Меню

3 вопрос параметры электрического тока

1)Основные параметры электрического тока

Электрический ток

Электрическим током называется движение электрических зарядов (электронов в металлах, электронов и ионов в жидкостях и газах) под действием электрического поля.

Движение положительных зарядов по полю эквивалентно движению отрицательных зарядов против поля.

За направление тока принято направление положительного заряда.

Условия существования электрического тока (в дальнейшем просто тока в проводнике):

а) наличие свободных заряженных частиц;

б) наличие электрического поля (разности потенциалов на концах проводника).

Действия электрического тока:

а) ТЕПЛОВОЕ – нагревание проводника, по которому идет ток;

б) ХИМИЧЕСКОЕ – изменение химического состава проводника (электролиз и сопутствующие ему явления);

в) МАГНИТНОЕ – силовое воздействие на другие проводники с током и намагниченные тела (магнетики).

Основные характеристики электрического тока:

а) сила тока I – численно равна количеству электричества (заряду) Q, протекающего по проводнику за время t:

I =

В зависимости от величины и направления токи бывают: постоянные, переменные, пульсирующие и другие. Будем рассматривать только постоянные токи I = const.

Ток измеряется прибором – амперметром, который включается в цепь последовательно проводнику (сопротивлению).

б) напряжение U – равно разности потенциалов на участке цепи.

Напряжение измеряется прибором – вольтметром, который включается параллельно проводнику (сопротивлению);

в) сопротивление R проводника.

1. От длины проводника ℓ, его сечения S и материала (характеризуется удельным сопротивлением проводника ρ):

2. От температуры t°С (или Т): R = R (1 + αt),

где R – сопротивление проводника при 0°С,

α – температурный коэффициент сопротивления.

3. Проводники могут соединяться последовательно и параллельно.

г) плотность тока j – физическая величина, определяемая силой тока I проходящего через единицу площади поперечного сечения S проводника:

j =

д) электрическая сила (ЭДС) ε – физическая величина, определяемая работой сторонних (неэлектрических) сил Аст по перемещению единичного положительного заряда q:

Если в цепи на носители тока действуют силы электрического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приводит к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способно создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.

Источники тока также можно соединить последовательно и параллельно:

1. При последовательном соединении источников:

где ε – ЭДС одного источника,

r – сопротивление одного источника,

n – число источников.

2. При параллельном соединении n одинаковых источников:

Элементы электрических цепей и сами электрические цепи изображают схематически следующим образом:

– внешнее сопротивление проводника (участок электрической цепи без ЭДС)

– амперметр и его включение в цепь;

– вольтметр и его включение в цепь;

– источник тока (источник ЭДС) с внутренним сопротивлением.

– последовательное соединение сопротивлений и источников тока.

– параллельное соединение сопротивлений и источников тока.

– полная электрическая цепь.

Для решения задач по расчету электрических цепей используется закон Ома:

1. Закон Ома для участка цепи (без ЭДС):

или ,

где – удельная проводимость проводника,

Е – напряженность электрического поля в проводнике.

2. Закон Ома для полной цепи:

где R – внешнее сопротивление цепи,

r – внутреннее сопротивление источника тока,

R + r – называется полным сопротивлением цепи.

а) если R → 0, источник замкнут накоротко:

где Iкз – ток короткого замыкания;

б) если R → ∞, цепь разомкнута:

т.е. ЭДС источника численно равна напряжению на его зажимах при разомкнутой внешней цепи.

Для расчетов полных электрических цепей полезно знать следующие величины:

а) полная мощность, развиваемая источником:

б) полезная мощность (выделяемая на внешнем сопротивлении):

г) КПД источника:

Электрический ток I, проходя по участку цепи без ЭДС с сопротивлением R, совершает работу А по перемещению электрических зарядов, которую можно рассчитать по формуле:

,

где U – напряжение на участке цепи,

t – время пропускания тока.

Мощность N тока, согласно определения, равна:

При протекании тока по проводнику он нагревается и в нем выделяется количество теплоты Q, которое без учета потерь рассчитывается по закону Джоуля-Ленца:

Электрический ток – это проходящие через проводник электроны, несущие отрицательный заряд. Объем этого заряда или, иными словами, количество электричества характеризует силу тока. Мы знаем, что сила тока одинакова во всех местах цепи.

