсменами среди зарядно-разрядных химических источников тока по скорости заряда, что является несомненным преимуществом данного типа устройств. К сожалению, они также являются рекордсменами и по скорости разряда. Энергоплотность ионисторов в восемь раз меньше по сравнению со свинцовыми аккумуляторами и в 25 раз меньше по сравнению с литий-ионными. Классические «двойнослойные» ионисторы не используют электрохимическую реакцию в своей основе, и к ним наиболее точно применим термин «конденсатор». Однако в тех вариантах исполнения ионисторов, в основе которых используется электрохимическая реакция и накопление заряда распространяется в глубину электрода, удается достичь более высоких времен разрядки при сохранении быстрой скорости заряда. Усилия разработчиков суперконденсаторов направлены на создание гибридных с аккумуляторами устройств, сочетающих в себе плюсы суперконденсаторов, в первую очередь высокую скорость заряда, и достоинства аккумуляторов — высокую энергоемкость и длительное время разряда. Представьте себе в ближайшем будущем аккумулятор-ионистор, который будет заряжаться за пару минут и обеспечивать работу ноутбука или смартфона в течение суток или более!

Несмотря на то, что сейчас плотность энергии суперконденсаторов пока в несколько раз меньше плотности энергии аккумуляторов, их используют в бытовой электронике и для двигателей различных транспортных средств, в том числе и в самых современных разработках.

Читайте также:  Как управлять током с помощью транзистора

Таким образом, на сегодня существует большое количество электрохимических устройств, каждое из которых перспективно для своих конкретных приложений. Для повышения эффективности работы этих устройств ученым необходимо решить ряд задач как фундаментального, так и технологического характера. Большинством этих задач в рамках одного из прорывных проектов занимаются в Уральском федеральном университете, поэтому о ближайших планах и перспективах по разработке современных топливных элементов мы попросили рассказать директора Института высокотемпературной электрохимии УрО РАН, профессора кафедры технологии электрохимических производств химико-технологического института Уральского федерального университета Максима Ананьева.

N + 1: Ожидается ли в ближайшем будущем какая-то альтернатива наиболее популярным сейчас литий-ионным аккумуляторам?

Максим Ананьев: Современные усилия разработчиков аккумуляторов направлены на замену типа носителя заряда в электролите с лития на натрий, калий, алюминий. В результате замены лития можно будет снизить стоимость аккумулятора, правда при этом пропорционально возрастут массо-габаритные характеристики. Иными словами, при одинаковых электрических характеристиках натрий-ионный аккумулятор будет больше и тяжелее по сравнению с литий-ионным.

Кроме того, одним из перспективных развивающихся направлений совершенствования аккумуляторов является создание гибридных химических источников энергии, основанных на совмещении металл-ионных аккумуляторов с воздушным электродом, как в топливных элементах. В целом, направление создания гибридных систем, как уже было показано на примере суперконденсаторов, по-видимому, в ближайшей перспективе позволит увидеть на рынке химические источники энергии, обладающие высокими потребительскими характеристиками.

Уральский федеральный университет совместно с академическими и индустриальными партнерами России и мира сегодня реализует шесть мегапроектов, которые сфокусированы на прорывных направлениях научных исследований. Один из таких проектов — «Перспективные технологии электрохимической энергетики от химического дизайна новых материалов к электрохимическим устройствам нового поколения для сохранения и преобразования энергии».

Группа ученых стратегической академической единицы (САЕ) Школа естественных наук и математики УрФУ, в которую входит Максим Ананьев, занимается проектированием и разработкой новых материалов и технологий, среди которых — топливные элементы, электролитические ячейки, металлграфеновые аккумуляторы, электрохимические системы аккумулирования электроэнергии и суперконденсаторы.

Исследования и научная работа ведутся в постоянном взаимодействии с Институтом высокотемпературной электрохимии УрО РАН и при поддержке партнеров.

Какие топливные элементы разрабатываются сейчас и имеют наибольший потенциал?

Одними из наиболее перспективных типов топливных элементов являются протонно-керамические элементы. Они обладают преимуществами перед полимерными топливными элементами с протонно-обменной мембраной и твердооксидными элементами, так как могут работать при прямой подаче углеводородного топлива. Это существенно упрощает конструкцию энергоустановки на основе протонно-керамических топливных элементов и систему управления, а следовательно, увеличивает надежность работы. Правда, такой тип топливных элементов на данный момент является исторически менее проработанным, но современные научные исследования позволяют надеяться на высокий потенциал данной технологии в будущем.

Какими проблемами, связанными с топливными элементами, занимаются сейчас в Уральском федеральном университете?

Сейчас ученые УрФУ совместно с Институтом высокотемпературной электрохимии (ИВТЭ) Уральского отделения Российской академии наук работают над созданием высокоэффективных электрохимических устройств и автономных генераторов электроэнергии для применений в распределенной энергетике. Создание энергоустановок для распределенной энергетики изначально подразумевает разработку гибридных систем на основе генератора электроэнергии и накопителя, в качестве которых выступают аккумуляторы. При этом топливный элемент работает постоянно, обеспечивая нагрузку в пиковые часы, а в холостом режиме заряжает аккумулятор, который может сам выступать резервом как в случае высокого энергопотребления, так и в случае внештатных ситуаций.

Наибольших успехов химики УрФУ и ИВТЭ достигли в области разработки твердо-оксидных и протонно-керамических топливных элементов. Начиная с 2016 года на Урале вместе с ГК «Росатом» создается первое в России производство энергоустановок на основе твердо-оксидных топливных элементов. Разработка уральских ученых уже прошла «натурные» испытания на станции катодной защиты газотрубопроводов на экспериментальной площадке ООО «Уралтрансгаз». Энергоустановка с номинальной мощностью 1,5 киловатта отработала более 10 тысяч часов и показала высокий потенциал применения таких устройств.

В рамках совместной лаборатории УрФУ и ИВТЭ ведутся разработки электрохимических устройств на основе протонпроводящей керамической мембраны. Это позволит в ближайшем будущем снизить рабочие температуры для твердо-оксидных топливных элементов с 900 до 500 градусов Цельсия и отказаться от предварительного риформинга углеводородного топлива, создав, таким образом, экономически эффективные электрохимические генераторы, способные работать в условиях развитой в России инфраструктуры газоснабжения.

Источник



Основные химические источники электроэнергии

Химические источники тока — это устройства и приборы которые в процессе химической окислительно-восстановительной реакции выделяют напряжение. Также они называются электрохимическими, гальваническими элементами. Основной принцип действия их основан на взаимодействии химических реагентов которые вступая, в реакцию друг с другом вырабатывают электроэнергию, в виде постоянного тока. Этот процесс происходит без механического или теплового воздействия, что является основными факторами играющими превосходящую роль среди других генераторов постоянного напряжения. Химические источники тока, сокращённо ХИТ, уже давно нашли применение не только в быту, но и на производстве.

Немного истории создания ХИТ

Батарея Вольта

Ещё в восемнадцатом веке итальянский учёный Луиджи Гальвани придумал простейший элемент который химическим способом выделял электрический ток. Однако он был не только учёным, но и физиком, врачом, физиологом. Он интересовался и проводил опыты которые были направлены на изучение реакции животных на внешние раздражители. Как и всё гениальное первый химический источник энергии был получен Луиджи абсолютно случайно, во время многочисленных экспериментов над лягушками. После присоединения двух пластин из металла к лягушачьей мышце на лапке, было замечено мускульное сокращение. Гальвани посчитал это нервной реакцией на внешний раздражитель и изложил это в результатах своих исследований, попавших в руки другого великого учёного Алессандро Вольта. Он и выложил свою теорию о возникновении напряжения в результате химической реакции, возникшей между двумя металлическими пластинами в среде мускульной ткани лягушки.

Первый химический источник электрического тока представлял собой емкость с соляным составом, в который было погружено две пластины из разных материалов. Одна из меди, другая из цинка. Именно это устройство в будущем, а конкретнее во второй половине девятнадцатого века, было применено при изобретении и создании марганцево-цинкового элемента внутри которого был тот же солевой электролит.