Читайте также:  Как определить номинальный ток светодиода

Электроны не могут исчезать или «спрыгивать» с проводов и нагрузки. Поэтому, силу тока мы можем измерить в любом местеэлектрической цепи. Однако, будет ли одинаковым действие тока на разные участки этой цепи? Давайте разберемся.

Проходя по проводам, ток лишь слегка их нагревает, однако не совершает при этом большой работы. Проходя же через спираль электрической лампочки, ток не просто сильно нагревает ее, он нагревает ее до такой степени, что она, раскаляясь, начинает светиться. То есть в данном случае ток совершает механическую работу, и довольно приличную работу. Ток тратит свою энергию. Электроны в том же количестве продолжают бежать дальше, но энергии у них уже поменьше.

Источник



Параметры электрического тока и источники электроопасности

Электрический ток

Лекция

Основными параметрами электрического тока являются частота электрического тока f(Гц), электрическое напряжение в сети U (В), сила электрического тока I (А). С точки зрения электробезопасности важное значение имеет тип электрической сети. В настоящее время применяются следующие типы электрических сетей:

• Четырехпроводные электрические сети с глухо заземленной нейтральной точкой (рис.1). Три провода сети являются фазными проводами, а один — нейтральный рабочий провод. Нейтральная точка сети и рабочий нейтральный провод имеют соединение с землей (заземлены). Напряжение между любыми двумя фазными проводами равно линейному напряжению Uл, а между любым фазным и нейтральным проводами — фазному Uф. Линейное и фазное напряжение связаны соотношением Uл = Uф. Например, в сети напряжением 380/220 В линейное напряжение 380 В, а фазное 220 В. Четырехпроводная сеть с заземленной нейтралью наиболее распространена как в промышленности, так и в бытовых электрических сетях.

• Трехпроводные электрические сети с изолированное нейтралью (рис.2). В этих сетях имеется три фазных провода, отсутствует нулевой рабочий провод, а нейтральная точка изолирована от земли. Эти сети нашли менее широкой распространение и используются в промышленности и технике для электроснабжения специальных технических устройств и технологических процессов.

• Однофазные электрические сети.

Электрический ток подразделяется на: постоянный и непостоянный (переменный). Токи промышленной частоты имеют частоту 50 Гц. Однако для питания ряда технических устройств, электроинструмента применяются токи и более высоких частот, например 400 Гц.

По напряжению электрический ток подразделяется на: низковольтный и высоковольтный. Высоковольтным считается напряжение свыше 1000В.

Источники электрической опасности. Электрический ток широко используется в промышленности, технике, быту, на транспорте. Устройства, машины, технологическое оборудование и приборы, использующие для своей работы электрический ток могут являться источниками опасности.

Поражение электрическим током может произойти при прикосновении к токоведущим частям, находящимся под напряжением, отключенным токоведущим частям, на которых остался заряд или появилось напряжение в результате случайного включения в сеть, к нетоковедущим частям, выполненным из проводящего электрический ток материала, после перехода на них напряжения с токоведущих частей.

Кроме того, возможно поражение человека электрическим током под воздействием напряжения шага при нахождении человека в зоне растекания тока на землю; электрической дугой, возникающей при коротких замыканиях; при приближении человека к частям высоковольтных установок, находящимся под напряжением, на недопустимо малое расстояние.

Человек может оказаться под воздействием напряжения прикосновения и напряжения шага.

Растекание тока в грунте (основании) возникает при замыкании, находящихся под напряжением частей электрических установок и проводов, на землю. Замыкание может произойти при повреждении изоляции и пробое фазы на корпус электроустановки, при обрыве и падении провода под напряжением на землю и по ряду других причин.

При растекании тока в грунте (основании) на поверхности земли (основания) формируется поле электрических потенциалов φ. Чем дальше от точки замыкания тока на землю, тем меньше электрический потенциал. Электрический потенциал в зоне растекания тока распределяется по гиперболическому закону

где κ — постоянная величина, определяемая в зависимости электрического сопротивления грунта и величины стекающего тока замыкания.

Зона растекания тока практически составляет 20 м. За пределами этой зона величины электрических потенциалов незначительны и их можно принимать нулевыми.