Принцип действия

Принцип действия химического источника питания

Устройства вырабатывающее электрический ток содержит два электрода, которые помещаются между электролитом. Именно на их границе соприкосновения и появляется небольшой потенциал. Один из них называют катодом, а другой анодом. Все эти элементы вместе образуют электрохимическую систему.
Во время возникновения окислительно-восстановительной реакции между электродами один элемент отдаёт мельчайшие частицы электроны другому. Поэтому она и не может происходить вечно, а со временем просто теряются свойства каждого элемента этой цепи.
Электроды могут быть представлены в виде пластин или решёток из металла. После погружения их в среду с электролитом меду их выводами возникает разность потенциалов, которая именуется напряжением разомкнутой цепи. Даже при удалении хотя бы одного из электродов с электролита процесс генерации напряжения прекращается.

Состав электрохимических систем

В качестве электролита используются следующие химические вещества:

  1. Водные растворы на основе щелочей, кислот, солей и т. д.;
  2. Растворы с ионной проводимостью на неводной основе, которые получены при растворении солей в неорганических или органических растворителях;
  3. Твердые соединения, содержащие ионную решетку, где один из ионов является подвижным;
  4. Матричные электролиты. Это особый вид жидких растворов и расплавов, которые находятся в порах твёрдого непроводящего элемента — электроносителя;
  5. Расплавы солей;
  6. Ионообменные электролиты с униполярной системой проводимости. Твёрдые тела с фиксированной ионогенной группой одного знака.

Классификация гальванических элементов и их подбор

Генераторы электрического тока получающегося во время химической реакции разделяются по:

  • Размерам;
  • Конструктивным особенностям;
  • Способу и реагенту, за счёт которого, и получается электроэнергия.

Все элементы вырабатывающее ток во время химической реакции делятся на:

  1. Заряжаемые, которые в процессе эксплуатации могут неоднократно заряжаться от источника постоянного тока, они называются аккумуляторами;
  2. Не заряжаемые, то есть источники одноразового использования которые после завершения химической реакции просто приходят в негодность и должны быть утилизированы. Попросту это гальванический элемент или батарейка.

Для того чтобы подобрать источник электроэнергии, основанный на химической реакции, нужно понимать его характеристики, к которым относятся:

  • Напряжение между анодом и катодом при разомкнутой цепи. Этот показатель чаще всего зависит от выбранной электрохимической системы, а также концентрации и вылечены всех составляющих;
  • Мощность источника;
  • Показатель силы тока;
  • Емкость;
  • Электротехнические показатели, то есть количество циклов заряда и разряда;
  • Диапазон рабочих температур;
  • Срок хранения между тем временем как элемент был создан и до начала его эксплуатации;
  • Полный срок службы;
  • Прочность, то есть защита корпуса от различных механических повреждений и влияний, а также вибраций;
  • Положение работы, некоторые из них работают только в горизонтальных положениях;
  • Надёжность;
  • Простота в эксплуатации и обслуживании. В идеале отсутствие необходимости малейшего вмешательства в работу в течение всего срока эксплуатации.
Читайте также:  Боль в плечевом суставе как током

При выборе нужной батареи или аккумулятора обязательно нужно учесть его электрические номиналы такие как напряжение и ток, а также ёмкость. Именно она является ключевой для сохранения работоспособности, подключаемого к источнику прибора.

Современные химические источники тока и их применение

Современный источник тока

Современный быт человека тяжело приставить без этих мобильных генераторов энергии, с которыми он сталкивается в течение всей жизни, начиная с детских игрушек и заканчивая, допустим, автомобилем.
Сферы применения различных батареек и аккумуляторов настолько разнообразны что перечислить их очень сложно. Работа любого мобильного телефона, компьютера, ноутбука, часов, пульта дистанционного управления была бы невозможна без этого переносного и очень компактного устройства для создания стабильного электрического заряда.
В медицине широко используются источники химической энергии при создании любого аппарата, помогающего человеку полноценно жить. Например, для слуховых аппаратов и электрокардиостимуляторов которые могут работать только от переносных источников напряжения, чтобы не сковывать человека проводами.
В производстве применяются целые системы аккумуляторных батарей для обеспечения напряжением цепей отключения и защит в случае пропадания входящего высокого напряжения на подстанциях. И также широко применяется это питание во всех транспортных средствах, военной и космической технике.
Одним из видов распространённых батарей являются литиевые источники электрического тока, так как именно этот элемент обладает высоким показателем удельной энергии. Дело в том что только этот химический элемент, оказывается, обладает сильным отрицательным потенциалом среди всех известных и изученных человеком веществ. Литий-ионные батареи выделяются среди всех остальных элементов питания по величине вырабатываемой энергии и низким габаритам, что позволяет применять их в самых компактных и мелких электронных устройствах.

Способы утилизации химических источников энергии

Батарейка

Проблема утилизации разных по габаритах химических источников напряжения является экологической проблемой всей планеты. Современные источники содержат в себе до тридцати химических элементов которые могут нанесите ощутимый вред природным ресурсам, поэтому для их утилизации разработаны целые программы и построены специализированные цеха по переработке. Некоторые методы позволяют не только качественно перерабатывать эти вредные вещества, но и возвращать в производство, тем самым защитив окружающую среду. В целях извлечения цветных металлов из батарей и аккумуляторов в настоящий момент разработаны и применены в цивилизованных странах, следящих и заботящихся об окружающей среде, целые пирометаллургические и гидрометаллургические комплексы. Самый же распространённый способ утилизации отработанных химических источников тока является метод, работающий на соединении этих процессов. Главным его достоинством считается высокая степень извлечения с минимальным количеством отходов.
Этот метод пирометаллургической, гидрометаллургической и механической переработки включает в себя восемь основных стадий:

  1. Измельчение;
  2. Магнитная сепарация;
  3. Обжиг;
  4. Дополнительное измельчение;
  5. Выделение крупных и мелких элементов с помощью грохочения;
  6. Водное очищение и выщелачивание;
  7. Сернокислотное выщелачивание;
  8. Электролиз.

Организация правильного сбора и утилизации ХИТ позволяет максимально уменьшить негативное влияние как на окружающую природу, так и на здоровье самого человека.

Видео о химических источниках тока

Источник

Альтернативные химические источники тока

Альтернативные химические источники тока

Статья обновлена: 2020-12-17

Привычные нам современные литиевые аккумуляторы — это результат долгого пути разработок и усовершенствования. Спустя много поколений новых АКБ удалось добиться значительного роста в удельной энергоемкости, мощности, долговечности в сравнении с самыми первыми моделями аккумуляторов. Но прежде следовал долгий путь проб и ошибок, удачных идей и прорывов.

Некоторые из этих успешных разработок пользовались широкой популярностью: например, аккумуляторы никель-металлогидридные, никель-кадмиевые используются до сих пор. Но были и разработки, которые не получили обширного распространения, хотя они имеют большие перспективы — им и посвящена эта статья.

NiFe: никель-железные аккумуляторы

История никель-железных АКБ

Вальдемар Юнгнер, изобретатель никель-кадмиевых аккумуляторов в 1899 году много экспериментировал со своим проектом и искал способы удешевления материалов. Ученый пытался заменить кадмий железом, но вынужден был отказаться от эксперимента из-за низкой эффективности зарядки и образования газов.

В своей лаборатории независимо от событий в Швеции и проекта Юнгнера Томас Эдисон в 1901 изобрёл свой железо-никелевый аккумулятор в качестве альтернативы свинцово-кислотным. Эти устройства активно применяли в электромобилях “Detroit Electric” и “Baker Electric”, а также в немецкой ракете “Фау-2”. Но совсем скоро рынок покорили бензиновые автомобили, а для стартового аккумулятора в них были выбраны все-таки свинцовые АКБ, оставив железо-никелевые на обочине.

Электрический автомобиль Detroit Electric на NiFe АКБ фото

Как работает никель-железный аккумулятор

В аккумуляторах NiFe применяется оксидно-гидроксидный катод, а анод выполнен из железа. В качестве электролита выступает калий-гидроксид. Номинальное напряжение элемента 1,2 В.