Напряжение прикосновения — это разность электрических потенциалов между двумя точками тела человека, возникающая при его прикосновении к токоведущим частям, корпус) электроустановки или нетоковедущим частям, оказавшимся под напряжением. Напряжение прикосновение (UПР) равно разности потенциалов, под которыми находятся рука (φР) и ноги (φН) человека:

Читайте также:  Устройство якоря электродвигателя переменного тока

Потенциал руки (φр) равен потенциалу корпуса, а потенциал ног (φН) равен потенциалу земли, который зависит от удаленности человека от точки стекания тока в землю. Если корпус установки, оказавшейся под напряжением, изолирован от земли или человек находится на расстоянии более 20 м от точки стекания тока с корпуса в землю, то потенциал земли нулевой и напряжение прикосновения фактически равно потенциалу корпуса. Если человека находится в зоне растекания тока. Чем дальше человек находится от точки стекания тока в землю, тем меньше потенциал земли, а следовательно больше напряжение прикосновения, под которым находится человек. Если человека стоит рядом с точкой стекания тока, потенциал земли (потенциал ног) практически равен потенциалу корпуса ( потенциалу руки), и напряжение прикосновения равно 0, т.е. человек в безопасности.

Напряжение шага возникает, когда человека находится в зоне растекания электрического тока в основании (земле). Если ноги человека удалены на различное расстояние от точки стекания тока, которое, как правило, определяется размером шага, то они будут находиться под различными потенциалами. В результате между ногами возникает напряжение шага, равное разности потенциалов, под которыми находятся ноги. Чем дальше находится человек от точки замыкания тока на землю, тем более пологой является кривая растекания тока, и при одной и той же величине шага напряжение прикосновение меньше.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Билет 7 — Параметры электрического тока.

Электрический ток — упорядоченное движение заряженных частиц.

Условия существования электрического тока:

1. Наличие свободных заряженных частиц в проводнике.

2. Электрическое поле, под действием которого заряженные частицы будут двигаться упорядоченно.

За положительное направление электрического тока принимается направление движения положительно заряженных частиц.

Проводники делятся на проводники первого и второго рода.

К проводникам первого рода относятся все металлы и их сплавы, носителем электрического заряда в проводнике первого рода являются свободные электроны.

К проводникам второго рода относятся электролиты. Растворы и расплавы веществ, которые проводят электрический ток (щелочи, кислоты, соли, воду). Носителями зарядов в проводниках второго рода являются ионы.

Сила тока.Силой тока называется количество заряженных частиц, проходящих через поперечное сечение проводника за единицу времени.

Напряжение – разность потенциалов на концах проводника.

Плотность тока.

Отношение силы тока к площади поперечного сечения проводника.

Билет 8 — Закон Ома для участка цепи.

I = U / R; [A = В / Ом]

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению

Билет 9 — Закон Ома для полной цепи.

Cила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи

, где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.

Билет 10 — Основные понятия, относящиеся к электрической цепи: проводимость, сопротивление, удельное сопротивление, удельная проводимость.

Электри́ческая проводи́мость — способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению

Формула: g = I / U или g = 1 / R

В сименсах (См). [См]=[1/Ом]

g — проводимость проводника, ом;

R — сопротивление проводника, Ом;

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

Формула: R = U / I; [A = В / Ом]

R — сопротивление проводника, Ом;

Удельное сопротивление вещества —физическая величина, характеризующая способность вещества препятствовать прохождению электрического тока.

В отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества.

Расчётная формула .. ρ = R*S / l

R — сопротивление проводника, Ом;

ρ — удельное сопротивление проводника; Ом·м

l — длина проводника, м;

S — сечение проводника, мм2.

Читайте также:  Бьет током когда опускаю руки в воду

Удельная проводимость(удельная электропроводность) — это мера способности вещества проводить электрический ток. Ом −1 ·м −1

Источник

Параметры постоянного электрического тока

Из курса физики известно, что электрический ток представляет собой упорядоченное, т.е. организованное перемещение заряженных частиц, которыми являются электроны в свободном состоянии. Естественно это движение подчиняется определенным законам и характеризуется физическими параметрами.

постоянный электрический ток

Электрическое поле и свободные носители зарядов – это те обязательные факторы, которые необходимы для существования электрического тока. Базисными параметрами постоянного (не меняющего своего значения) электрического тока считаются: его сила, сопротивление, напряжение. Все они взаимосвязаны между собой.

Взаимосвязь параметров электрического тока

Элементарная электроцепь постоянного тока включает в себя источник электроэнергии, отрицательный и положительный контакты которого связаны шунтом или проводником. Движение заряда по проводнику осуществляется под воздействием электрического поля. Однако, этот перенос электронов не приводит к уравниванию потенциалов, т.к. в любой отрезок времени, к первому концу цепи поступает абсолютно такое же количество заряженных частиц какое из него переместилось к противоположному контакту. Таким образом разность потенциалов, которую принято называть напряжением, остается неизменяемой величиной.

Перемещению электрических зарядов в цепи, препятствует внутреннее сопротивление материала проводника. Взаимосвязь параметров электротока была выведена опытным путем Г. Омом. В математическом виде закон Ома можно представить так: I=U/R, где собственно I – сила тока, U – напряжение (разность потенциалов) и R – сопротивление на соответствующем участке цепи.

Собственно, из уравнения видно, что напряжение имеет прямую зависимость от силы тока и сопротивления (U=I х R), а величина силы тока обратно пропорциональна сопротивлению.

постоянный электрический ток

Последовательное соединение элементов электрической сети постоянного тока

Параметры электроцепи постоянного тока, в случае последовательного соединения устройств, имеют некоторые особенности. Так, например, сила тока (I) остается постоянной на всех элементах электрической схемы, а вот напряжение (U) является суммой напряжений на каждом участке схемы. Рассмотрим пример электрической цепи с последовательно включенными тремя проводниками с сопротивлением R1, R2 и R3. Согласно закону Ома, напряжение U1 = IxR1, U2 = IxR2, U3 = IxR3. Следовательно, U общ = U1+U2+U3= IxR1+ IxR2= IxR3 = I (R1+R2+R3).

постоянный электрический ток

Из уравнения видно, что такой параметр электрической цепи как общее сопротивление (R общ), при последовательном соединении, будет равен сопротивлению каждого отдельно взятого проводника. Последовательное подключение электрических устройств позволяет снизить нагрузку на отдельный элемент, что продлевает срок службы, но при этом теряется мощность.

Параметры электрической цепи. Параллельное соединение элементов

Параллельная цепь характеризуются общими контактами в местах ввода и вывода основного провода. В данной ситуации напряжение на всех элементах цепи остается одинаковым, т.е. U1=U2=U3. А вот для силы тока, будет характерна обратная зависимость от сопротивления каждого участка, т.е. I х=U/Rx. Параллельное соединение электроприборов является наиболее распространенным способом в бытовых условиях.

постоянный электрический ток

Параметры цепи при смешанном соединении в электрической цепи

Смешанное подключение проводников представляет собой электрическую цепь, в которой элементы включены комбинировано, т.е. как последовательно, так и параллельно друг другу. Для определения конкретных параметров, в этом случае, вся схема разбивается на самостоятельные участки в соответствии со способом подключения. Индивидуальные параметры рассчитываются для каждого участка отдельно. Необходимо отметить, что параллельно включенные участки, могут состоять из ряда последовательно соединенных элементов.

постоянный электрический ток

Понятие мощности электрического тока и ее параметры

Прохождение электротока по цепи, по своей сути, представляет собой работу (А) по перемещению свободного заряда от одного потенциала к другому. Чем больше электронов пересекает плоскость сечения электропроводящего элемента за единицу времени, тем выше мощность электрического тока. Общее количество работы можно определить по формуле – А=U∆q=IU∆t=I 2 R∆t.

Мощность электротока имеет обратно пропорциональную зависимость от отрезка времени за который была осуществлена работа – Р=A/∆t и прямо зависит от разности потенциалов и силы тока – Р=UxI. В том случае, если на участке цепи не осуществляется механическая работа под воздействием электрического тока, энергия тратится только на нагрев токопроводящего элемента. Общее количество выделяемого тепла, в этом варианте, будет равно работе, которую совершает электрической ток. Определить количество теплоты можно применив формулу Q=I 2 R∆t. Это соответствие было получено опытным путем Джоулем и Ленцем, а закон назван их именем.

Источник