Для времени своего изобретения никель-железные аккумуляторы обладали большими токами отдачи, хорошей устойчивостью к вибрациями и высоким температурам. Сейчас их используют разве что на вилочных погрузчиках и некоторых других видах складской техники.

У этого типа АКБ низкая удельная электроёмкость (порядка 50 Вт*ч/кг). Никель-железный аккумулятор не рассчитан на корректную работу при низких температурах и быстро теряет заряд — 20-40% в месяц в режиме хранения, без эксплуатации. Этих недостатков в сочетании с недешевым производством оказалось достаточно, чтобы в конкурентной борьбе возобладали свинцово-кислотные АКБ.

NiH: никель-водородные аккумуляторы

В 1967 году активно проводились исследования с применением никель-металлогидрида, однако его высокая нестабильность вынудила переключиться на использование NiH и разработку никель-водородных аккумуляторов.

Устройство NiH аккумулятора фото

В никель-водородном аккумуляторе содержатся водородные газы под давлением в стальной емкости. Кроме того, в сосуд заключены твердые электроды из никеля, водородные электроды, электролит и газовые экраны.

Напряжение элемента NiH по номиналу — 1,25 В, величина удельной энергии — от 40 до 75 Вт/кг. Рабочие характеристики и возможность работать при экстремальных температурах от -28 °C до 54 °C наделяют эту категорию аккумуляторов весомыми преимуществами. Вдобавок у них минимальный процент потери заряда и длительный срок эксплуатации даже при регулярном полном разряде, что делает NiH безупречным вариантом для применения на орбитальных спутниках. Однако, на все эти достоинства находится значительный недостаток: маленькая удельная энергия и очень высокая стоимость. Цена одной ячейки для спутника насчитывает тысячи долларов.

Zinc-Air: цинк-воздушные аккумуляторы

В воздушно-цинковых батареях электрическая энергия вырабатывается в ходе окисления цинка кислородом из воздуха. Ячейка способна выдать 1,65 В, но длительный срок службы обеспечивает работа на напряжении до 1,4 В.

В роли топлива для положительного электрода выступает кислород из воздуха, и в этом цинк-воздушные аккумуляторы схожи с топливными элементами PEMFC.Воздушный поток позволяет в некоторой степени держать под контролем скорость реакции.

Вид батареи

  • Чувствительность к экстремальным температурам и повышенной влажности.
  • Снижение производительности при загрязнении воздуха: повышенный процент углекислого газа провоцирует рост внутреннего сопротивления.
  • Одноразовое использование, обусловленное спецификой работы устройства.

Подача воздуха начинается со снятием специального уплотнителя, полное рабочее напряжение достигается за 5 секунд. Этот тип аккумуляторов уже не может прекратить свою работу после включения, зарядке в привычном понимании они не поддаются. Тем не менее, версии для подзарядки существуют: путем замены отработанных электродов в формате пасты из цинкового электролита либо цинковых таблеток.

Особенности рабочих характеристик аккумулятора Zinc-Air:

  • Высокая удельная энергоёмкость, 300–400 Вт/ч;
  • Маленькие токи отдачи и, как следствие, низкая удельная мощность;
  • Саморазряд в запечатанном состоянии — 2% в год.

Батареи с воздушно-цинковыми аккумуляторами проходили испытания на электромобилях, но в итоге производство для этой цели было прекращено. Сейчас они используются в слуховых аппаратах и для ламп безопасности на стройплощадках.

NaS: натрий-серные аккумуляторы

Натриевые аккумуляторы знамениты под названием тепловых батарей. Эту технологию придумали немцы во времена Второй мировой, используя в качестве электролита расплавленные соли. NaS выпускались как в одноразовых версиях, так и в перезаряжаемых. Первые модели работали при экстремальных 400–700°C, современные рассчитаны на более низкую температуру 245–350°C. Сейчас их применяют в энергосетях в Японии.

Японские натрий-серные компании фото

Электролит из расплавленных солей неактивен в холодном состоянии, его можно хранить более 50 лет. Активация происходит с помощью теплового воздействия, после чего батарея обеспечивает подачу энергии в течение нескольких часов. Именно расплавленная соль с её хорошей ионной проводимостью позволяет добиться такой высокой мощности аккумуляторов.

Одноразовые модификации натриевых батарей применялись в боевых действиях как источник тока на управляемых ракетах. Позже появились и образцы с возможностью перезаряда. Дешевизна материалов, запредельные рабочие температуры и долгое хранение без саморазряда — главные преимущества аккумуляторов NaS.

Современные версии экспериментальных аккумуляторов

Ученые активно ведут разработки для совершенствования технологий и поиска новых версий аккумуляторов. Они пробуют разные материалы, преследуя цель сделать прорыв в удельной энергоемкости. Естественно, удешевление производства тоже выступает одним из приоритетов в исследованиях. Ниже представлены современные технологии, которые обладают большими перспективами.

Li-air: литий-воздушные аккумуляторы

Разработка литий-воздушных батарей вдохновлена концепцией цинково-воздушных и топливных элементов, а именно их природой “дышать” воздухом. В батарее Li-air применяется литиевый анод, электролит и каталитический воздушный катод, снабжаемый кислородом.

Отличия литий-ионной и литий-воздушной батареи фото

По прогнозам ученых потенциал накопления энергии Li-ion-air ожидается в 5-10 раз больше, чем у обычных аккумуляторов Li-ion. Правда, до широкого коммерческого использования технологии понадобится минимум два десятка лет. Каждый элемент литий-воздушных батарей будет генерировать напряжение порядка 1,7-3,2 Вольт в зависимости от используемых материалов. Над разработкой трудятся специалисты компаний всего мира: IBM, Liox Power, Excellatron, Lithion-Yardney, Rayovac, Poly Plus. По расчетам, удельная энергия Li-ion-air составляет 13 кВТ*ч. Для сравнения, алюминий-воздух при аналогичных качествах имеет теоретическую удельную энергию, равную 8 кВт*ч.

Читайте также:  Как найти мощность тока в цепи с параллельным соединением

Li-S: литий-серные аккумуляторы

Литий-серные аккумуляторы — экологически чистые; сера в качестве основного компонента доступна повсеместно.

Пользуясь тем, что атомный вес лития низкий, а серы — умеренный, разработчикам литий-серных батарей удалось получить отличный удельный потенциал 2500 Вт/ч и очень высокую удельную энергию 550 Вт*ч/кг. Это в 3 раза больше, чем у аккумуляторов Li-ion. Напряжение ячейки Li-S 2,1 В.

По мере разряда Li-S аккумулятора литий на поверхности анода растворяется, а при зарядке — восстанавливается нанесением литиевого покрытия на анод. Батарея выдерживает низкие температуры, не спешит разряжаться и даже может заряжаться при -60°C. Недостаток — нестабильность при высоких температурах и ограниченный срок службы: всего 40-50 циклов заряда и разряда, тогда как другие современные типы аккумуляторов служат 300-500 циклов.

Аноды из кремний-углеродного нанокомпозита

Заменив углерод в качестве материала анода на кремний-углеродный нанокомпозит для Li-ion аккумуляторов, ученые смогли улучшить стабильную производительность батареи и увеличить предельные размеры ёмкости АКБ в 5 раз. Это удалось за счет упрощенного доступа ионов лития, по сравнению с обычным литий-ионным аккумулятором.

Эта разработка обладает огромными перспективами: производство недорогое и несложное, аккумулятор получается безопасным. Недостаток заключается в ограниченном сроке службы из-за структурных проблем, возникающих при введении и изъятии больших объемов литий-иона.

Вид нанокомпозитной литиевой батареи фото

Перспективы рынка АКБ

За последние десятилетия настоящих прорывов в поиске новых химических источников тока не произошло. Последний большой скачок сделали аккумуляторы LiFePO4 и LTO, обогнав по ряду параметров привычные уже литий-ионные батареи. Но на сегодняшний день этой тройкой технологий список прогрессивных типов аккумуляторов ограничивается. Многократное увеличение энергоемкости теоретически возможно, но это случится нескоро. Поэтому покупка современных батарей с хорошими характеристиками точно не устареет морально в ближайшие два десятка лет.

Источник

АККУМУЛЯТОРЫ

АККУМУЛЯТОРЫ электрические (от лат. accumulator- собиратель, накопитель), хим. источники тока многократного действия. При заряде от внеш. источника электрич. тока в аккумуляторе накапливается энергия, к-рая при разряде вследствие хим. р-ции непосредственно превращ. снова в электрическую и выделяется во внеш. цепь. По принципу работы и осн. элементам конструкции аккумуляторы не отличаются от гальванических элементов, но электродные р-ции, а также суммарная токообразующая р-ция в аккумуляторах обратимы. Поэтому после разряда аккумулятора может быть снова заряжен пропусканием тока в обратном направлении: на положит. электроде при этом образуется окислитель, на отрицательном-восстановитель.

Наиб. распространены свинцовые аккумуляторы, часто наз. также кислотными. Их действие основано на р-ции:

Электролит — р-р H2SO4 с концентрацией 12-24% по массе в разряженном состоянии и 28-40% в заряженном. Напряжение разомкнутой цепи (НРЦ) 1,95-2,15 В. Чаще всего применяют электроды из пасты, содержащей смесь Рb3О4 и РbО с H2SO4 (активная масса); эту пасту намазывают на профилированную сетку-токоотвод из сплава Рb с 2-12% Sb. Электроды формируют, пропуская через р-р электролита зарядный ток в определенном режиме; при этом на одном электроде образуется РbО2, на другом-Рb. Затем электроды отмывают и сушат в условиях, исключающих возможность окисления Рb. Аккумуляторы, собранные из таких электродов, после заливки у потребителя р-ром H2SO4 готовы к эксплуатации без подзаряда (остальные виды аккумуляторов требуют дополнит. заряда). Применяют также панцирные электроды, в к-рых активная масса заключена в перфорированную пластмассовую или тканевую трубку.

Первый свинцовый аккумулятор был создан Г. Планте в 1859. Сейчас более половины мирового произ-ва Рb расходуется на изготовление свинцовых аккумуляторов с единичной емкостью 2-5000 А * ч и уд. энергией 25-40 Вт * ч/кг. Осн. достоинства таких аккумуляторов: относит. дешевизна, пологие разрядная и зарядная кривые, возможность работать в разл. режимах разряда; недостаток — невысокий ресурс работы (число допустимых циклов заряд-разряд для стартерных аккумуляторов 100-300, для тяговых с панцирными электродами 800-1500). В конце заряда на электродах свинцового аккумулятора наблюдается заметное выделение газов, к-рые часто увлекают за собой туман из капель H2SO4. В связи с этим большое внимание уделяется созданию герметизированных свинцовых акуумуляторов.

Щелочные никель-кадмиевые (НКА) и никельжелезные (НЖА) аккумуляторы по распространению занимают второе место после свинцовых. Токообразующая реакция:

где M-Cd или Fe. Электролит-водный р-р КОН, в к-рый иногда вводят LiOH для улучшения работоспособности окисноникелевого электрода. НРЦ составляет 1,30-1,34 В для НКА и 1,37-1,41 В для НЖА (спустя нек-рое время после окончания заряда), уд. энергия 20-35 Вт*ч/кг. Щелочные аккумуляторы имеют, как правило, высокий ресурс — 1-2 тыс. циклов. Электроды м.б. разл. конструкции: ламельные, в к-рых активная масса заключена в плоские коробочки-ламели из перфорированной стальной ленты; спеченные, в к-рых активная масса вводится в поры основы, образуемой при спекании порошкообразного металлич. Ni; прессованные, в к-рых активную массу под давл. 35-60 МПа напрессовывают на стальную основу (толщина пластин 0,8-1,8 мм).

НЖА используют в осн. для изготовления тяговых аккумуляторных батарей большой емкости (до 1200 А * ч). Они дешевле НКА, но характеризуются повыш. саморазрядом из-за коррозии железа в щелочном р-ре; кроме того, у них более низкие значения отдачи по току и по энергии. В НКА не наблюдается коррозии Cd и связанного с ней газовыделения, что обусловливает большую длительность сохранения заряженного состояния и возможность полной герметизации аккумулятора. Герметичные НКА выпускают емкостью от 0,01 до 160 А * ч. Их широко используют как источники электрич. энергии в приборах бытовой техники, ср-вах связи и т.п.

Серебряно-цинковые аккумуляторы со щелочным электролитом имеют высокую уд. энергию (до 130 Вт*ч/кг) и способны разряжаться большими токами, но из-за высокой стоимости серебра нашли применение только в специальных отраслях, напр. в космической технике. Токообразующая р-ция:

При заряде возможно также образование AgO. Поэтому на зарядных и разрядных кривых наблюдаются ступени, соответствующие р-циям с участием Ag2O и AgO. НРЦ 1,60-1,85 В, ресурс не превышает 100-200 циклов.

Попытки замены Ag др. материалами привели к созданию никель-цинковых аккумуляторах, в к-рых используют спеченный или прессованный окисноникелевый электрод от НКА и цинковый электрод от серебряно-цинковых аккумуляторов. Токообразующая р-ция:

НРЦ 1,74-1,78 В, уд. энергия ок. 60 Вт*ч/кг, ресурс ок. 300 циклов. Разрабатываемые варианты этих аккумуляторах предназначены в осн. для электромобилей, но широкому использованию их мешает недостаточный пока ресурс работы.

В никель-водородных аккумуляторах протекает след. токообразующая р-ция:

Выделяющийся при заряде Н2 накапливается под давлением. Поэтому блок с электродами помещают в стальной цилиндр, выдерживающий давления до 10 МПа. НРЦ 1,32-1,36 В, уд. энергия 50-60 Вт*ч/кг, ресурс неск. тысяч циклов. Из-за дороговизны произ-ва такие аккумуляторы применяют пока только в космич. технике.

Среди перспективных конструкций аккумуляторов с неводными электролитами Наиб. интерес представляют серно-натриевые с твердым керамич. электролитом из алюминатов натрия, обладающим проводимостью по ионам Na + . Рабочая т-ра такого аккумулятора 300-350°С. Токообразующая р-ция:

НРЦ 2,08 В. Осн. трудность при разработке: создание технологии изготовления тонких, но достаточно стойких деталей из твердого электролита. Разрабатывают также высокотемпературные сульфид-железо-литиевые аккумуляторы; в них вместо твердого электролита применяют расплав солей, окислителями служат FeS или FeS2. По своим характеристикам эти аккумуляторы близки к серно-натриевым.

Если требуется более высокое напряжение, чем у отдельного аккумулятора, применяют аккумуляторные батареи, состоящие из последовательно включенных аккумуляторов, имеющих общий корпус, выводы и маркировку. Батареи широко применяют в транспортных ср-вах для запуска двигателей, освещения и др. Тяговые батареи используют для силовых установок электрокаров, стационарные большой емкости-для электропитания телефонных сетей, в кач-ве аварийных источников электроэнергии на случай перебоев в электросети (напр., в операционных). Малогабаритные герметичные батареи применяют для питания переносных радиоприемников и др. устройств. Большое внимание уделяется разработке батарей для электромобилей. Мировое произ-во одних лишь стартерных батарей из свинцовых аккумуляторов превышает 100 млн. штук в год.

В отличие от гальванич. элементов аккумуляторы требуют ухода при эксплуатации: их необходимо заряжать, периодически доливать электролит и поддерживать постоянной его концентрацию, проводить тренировочные и контрольные зарядно-разрядные циклы и т.п. Разрабатывают т. наз. малообслуживаемые и необслуживаемые аккумуляторы, уход за которыми упрощен.

===
Исп. литература для статьи «АККУМУЛЯТОРЫ» : Романов В. В., Хашев Ю. М., Химические источники тока, 2 изд., М., 1978; Багоцкий В.С., Скундин А. М., Химические источники тока, М., 1981. B.C. Багоцкий.

Страница «АККУМУЛЯТОРЫ» подготовлена по материалам химической энциклопедии.

Источник